1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-01 03:11:02 +00:00
hashcat/OpenCL/m07400.cl
jsteube 3daf0af480 Added docs/credits.txt
Added docs/team.txt
2016-09-11 22:20:15 +02:00

1759 lines
50 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define _SHA256_
#include "inc_vendor.cl"
#include "inc_hash_constants.h"
#include "inc_hash_functions.cl"
#include "inc_types.cl"
#include "inc_common.cl"
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
__constant u32 k_sha256[64] =
{
SHA256C00, SHA256C01, SHA256C02, SHA256C03,
SHA256C04, SHA256C05, SHA256C06, SHA256C07,
SHA256C08, SHA256C09, SHA256C0a, SHA256C0b,
SHA256C0c, SHA256C0d, SHA256C0e, SHA256C0f,
SHA256C10, SHA256C11, SHA256C12, SHA256C13,
SHA256C14, SHA256C15, SHA256C16, SHA256C17,
SHA256C18, SHA256C19, SHA256C1a, SHA256C1b,
SHA256C1c, SHA256C1d, SHA256C1e, SHA256C1f,
SHA256C20, SHA256C21, SHA256C22, SHA256C23,
SHA256C24, SHA256C25, SHA256C26, SHA256C27,
SHA256C28, SHA256C29, SHA256C2a, SHA256C2b,
SHA256C2c, SHA256C2d, SHA256C2e, SHA256C2f,
SHA256C30, SHA256C31, SHA256C32, SHA256C33,
SHA256C34, SHA256C35, SHA256C36, SHA256C37,
SHA256C38, SHA256C39, SHA256C3a, SHA256C3b,
SHA256C3c, SHA256C3d, SHA256C3e, SHA256C3f,
};
#if 1
void sha256_transform (const u32 w[16], u32 digest[8])
{
u32 a = digest[0];
u32 b = digest[1];
u32 c = digest[2];
u32 d = digest[3];
u32 e = digest[4];
u32 f = digest[5];
u32 g = digest[6];
u32 h = digest[7];
u32 w0_t = swap32 (w[ 0]);
u32 w1_t = swap32 (w[ 1]);
u32 w2_t = swap32 (w[ 2]);
u32 w3_t = swap32 (w[ 3]);
u32 w4_t = swap32 (w[ 4]);
u32 w5_t = swap32 (w[ 5]);
u32 w6_t = swap32 (w[ 6]);
u32 w7_t = swap32 (w[ 7]);
u32 w8_t = swap32 (w[ 8]);
u32 w9_t = swap32 (w[ 9]);
u32 wa_t = swap32 (w[10]);
u32 wb_t = swap32 (w[11]);
u32 wc_t = swap32 (w[12]);
u32 wd_t = swap32 (w[13]);
u32 we_t = swap32 (w[14]);
u32 wf_t = swap32 (w[15]);
#define ROUND_EXPAND() \
{ \
w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \
w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \
w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \
w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \
w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \
w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \
w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \
w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \
w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \
w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \
wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \
wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \
wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \
wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \
we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \
wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \
}
#define ROUND_STEP(i) \
{ \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \
}
