1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-22 22:58:30 +00:00
hashcat/OpenCL/m08800-pure.cl
2019-05-07 09:01:32 +02:00

484 lines
11 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#endif
typedef struct androidfde_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} androidfde_tmp_t;
typedef struct androidfde
{
u32 data[384];
} androidfde_t;
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m08800_init (KERN_ATTR_TMPS_ESALT (androidfde_tmp_t, androidfde_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[salt_pos].salt_buf, salt_bufs[salt_pos].salt_len);
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m08800_loop (KERN_ATTR_TMPS_ESALT (androidfde_tmp_t, androidfde_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
for (u32 i = 0; i < 8; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m08800_comp (KERN_ATTR_TMPS_ESALT (androidfde_tmp_t, androidfde_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/**
* aes
*/
u32 ukey[4];
ukey[0] = tmps[gid].out[0];
ukey[1] = tmps[gid].out[1];
ukey[2] = tmps[gid].out[2];
ukey[3] = tmps[gid].out[3];
#define KEYLEN 60
u32 ks[KEYLEN];
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 data[4];
data[0] = digests_buf[digests_offset].digest_buf[0];
data[1] = digests_buf[digests_offset].digest_buf[1];
data[2] = digests_buf[digests_offset].digest_buf[2];
data[3] = digests_buf[digests_offset].digest_buf[3];
u32 out[4];
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
u32 iv[4];
iv[0] = tmps[gid].out[4];
iv[1] = tmps[gid].out[5];
iv[2] = tmps[gid].out[6];
iv[3] = tmps[gid].out[7];
const u32 a = out[0] ^ iv[0];
const u32 b = out[1] ^ iv[1];
const u32 c = out[2] ^ iv[2];
const u32 d = out[3] ^ iv[3];
// check for FAT
{
sha256_ctx_t ctx;
sha256_init (&ctx);
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = a;
w0[1] = b;
w0[2] = c;
w0[3] = d;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_update_64 (&ctx, w0, w1, w2, w3, 16);
sha256_final (&ctx);
u32 essivhash[8];
essivhash[0] = ctx.h[0];
essivhash[1] = ctx.h[1];
essivhash[2] = ctx.h[2];
essivhash[3] = ctx.h[3];
essivhash[4] = ctx.h[4];
essivhash[5] = ctx.h[5];
essivhash[6] = ctx.h[6];
essivhash[7] = ctx.h[7];
// 2. generate essiv based on startsector -- each 512 byte is one sector
AES256_set_encrypt_key (ks, essivhash, s_te0, s_te1, s_te2, s_te3);
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
u32 essiv[4];
AES256_encrypt (ks, data, essiv, s_te0, s_te1, s_te2, s_te3, s_te4);
// 3. decrypt real data, xor essiv afterwards
data[0] = esalt_bufs[digests_offset].data[0];
data[1] = esalt_bufs[digests_offset].data[1];
data[2] = esalt_bufs[digests_offset].data[2];
data[3] = esalt_bufs[digests_offset].data[3];
iv[0] = essiv[0];
iv[1] = essiv[1];
iv[2] = essiv[2];
iv[3] = essiv[3];
ukey[0] = a;
ukey[1] = b;
ukey[2] = c;
ukey[3] = d;
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
u32 r0 = out[0] ^ iv[0];
u32 r1 = out[1] ^ iv[1];
u32 r2 = out[2] ^ iv[2];
//u32 r3 = out[3] ^ iv[3];
// rotate 3 byte (in fat!)
r0 = r1 << 8 | r0 >> 24;
r1 = r2 << 8 | r1 >> 24;
// MSDOS5.0
if ((r0 == 0x4f44534d) && (r1 == 0x302e3553))
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, 0, 0, 0);
}
}
}
// check for extfs
{
// 3. decrypt real data
ukey[0] = a;
ukey[1] = b;
ukey[2] = c;
ukey[3] = d;
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 r[16];
// not needed because of cbc mode -- implementation flaw !!. first 16 byte are not interessting
r[0] = 0;
r[1] = 0;
r[2] = 0;
r[3] = 0;
for (u32 i = 4; i < 16; i += 4)
{
data[0] = esalt_bufs[digests_offset].data[256 + i + 0];
data[1] = esalt_bufs[digests_offset].data[256 + i + 1];
data[2] = esalt_bufs[digests_offset].data[256 + i + 2];
data[3] = esalt_bufs[digests_offset].data[256 + i + 3];
iv[0] = esalt_bufs[digests_offset].data[256 + i + 0 - 4];
iv[1] = esalt_bufs[digests_offset].data[256 + i + 1 - 4];
iv[2] = esalt_bufs[digests_offset].data[256 + i + 2 - 4];
iv[3] = esalt_bufs[digests_offset].data[256 + i + 3 - 4];
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
r[i + 0] = out[0] ^ iv[0];
r[i + 1] = out[1] ^ iv[1];
r[i + 2] = out[2] ^ iv[2];
r[i + 3] = out[3] ^ iv[3];
}
// we need just a few swapped, because we do not access the others
r[ 5] = hc_swap32_S (r[ 5]);
r[ 6] = hc_swap32_S (r[ 6]);
r[14] = hc_swap32_S (r[14]);
// superblock not on id 0 or 1
// assumes max block size is 32MiB
// has EXT2_SUPER_MAGIC
if ((r[5] < 2) && (r[6] < 16) && ((r[14] & 0xffff) == 0xEF53))
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, 0, 0, 0);
}
}
}
}