1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-30 03:48:17 +00:00
hashcat/OpenCL/m16300-pure.cl
2019-03-31 19:41:28 +02:00

778 lines
19 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct ethereum_presale
{
u32 iv[4];
u32 enc_seed[152];
u32 enc_seed_len;
} ethereum_presale_t;
typedef struct pbkdf2_sha256_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[32];
u32 out[32];
} pbkdf2_sha256_tmp_t;
CONSTANT_AS CONSTSPEC u64a keccakf_rndc[24] =
{
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
#ifndef KECCAK_ROUNDS
#define KECCAK_ROUNDS 24
#endif
#define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s])
#define Theta2(s) \
{ \
st[ 0 + s] ^= t; \
st[ 5 + s] ^= t; \
st[10 + s] ^= t; \
st[15 + s] ^= t; \
st[20 + s] ^= t; \
}
#define Rho_Pi(s) \
{ \
u32 j = keccakf_piln[s]; \
u32 k = keccakf_rotc[s]; \
bc0 = st[j]; \
st[j] = hc_rotl64_S (t, k); \
t = bc0; \
}
#define Chi(s) \
{ \
bc0 = st[0 + s]; \
bc1 = st[1 + s]; \
bc2 = st[2 + s]; \
bc3 = st[3 + s]; \
bc4 = st[4 + s]; \
st[0 + s] ^= ~bc1 & bc2; \
st[1 + s] ^= ~bc2 & bc3; \
st[2 + s] ^= ~bc3 & bc4; \
st[3 + s] ^= ~bc4 & bc0; \
st[4 + s] ^= ~bc0 & bc1; \
}
DECLSPEC static void keccak_transform_S (u64 *st)
{
const u8 keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const u8 keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
/**
* Keccak
*/
int round;
for (round = 0; round < KECCAK_ROUNDS; round++)
{
// Theta
u64 bc0 = Theta1 (0);
u64 bc1 = Theta1 (1);
u64 bc2 = Theta1 (2);
u64 bc3 = Theta1 (3);
u64 bc4 = Theta1 (4);
u64 t;
t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0);
t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1);
t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2);
t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3);
t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4);
// Rho Pi
t = st[1];
Rho_Pi (0);
Rho_Pi (1);
Rho_Pi (2);
Rho_Pi (3);
Rho_Pi (4);
Rho_Pi (5);
Rho_Pi (6);
Rho_Pi (7);
Rho_Pi (8);
Rho_Pi (9);
Rho_Pi (10);
Rho_Pi (11);
Rho_Pi (12);
Rho_Pi (13);
Rho_Pi (14);
Rho_Pi (15);
Rho_Pi (16);
Rho_Pi (17);
Rho_Pi (18);
Rho_Pi (19);
Rho_Pi (20);
Rho_Pi (21);
Rho_Pi (22);
Rho_Pi (23);
// Chi
Chi (0);
Chi (5);
Chi (10);
Chi (15);
Chi (20);
// Iota
st[0] ^= keccakf_rndc[round];
}
}
DECLSPEC static void hmac_sha256_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
digest[5] = ipad[5];
digest[6] = ipad[6];
digest[7] = ipad[7];
sha256_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 32) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
digest[5] = opad[5];
digest[6] = opad[6];
digest[7] = opad[7];
sha256_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m16300_init (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, ethereum_presale_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha256_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha256_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha256_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha256_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha256_hmac_ctx.ipad.h[4];
tmps[gid].ipad[5] = sha256_hmac_ctx.ipad.h[5];
tmps[gid].ipad[6] = sha256_hmac_ctx.ipad.h[6];
tmps[gid].ipad[7] = sha256_hmac_ctx.ipad.h[7];
tmps[gid].opad[0] = sha256_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha256_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha256_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha256_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha256_hmac_ctx.opad.h[4];
tmps[gid].opad[5] = sha256_hmac_ctx.opad.h[5];
tmps[gid].opad[6] = sha256_hmac_ctx.opad.h[6];
tmps[gid].opad[7] = sha256_hmac_ctx.opad.h[7];
sha256_hmac_update_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
for (u32 i = 0, j = 1; i < 8; i += 8, j += 1)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha256_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha256_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha256_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha256_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha256_hmac_ctx2.opad.h[4];
tmps[gid].dgst[i + 5] = sha256_hmac_ctx2.opad.h[5];
tmps[gid].dgst[i + 6] = sha256_hmac_ctx2.opad.h[6];