ROUND_STEP (0);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 16; i < 64; i += 16)
{
ROUND_EXPAND (); ROUND_STEP (i);
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
digest[5] += f;
digest[6] += g;
digest[7] += h;
}
void sha256_transform_no14 (const u32 w[16], u32 digest[8])
{
u32 w_t[16];
w_t[ 0] = w[ 0];
w_t[ 1] = w[ 1];
w_t[ 2] = w[ 2];
w_t[ 3] = w[ 3];
w_t[ 4] = w[ 4];
w_t[ 5] = w[ 5];
w_t[ 6] = w[ 6];
w_t[ 7] = w[ 7];
w_t[ 8] = w[ 8];
w_t[ 9] = w[ 9];
w_t[10] = w[10];
w_t[11] = w[11];
w_t[12] = w[12];
w_t[13] = w[13];
w_t[14] = 0;
w_t[15] = w[15];
sha256_transform (w_t, digest);
}
void init_ctx (u32 digest[8])
{
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
}
void bzero16 (u32 block[16])
{
block[ 0] = 0;
block[ 1] = 0;
block[ 2] = 0;
block[ 3] = 0;
block[ 4] = 0;
block[ 5] = 0;
block[ 6] = 0;
block[ 7] = 0;
block[ 8] = 0;
block[ 9] = 0;
block[10] = 0;
block[11] = 0;
block[12] = 0;
block[13] = 0;
block[14] = 0;
block[15] = 0;
}
void bswap8 (u32 block[16])
{
block[ 0] = swap32 (block[ 0]);
block[ 1] = swap32 (block[ 1]);
block[ 2] = swap32 (block[ 2]);
block[ 3] = swap32 (block[ 3]);
block[ 4] = swap32 (block[ 4]);
block[ 5] = swap32 (block[ 5]);
block[ 6] = swap32 (block[ 6]);
block[ 7] = swap32 (block[ 7]);
}
u32 memcat16 (u32 block[16], const u32 block_len, const u32 append[4], const u32 append_len)
{
const u32 mod = block_len & 3;
const u32 div = block_len / 4;
u32 tmp0;
u32 tmp1;
u32 tmp2;
u32 tmp3;
u32 tmp4;
#if defined IS_AMD || defined IS_GENERIC
const int offset_minus_4 = 4 - block_len;
tmp0 = amd_bytealign (append[0], 0, offset_minus_4);
tmp1 = amd_bytealign (append[1], append[0], offset_minus_4);
tmp2 = amd_bytealign (append[2], append[1], offset_minus_4);
tmp3 = amd_bytealign (append[3], append[2], offset_minus_4);
tmp4 = amd_bytealign ( 0, append[3], offset_minus_4);
if (mod == 0)
{
tmp0 = tmp1;
tmp1 = tmp2;
tmp2 = tmp3;
tmp3 = tmp4;
tmp4 = 0;
}
#endif
#ifdef IS_NV
const int offset_minus_4 = 4 - (block_len & 3);
const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff;
tmp0 = __byte_perm ( 0, append[0], selector);
tmp1 = __byte_perm (append[0], append[1], selector);
tmp2 = __byte_perm (append[1], append[2], selector);
tmp3 = __byte_perm (append[2], append[3], selector);
tmp4 = __byte_perm (append[3], 0, selector);
#endif
switch (div)
{
case 0: block[ 0] |= tmp0;
block[ 1] = tmp1;
block[ 2] = tmp2;
block[ 3] = tmp3;
block[ 4] = tmp4;
break;
case 1: block[ 1] |= tmp0;
block[ 2] = tmp1;
block[ 3] = tmp2;
block[ 4] = tmp3;
block[ 5] = tmp4;
break;
case 2: block[ 2] |= tmp0;
block[ 3] = tmp1;
block[ 4] = tmp2;
block[ 5] = tmp3;
block[ 6] = tmp4;
break;
case 3: block[ 3] |= tmp0;
block[ 4] = tmp1;
block[ 5] = tmp2;
block[ 6] = tmp3;
block[ 7] = tmp4;
break;
case 4: block[ 4] |= tmp0;
block[ 5] = tmp1;
block[ 6] = tmp2;
block[ 7] = tmp3;
block[ 8] = tmp4;
break;
case 5: block[ 5] |= tmp0;
