1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-18 11:40:58 +00:00
hashcat/OpenCL/m24410-pure.cl
2022-07-13 01:37:59 +02:00

615 lines
17 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#include M2S(INCLUDE_PATH/inc_cipher_des.cl)
#endif
#define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl)
#define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl)
typedef enum pkcs_cipher {
PKCS_CIPHER_3DES = 1,
PKCS_CIPHER_AES_128_CBC = 2,
PKCS_CIPHER_AES_192_CBC = 3,
PKCS_CIPHER_AES_256_CBC = 4,
} pkcs_cipher_t;
typedef enum pkcs_cipher_key_size {
PKCS_CIPHER_KEY_SIZE_3DES = 192,
PKCS_CIPHER_KEY_SIZE_AES_128_CBC = 128,
PKCS_CIPHER_KEY_SIZE_AES_192_CBC = 192,
PKCS_CIPHER_KEY_SIZE_AES_256_CBC = 256,
} pkcs_cipher_key_size_t;
typedef struct pkcs_sha1_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[32];
u32 out[32];
} pkcs_sha1_tmp_t;
typedef struct pkcs
{
int cipher; // pkcs_cipher_t
u32 data_buf[16384];
int data_len;
u32 iv_buf[4];
} pkcs_t;
DECLSPEC void hmac_sha1_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m24410_init (KERN_ATTR_TMPS_ESALT (pkcs_sha1_tmp_t, pkcs_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len);
u32 key_elem = 0;
if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_3DES) { key_elem = (PKCS_CIPHER_KEY_SIZE_3DES / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_128_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_128_CBC / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_192_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_192_CBC / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_256_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_256_CBC / 8) / 4; }
for (u32 i = 0, j = 1; i < key_elem; i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m24410_loop (KERN_ATTR_TMPS_ESALT (pkcs_sha1_tmp_t, pkcs_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= GID_CNT) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
u32 key_elem = 0;
if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_3DES) { key_elem = (PKCS_CIPHER_KEY_SIZE_3DES / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_128_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_128_CBC / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_192_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_192_CBC / 8) / 4; }
else if (esalt_bufs[DIGESTS_OFFSET_HOST].cipher == PKCS_CIPHER_AES_256_CBC) { key_elem = (PKCS_CIPHER_KEY_SIZE_AES_256_CBC / 8) / 4; }
for (u32 i = 0; i < key_elem; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < LOOP_CNT; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m24410_comp (KERN_ATTR_TMPS_ESALT (pkcs_sha1_tmp_t, pkcs_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif
if (gid >= GID_CNT) return;
u32 ukey[8];
ukey[0] = tmps[gid].out[0];
ukey[1] = tmps[gid].out[1];
ukey[2] = tmps[gid].out[2];
ukey[3] = tmps[gid].out[3];
ukey[4] = tmps[gid].out[4];
ukey[5] = tmps[gid].out[5];
ukey[6] = tmps[gid].out[6];
ukey[7] = tmps[gid].out[7];
const int data_len = esalt_bufs[DIGESTS_OFFSET_HOST].data_len;
const int last_pad_pos = data_len - 1;
const int last_pad_elem = last_pad_pos / 4;
const int cipher = esalt_bufs[DIGESTS_OFFSET_HOST].cipher;
u32 iv[4];
u32 enc[4];
u32 dec[4];
if (cipher == PKCS_CIPHER_3DES)
{
ukey[0] = hc_swap32_S (ukey[0]);
ukey[1] = hc_swap32_S (ukey[1]);
ukey[2] = hc_swap32_S (ukey[2]);
ukey[3] = hc_swap32_S (ukey[3]);
ukey[4] = hc_swap32_S (ukey[4]);
ukey[5] = hc_swap32_S (ukey[5]);
u32 K0[16];
u32 K1[16];
u32 K2[16];
u32 K3[16];
u32 K4[16];
u32 K5[16];
_des_crypt_keysetup (ukey[0], ukey[1], K0, K1, s_skb);
_des_crypt_keysetup (ukey[2], ukey[3], K2, K3, s_skb);
_des_crypt_keysetup (ukey[4], ukey[5], K4, K5, s_skb);
// first check the padding
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0];
u32 p1[2];
u32 p2[2];
_des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
const int paddingv = pkcs_padding_bs8 (dec, 8);
if (paddingv == -1) return;
// second check (naive code) ASN.1 structure
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1];
_des_crypt_decrypt (p1, enc, K4, K5, s_SPtrans);
_des_crypt_encrypt (p2, p1, K2, K3, s_SPtrans);
_des_crypt_decrypt (dec, p2, K0, K1, s_SPtrans);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
const int real_len = (data_len - 8) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) return;
}
else if (cipher == PKCS_CIPHER_AES_128_CBC)
{
u32 ks[44];
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// first check the padding
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0];
aes128_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int paddingv = pkcs_padding_bs16 (dec, 16);
if (paddingv == -1) return;
// second check (naive code) ASN.1 structure
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3];
aes128_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int real_len = (data_len - 16) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) return;
}
else if (cipher == PKCS_CIPHER_AES_192_CBC)
{
u32 ks[52];
AES192_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// first check the padding
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0];
aes192_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int paddingv = pkcs_padding_bs16 (dec, 16);
if (paddingv == -1) return;
// second check (naive code) ASN.1 structure
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3];
aes192_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int real_len = (data_len - 16) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) return;
}
else if (cipher == PKCS_CIPHER_AES_256_CBC)
{
u32 ks[60];
AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// first check the padding
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 7];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 6];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 5];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 4];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 3];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 2];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 1];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[last_pad_elem - 0];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int paddingv = pkcs_padding_bs16 (dec, 16);
if (paddingv == -1) return;
// second check (naive code) ASN.1 structure
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[2];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].iv_buf[3];
enc[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
const int real_len = (data_len - 16) + paddingv;
const int asn1_ok = asn1_detect (dec, real_len);
if (asn1_ok == 0) return;
}
else
{
return;
}
const u32 r0 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[0];
const u32 r1 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[1];
const u32 r2 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[2];
const u32 r3 = esalt_bufs[DIGESTS_OFFSET_HOST].data_buf[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}