tmps[gid].dgst[i + 7] = sha256_hmac_ctx2.opad.h[7];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
tmps[gid].out[i + 5] = tmps[gid].dgst[i + 5];
tmps[gid].out[i + 6] = tmps[gid].dgst[i + 6];
tmps[gid].out[i + 7] = tmps[gid].dgst[i + 7];
}
}
KERNEL_FQ void m16300_loop (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, ethereum_presale_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[8];
u32x opad[8];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
ipad[5] = packv (tmps, ipad, gid, 5);
ipad[6] = packv (tmps, ipad, gid, 6);
ipad[7] = packv (tmps, ipad, gid, 7);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
opad[5] = packv (tmps, opad, gid, 5);
opad[6] = packv (tmps, opad, gid, 6);
opad[7] = packv (tmps, opad, gid, 7);
for (u32 i = 0; i < 8; i += 8)
{
u32x dgst[8];
u32x out[8];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
dgst[5] = packv (tmps, dgst, gid, i + 5);
dgst[6] = packv (tmps, dgst, gid, i + 6);
dgst[7] = packv (tmps, dgst, gid, i + 7);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
out[5] = packv (tmps, out, gid, i + 5);
out[6] = packv (tmps, out, gid, i + 6);
out[7] = packv (tmps, out, gid, i + 7);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = dgst[5];
w1[2] = dgst[6];
w1[3] = dgst[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 32) * 8;
hmac_sha256_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
out[5] ^= dgst[5];
out[6] ^= dgst[6];
out[7] ^= dgst[7];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, dgst, gid, i + 5, dgst[5]);
unpackv (tmps, dgst, gid, i + 6, dgst[6]);
unpackv (tmps, dgst, gid, i + 7, dgst[7]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
unpackv (tmps, out, gid, i + 5, out[5]);
unpackv (tmps, out, gid, i + 6, out[6]);
unpackv (tmps, out, gid, i + 7, out[7]);
}
}
KERNEL_FQ void m16300_comp (KERN_ATTR_TMPS_ESALT (pbkdf2_sha256_tmp_t, ethereum_presale_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_AS u32 s_td0[256];
LOCAL_AS u32 s_td1[256];
LOCAL_AS u32 s_td2[256];
LOCAL_AS u32 s_td3[256];
LOCAL_AS u32 s_td4[256];
LOCAL_AS u32 s_te0[256];
LOCAL_AS u32 s_te1[256];
LOCAL_AS u32 s_te2[256];
LOCAL_AS u32 s_te3[256];
LOCAL_AS u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
barrier (CLK_LOCAL_MEM_FENCE);
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/*
* AES-CBC-128 decrypt
*/
/**
* aes decrypt key
*/
u32 ukey[4];
ukey[0] = tmps[gid].out[0];
ukey[1] = tmps[gid].out[1];
ukey[2] = tmps[gid].out[2];
ukey[3] = tmps[gid].out[3];
/**
* aes init
*/
#define KEYLEN 60
u32 ks[KEYLEN];
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 iv[4];
iv[0] = esalt_bufs[digests_offset].iv[0];
iv[1] = esalt_bufs[digests_offset].iv[1];
iv[2] = esalt_bufs[digests_offset].iv[2];
iv[3] = esalt_bufs[digests_offset].iv[3];
u32 a = iv[0];
u32 b = iv[1];
u32 c = iv[2];
u32 d = iv[3];
u32 enc_seed_len = esalt_bufs[digests_offset].enc_seed_len;
u64 seed[76 + 1]; // we need the + 1 to add the final \x02
u32 loop_idx = 0;
u32 seed_idx = 0;
for (loop_idx = 0, seed_idx = 0; loop_idx < enc_seed_len / 4; loop_idx += 4, seed_idx += 2)
{
u32 data[4];
data[0] = esalt_bufs[digests_offset].enc_seed[loop_idx + 0];
data[1] = esalt_bufs[digests_offset].enc_seed[loop_idx + 1];
data[2] = esalt_bufs[digests_offset].enc_seed[loop_idx + 2];
data[3] = esalt_bufs[digests_offset].enc_seed[loop_idx + 3];
u32 out[4];
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
a ^= out[0];
b ^= out[1];
c ^= out[2];
d ^= out[3];
a = hc_swap32_S (a);
b = hc_swap32_S (b);
c = hc_swap32_S (c);
d = hc_swap32_S (d);
seed[seed_idx + 0] = hl32_to_64_S (b, a);
seed[seed_idx + 1] = hl32_to_64_S (d, c);
a = data[0];
b = data[1];
c = data[2];
d = data[3];
}
/*
* check padding
*/
u32 padding_len = h32_from_64_S (seed[seed_idx - 1]) >> 24;
// the ethereum algorithm adds a \x02 after the seed i.e. keccak ($seed . "\x02")
// and the keccak adds an additional \x01 after the whole input
u32 final_len = enc_seed_len - padding_len + 2;
switch (padding_len)
{
case 16:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x1010101010101010) ||
((seed[seed_idx - 2] & 0xffffffffffffffff) != 0x1010101010101010))
{
return;
}
seed[seed_idx - 2] = 0x0102;
seed[seed_idx - 1] = 0;