block[ 6] = tmp1;
block[ 7] = tmp2;
block[ 8] = tmp3;
block[ 9] = tmp4;
break;
case 6: block[ 6] |= tmp0;
block[ 7] = tmp1;
block[ 8] = tmp2;
block[ 9] = tmp3;
block[10] = tmp4;
break;
case 7: block[ 7] |= tmp0;
block[ 8] = tmp1;
block[ 9] = tmp2;
block[10] = tmp3;
block[11] = tmp4;
break;
case 8: block[ 8] |= tmp0;
block[ 9] = tmp1;
block[10] = tmp2;
block[11] = tmp3;
block[12] = tmp4;
break;
case 9: block[ 9] |= tmp0;
block[10] = tmp1;
block[11] = tmp2;
block[12] = tmp3;
block[13] = tmp4;
break;
case 10: block[10] |= tmp0;
block[11] = tmp1;
block[12] = tmp2;
block[13] = tmp3;
block[14] = tmp4;
break;
case 11: block[11] |= tmp0;
block[12] = tmp1;
block[13] = tmp2;
block[14] = tmp3;
block[15] = tmp4;
break;
case 12: block[12] |= tmp0;
block[13] = tmp1;
block[14] = tmp2;
block[15] = tmp3;
break;
case 13: block[13] |= tmp0;
block[14] = tmp1;
block[15] = tmp2;
break;
case 14: block[14] |= tmp0;
block[15] = tmp1;
break;
case 15: block[15] |= tmp0;
break;
}
u32 new_len = block_len + append_len;
return new_len;
}
u32 memcat16c (u32 block[16], const u32 block_len, const u32 append[4], const u32 append_len, u32 digest[8])
{
const u32 mod = block_len & 3;
const u32 div = block_len / 4;
u32 tmp0;
u32 tmp1;
u32 tmp2;
u32 tmp3;
u32 tmp4;
#if defined IS_AMD || defined IS_GENERIC
const int offset_minus_4 = 4 - block_len;
tmp0 = amd_bytealign (append[0], 0, offset_minus_4);
tmp1 = amd_bytealign (append[1], append[0], offset_minus_4);
tmp2 = amd_bytealign (append[2], append[1], offset_minus_4);
tmp3 = amd_bytealign (append[3], append[2], offset_minus_4);
tmp4 = amd_bytealign ( 0, append[3], offset_minus_4);
if (mod == 0)
{
tmp0 = tmp1;
tmp1 = tmp2;
tmp2 = tmp3;
tmp3 = tmp4;
tmp4 = 0;
}
#endif
#ifdef IS_NV
const int offset_minus_4 = 4 - (block_len & 3);
const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff;
tmp0 = __byte_perm ( 0, append[0], selector);
tmp1 = __byte_perm (append[0], append[1], selector);
tmp2 = __byte_perm (append[1], append[2], selector);
tmp3 = __byte_perm (append[2], append[3], selector);
tmp4 = __byte_perm (append[3], 0, selector);
#endif
u32 carry[4] = { 0, 0, 0, 0 };
switch (div)
{
case 0: block[ 0] |= tmp0;
block[ 1] = tmp1;
block[ 2] = tmp2;
block[ 3] = tmp3;
block[ 4] = tmp4;
break;
case 1: block[ 1] |= tmp0;
block[ 2] = tmp1;
block[ 3] = tmp2;
block[ 4] = tmp3;
block[ 5] = tmp4;
break;
case 2: block[ 2] |= tmp0;
block[ 3] = tmp1;
block[ 4] = tmp2;
block[ 5] = tmp3;
block[ 6] = tmp4;
break;
case 3: block[ 3] |= tmp0;
block[ 4] = tmp1;
block[ 5] = tmp2;
block[ 6] = tmp3;
block[ 7] = tmp4;
break;
case 4: block[ 4] |= tmp0;
block[ 5] = tmp1;
block[ 6] = tmp2;
block[ 7] = tmp3;
block[ 8] = tmp4;
break;
case 5: block[ 5] |= tmp0;
block[ 6] = tmp1;
block[ 7] = tmp2;
block[ 8] = tmp3;
block[ 9] = tmp4;
break;
case 6: block[ 6] |= tmp0;
block[ 7] = tmp1;
block[ 8] = tmp2;
block[ 9] = tmp3;
block[10] = tmp4;
break;
case 7: block[ 7] |= tmp0;
block[ 8] = tmp1;
block[ 9] = tmp2;
block[10] = tmp3;
block[11] = tmp4;
break;
case 8: block[ 8] |= tmp0;
block[ 9] = tmp1;
block[10] = tmp2;
block[11] = tmp3;
block[12] = tmp4;
break;
case 9: block[ 9] |= tmp0;
block[10] = tmp1;
block[11] = tmp2;
block[12] = tmp3;
block[13] = tmp4;
break;
case 10: block[10] |= tmp0;
block[11] = tmp1;
block[12] = tmp2;
block[13] = tmp3;
block[14] = tmp4;
break;
case 11: block[11] |= tmp0;
block[12] = tmp1;
block[13] = tmp2;
block[14] = tmp3;
block[15] = tmp4;
break;
case 12: block[12] |= tmp0;
block[13] = tmp1;
block[14] = tmp2;
block[15] = tmp3;
carry[ 0] = tmp4;
break;
case 13: block[13] |= tmp0;
block[14] = tmp1;
block[15] = tmp2;
carry[ 0] = tmp3;
carry[ 1] = tmp4;
break;
case 14: block[14] |= tmp0;
block[15] = tmp1;
carry[ 0] = tmp2;
carry[ 1] = tmp3;
carry[ 2] = tmp4;
break;
case 15: block[15] |= tmp0;
carry[ 0] = tmp1;
carry[ 1] = tmp2;
carry[ 2] = tmp3;
carry[ 3] = tmp4;
break;
}
u32 new_len = block_len + append_len;
if (new_len >= 64)
{
new_len -= 64;
sha256_transform (block, digest);
bzero16 (block);
block[0] = carry[0];
block[1] = carry[1];
block[2] = carry[2];
block[3] = carry[3];
}
return new_len;
}
u32 memcat20 (u32 block[20], const u32 block_len, const u32 append[4], const u32 append_len)
{
const u32 mod = block_len & 3;
const u32 div = block_len / 4;
u32 tmp0;
u32 tmp1;
u32 tmp2;
u32 tmp3;
u32 tmp4;
#if defined IS_AMD || defined IS_GENERIC
const int offset_minus_4 = 4 - block_len;
tmp0 = amd_bytealign (append[0], 0, offset_minus_4);
tmp1 = amd_bytealign (append[1], append[0], offset_minus_4);
tmp2 = amd_bytealign (append[2], append[1], offset_minus_4);
tmp3 = amd_bytealign (append[3], append[2], offset_minus_4);
tmp4 = amd_bytealign ( 0, append[3], offset_minus_4);
if (mod == 0)
{
tmp0 = tmp1;
tmp1 = tmp2;
tmp2 = tmp3;
tmp3 = tmp4;
tmp4 = 0;
}
#endif
#ifdef IS_NV
const int offset_minus_4 = 4 - (block_len & 3);
const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff;
tmp0 = __byte_perm ( 0, append[0], selector);
tmp1 = __byte_perm (append[0], append[1], selector);
tmp2 = __byte_perm (append[1], append[2], selector);
tmp3 = __byte_perm (append[2], append[3], selector);
tmp4 = __byte_perm (append[3], 0, selector);
#endif
switch (div)
{
case 0: block[ 0] |= tmp0;
block[ 1] = tmp1;
block[ 2] = tmp2;
block[ 3] = tmp3;
block[ 4] = tmp4;
break;
case 1: block[ 1] |= tmp0;
block[ 2] = tmp1;
block[ 3] = tmp2;
block[ 4] = tmp3;
block[ 5] = tmp4;
break;
case 2: block[ 2] |= tmp0;
block[ 3] = tmp1;
block[ 4] = tmp2;
block[ 5] = tmp3;
block[ 6] = tmp4;
break;
case 3: block[ 3] |= tmp0;
block[ 4] = tmp1;
block[ 5] = tmp2;
block[ 6] = tmp3;
block[ 7] = tmp4;
break;
case 4: block[ 4] |= tmp0;
block[ 5] = tmp1;
block[ 6] = tmp2;
block[ 7] = tmp3;
block[ 8] = tmp4;
break;
case 5: block[ 5] |= tmp0;
block[ 6] = tmp1;
block[ 7] = tmp2;
block[ 8] = tmp3;