break;
case 15:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0f0f0f0f0f0f0f0f) ||
((seed[seed_idx - 2] & 0xffffffffffffff00) != 0x0f0f0f0f0f0f0f00))
{
return;
}
seed[seed_idx - 2] &= 0x00000000000000ff;
seed[seed_idx - 2] |= 0x0000000000010200;
seed[seed_idx - 1] = 0;
break;
case 14:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0e0e0e0e0e0e0e0e) ||
((seed[seed_idx - 2] & 0xffffffffffff0000) != 0x0e0e0e0e0e0e0000))
{
return;
}
seed[seed_idx - 2] &= 0x000000000000ffff;
seed[seed_idx - 2] |= 0x0000000001020000;
seed[seed_idx - 1] = 0;
break;
case 13:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0d0d0d0d0d0d0d0d) ||
((seed[seed_idx - 2] & 0xffffffffff000000) != 0x0d0d0d0d0d000000))
{
return;
}
seed[seed_idx - 2] &= 0x0000000000ffffff;
seed[seed_idx - 2] |= 0x0000000102000000;
seed[seed_idx - 1] = 0;
break;
case 12:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0c0c0c0c0c0c0c0c) ||
((seed[seed_idx - 2] & 0xffffffff00000000) != 0x0c0c0c0c00000000))
{
return;
}
seed[seed_idx - 2] &= 0x00000000ffffffff;
seed[seed_idx - 2] |= 0x0000010200000000;
seed[seed_idx - 1] = 0;
break;
case 11:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0b0b0b0b0b0b0b0b) ||
((seed[seed_idx - 2] & 0xffffff0000000000) != 0x0b0b0b0000000000))
{
return;
}
seed[seed_idx - 2] &= 0x000000ffffffffff;
seed[seed_idx - 2] |= 0x0001020000000000;
seed[seed_idx - 1] = 0;
break;
case 10:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0a0a0a0a0a0a0a0a) ||
((seed[seed_idx - 2] & 0xffff000000000000) != 0x0a0a000000000000))
{
return;
}
seed[seed_idx - 2] &= 0x0000ffffffffffff;
seed[seed_idx - 2] |= 0x0102000000000000;
seed[seed_idx - 1] = 0;
break;
case 9:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0909090909090909) ||
((seed[seed_idx - 2] & 0xff00000000000000) != 0x0900000000000000))
{
return;
}
seed[seed_idx - 2] &= 0x00ffffffffffffff;
seed[seed_idx - 2] |= 0x0200000000000000;
seed[seed_idx - 1] = 0x01;
break;
case 8:
if (((seed[seed_idx - 1] & 0xffffffffffffffff) != 0x0808080808080808) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] = 0x0102;
break;
case 7:
if (((seed[seed_idx - 1] & 0xffffffffffffff00) != 0x0707070707070700) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x00000000000000ff;
seed[seed_idx - 1] |= 0x0000000000010200;
break;
case 6:
if (((seed[seed_idx - 1] & 0xffffffffffff0000) != 0x0606060606060000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x000000000000ffff;
seed[seed_idx - 1] |= 0x0000000001020000;
break;
case 5:
if (((seed[seed_idx - 1] & 0xffffffffff000000) != 0x0505050505000000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x0000000000ffffff;
seed[seed_idx - 1] |= 0x0000000102000000;
break;
case 4:
if (((seed[seed_idx - 1] & 0xffffffff00000000) != 0x0404040400000000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x00000000ffffffff;
seed[seed_idx - 1] |= 0x0000010200000000;
break;
case 3:
if (((seed[seed_idx - 1] & 0xffffff0000000000) != 0x0303030000000000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x000000ffffffffff;
seed[seed_idx - 1] |= 0x0001020000000000;
break;
case 2:
if (((seed[seed_idx - 1] & 0xffff000000000000) != 0x0202000000000000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x0000ffffffffffff;
seed[seed_idx - 1] |= 0x0102000000000000;
break;
case 1:
if (((seed[seed_idx - 1] & 0xff00000000000000) != 0x0100000000000000) ||
((seed[seed_idx - 2] & 0x0000000000000000) != 0x0000000000000000))
{
return;
}
seed[seed_idx - 1] &= 0x00ffffffffffffff;
seed[seed_idx - 1] |= 0x0200000000000000;
seed[seed_idx - 0] = 0x01;
break;
default:
return;
break;
}
/**
* keccak
*/
u64 st[25] = { 0 };
u32 keccak_idx = 0;
for (loop_idx = 0, seed_idx = 0, keccak_idx = 0; loop_idx < final_len; loop_idx += 8, seed_idx++, keccak_idx++)
{
if (keccak_idx == 17) // or just: keccak_idx > 16
{
keccak_transform_S (st);
keccak_idx = 0;
}
st[keccak_idx] ^= seed[seed_idx];
}
// final:
st[16] ^= 0x8000000000000000;
keccak_transform_S (st);
const u32 r0 = l32_from_64_S (st[0]);
const u32 r1 = h32_from_64_S (st[0]);
const u32 r2 = l32_from_64_S (st[1]);
const u32 r3 = h32_from_64_S (st[1]);
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}