block[ 9] = tmp4;
break;
case 6: block[ 6] |= tmp0;
block[ 7] = tmp1;
block[ 8] = tmp2;
block[ 9] = tmp3;
block[10] = tmp4;
break;
case 7: block[ 7] |= tmp0;
block[ 8] = tmp1;
block[ 9] = tmp2;
block[10] = tmp3;
block[11] = tmp4;
break;
case 8: block[ 8] |= tmp0;
block[ 9] = tmp1;
block[10] = tmp2;
block[11] = tmp3;
block[12] = tmp4;
break;
case 9: block[ 9] |= tmp0;
block[10] = tmp1;
block[11] = tmp2;
block[12] = tmp3;
block[13] = tmp4;
break;
case 10: block[10] |= tmp0;
block[11] = tmp1;
block[12] = tmp2;
block[13] = tmp3;
block[14] = tmp4;
break;
case 11: block[11] |= tmp0;
block[12] = tmp1;
block[13] = tmp2;
block[14] = tmp3;
block[15] = tmp4;
break;
case 12: block[12] |= tmp0;
block[13] = tmp1;
block[14] = tmp2;
block[15] = tmp3;
block[16] = tmp4;
break;
case 13: block[13] |= tmp0;
block[14] = tmp1;
block[15] = tmp2;
block[16] = tmp3;
block[17] = tmp4;
break;
case 14: block[14] |= tmp0;
block[15] = tmp1;
block[16] = tmp2;
block[17] = tmp3;
block[18] = tmp4;
break;
case 15: block[15] |= tmp0;
block[16] = tmp1;
block[17] = tmp2;
block[18] = tmp3;
block[19] = tmp4;
break;
}
return block_len + append_len;
}
u32 memcat20_x80 (u32 block[20], const u32 block_len, const u32 append[4], const u32 append_len)
{
const u32 mod = block_len & 3;
const u32 div = block_len / 4;
u32 tmp0;
u32 tmp1;
u32 tmp2;
u32 tmp3;
u32 tmp4;
#if defined IS_AMD || defined IS_GENERIC
const int offset_minus_4 = 4 - block_len;
tmp0 = amd_bytealign (append[0], 0, offset_minus_4);
tmp1 = amd_bytealign (append[1], append[0], offset_minus_4);
tmp2 = amd_bytealign (append[2], append[1], offset_minus_4);
tmp3 = amd_bytealign (append[3], append[2], offset_minus_4);
tmp4 = amd_bytealign ( 0x80, append[3], offset_minus_4);
if (mod == 0)
{
tmp0 = tmp1;
tmp1 = tmp2;
tmp2 = tmp3;
tmp3 = tmp4;
tmp4 = 0x80;
}
#endif
#ifdef IS_NV
const int offset_minus_4 = 4 - (block_len & 3);
const int selector = (0x76543210 >> (offset_minus_4 * 4)) & 0xffff;
tmp0 = __byte_perm ( 0, append[0], selector);
tmp1 = __byte_perm (append[0], append[1], selector);
tmp2 = __byte_perm (append[1], append[2], selector);
tmp3 = __byte_perm (append[2], append[3], selector);
tmp4 = __byte_perm (append[3], 0x80, selector);
#endif
switch (div)
{
case 0: block[ 0] |= tmp0;
block[ 1] = tmp1;
block[ 2] = tmp2;
block[ 3] = tmp3;
block[ 4] = tmp4;
break;
case 1: block[ 1] |= tmp0;
block[ 2] = tmp1;
block[ 3] = tmp2;
block[ 4] = tmp3;
block[ 5] = tmp4;
break;
case 2: block[ 2] |= tmp0;
block[ 3] = tmp1;
block[ 4] = tmp2;
block[ 5] = tmp3;
block[ 6] = tmp4;
break;
case 3: block[ 3] |= tmp0;
block[ 4] = tmp1;
block[ 5] = tmp2;
block[ 6] = tmp3;
block[ 7] = tmp4;
break;
case 4: block[ 4] |= tmp0;
block[ 5] = tmp1;
block[ 6] = tmp2;
block[ 7] = tmp3;
block[ 8] = tmp4;
break;
case 5: block[ 5] |= tmp0;
block[ 6] = tmp1;
block[ 7] = tmp2;
block[ 8] = tmp3;
block[ 9] = tmp4;
break;
case 6: block[ 6] |= tmp0;
block[ 7] = tmp1;
block[ 8] = tmp2;
block[ 9] = tmp3;
block[10] = tmp4;
break;
case 7: block[ 7] |= tmp0;
block[ 8] = tmp1;
block[ 9] = tmp2;
block[10] = tmp3;
block[11] = tmp4;
break;
case 8: block[ 8] |= tmp0;
block[ 9] = tmp1;
block[10] = tmp2;
block[11] = tmp3;
block[12] = tmp4;
break;
case 9: block[ 9] |= tmp0;
block[10] = tmp1;
block[11] = tmp2;
block[12] = tmp3;
block[13] = tmp4;
break;
case 10: block[10] |= tmp0;
block[11] = tmp1;
block[12] = tmp2;
block[13] = tmp3;
block[14] = tmp4;
break;
case 11: block[11] |= tmp0;
block[12] = tmp1;
block[13] = tmp2;
block[14] = tmp3;
block[15] = tmp4;
break;
case 12: block[12] |= tmp0;
block[13] = tmp1;
block[14] = tmp2;
block[15] = tmp3;
block[16] = tmp4;
break;
case 13: block[13] |= tmp0;
block[14] = tmp1;
block[15] = tmp2;
block[16] = tmp3;
block[17] = tmp4;
break;
case 14: block[14] |= tmp0;
block[15] = tmp1;
block[16] = tmp2;
block[17] = tmp3;
block[18] = tmp4;
break;
case 15: block[15] |= tmp0;
block[16] = tmp1;
block[17] = tmp2;
block[18] = tmp3;
block[19] = tmp4;
break;
}
return block_len + append_len;
}
__kernel void m07400_init (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 w0[4];
w0[0] = pws[gid].i[0];
w0[1] = pws[gid].i[1];
w0[2] = pws[gid].i[2];
w0[3] = pws[gid].i[3];
const u32 pw_len = pws[gid].pw_len;
/**
* salt
*/
u32 salt_buf[4];
salt_buf[0] = salt_bufs[salt_pos].salt_buf[0];
salt_buf[1] = salt_bufs[salt_pos].salt_buf[1];
salt_buf[2] = salt_bufs[salt_pos].salt_buf[2];
salt_buf[3] = salt_bufs[salt_pos].salt_buf[3];
u32 salt_len = salt_bufs[salt_pos].salt_len;
/**
* buffers
*/
u32 block_len; // never reaches > 64
u32 transform_len; // required for w[15] = len * 8
u32 block[16];
u32 alt_result[8];
u32 p_bytes[8];
u32 s_bytes[8];
/* Prepare for the real work. */
block_len = 0;
bzero16 (block);
/* Add key. */
block_len = memcat16 (block, block_len, w0, pw_len);
/* Add salt. */
block_len = memcat16 (block, block_len, salt_buf, salt_len);
/* Add key again. */
block_len = memcat16 (block, block_len, w0, pw_len);
append_0x80_1x16 (block, block_len);
block[15] = swap32 (block_len * 8);
init_ctx (alt_result);
sha256_transform (block, alt_result);
bswap8 (alt_result);
block_len = 0;
bzero16 (block);
u32 alt_result_tmp[8];
alt_result_tmp[0] = alt_result[0];
alt_result_tmp[1] = alt_result[1];
alt_result_tmp[2] = alt_result[2];
alt_result_tmp[3] = alt_result[3];
alt_result_tmp[4] = 0;
alt_result_tmp[5] = 0;
alt_result_tmp[6] = 0;
alt_result_tmp[7] = 0;
truncate_block (alt_result_tmp, pw_len);
/* Add the key string. */
block_len = memcat16 (block, block_len, w0, pw_len);
/* The last part is the salt string. This must be at most 8
characters and it ends at the first `$' character (for
compatibility with existing implementations). */
block_len = memcat16 (block, block_len, salt_buf, salt_len);
/* Now get result of this (32 bytes) and add it to the other
context. */
block_len = memcat16 (block, block_len, alt_result_tmp, pw_len);
transform_len = block_len;
/* Take the binary representation of the length of the key and for every
1 add the alternate sum, for every 0 the key. */
alt_result_tmp[0] = alt_result[0];
alt_result_tmp[1] = alt_result[1];
alt_result_tmp[2] = alt_result[2];
alt_result_tmp[3] = alt_result[3];
alt_result_tmp[4] = alt_result[4];
alt_result_tmp[5] = alt_result[5];
alt_result_tmp[6] = alt_result[6];
alt_result_tmp[7] = alt_result[7];
init_ctx (alt_result);
for (u32 j = pw_len; j; j >>= 1)
{
if (j & 1)
{
block_len = memcat16c (block, block_len, &alt_result_tmp[0], 16, alt_result);
block_len = memcat16c (block, block_len, &alt_result_tmp[4], 16, alt_result);
transform_len += 32;
}
else
{
block_len = memcat16c (block, block_len, w0, pw_len, alt_result);
transform_len += pw_len;
}
}
append_0x80_1x16 (block, block_len);
if (block_len >= 56)
{
sha256_transform (block, alt_result);
bzero16 (block);
}
block[15] = swap32 (transform_len * 8);
sha256_transform (block, alt_result);
bswap8 (alt_result);
tmps[gid].alt_result[0] = alt_result[0];
tmps[gid].alt_result[1] = alt_result[1];
tmps[gid].alt_result[2] = alt_result[2];
tmps[gid].alt_result[3] = alt_result[3];
tmps[gid].alt_result[4] = alt_result[4];
tmps[gid].alt_result[5] = alt_result[5];
tmps[gid].alt_result[6] = alt_result[6];
tmps[gid].alt_result[7] = alt_result[7];
/* Start computation of P byte sequence. */
block_len = 0;
transform_len = 0;
bzero16 (block);
/* For every character in the password add the entire password. */
init_ctx (p_bytes);
for (u32 j = 0; j < pw_len; j++)
{
block_len = memcat16c (block, block_len, w0, pw_len, p_bytes);
transform_len += pw_len;
}
/* Finish the digest. */
append_0x80_1x16 (block, block_len);
if (block_len >= 56)
{
sha256_transform (block, p_bytes);
bzero16 (block);
}
block[15] = swap32 (transform_len * 8);
sha256_transform (block, p_bytes);
bswap8 (p_bytes);
truncate_block (p_bytes, pw_len);
tmps[gid].p_bytes[0] = p_bytes[0];
tmps[gid].p_bytes[1] = p_bytes[1];
tmps[gid].p_bytes[2] = p_bytes[2];
tmps[gid].p_bytes[3] = p_bytes[3];
/* Start computation of S byte sequence. */
block_len = 0;
transform_len = 0;
bzero16 (block);
/* For every character in the password add the entire password. */
init_ctx (s_bytes);
for (u32 j = 0; j < 16 + (alt_result[0] & 0xff); j++)
{
block_len = memcat16c (block, block_len, salt_buf, salt_len, s_bytes);
transform_len += salt_len;
}
/* Finish the digest. */
append_0x80_1x16 (block, block_len);
if (block_len >= 56)
{
sha256_transform (block, s_bytes);
bzero16 (block);
}
block[15] = swap32 (transform_len * 8);
sha256_transform (block, s_bytes);
bswap8 (s_bytes);
truncate_block (s_bytes, salt_len);
tmps[gid].s_bytes[0] = s_bytes[0];
tmps[gid].s_bytes[1] = s_bytes[1];
tmps[gid].s_bytes[2] = s_bytes[2];
tmps[gid].s_bytes[3] = s_bytes[3];
}
__kernel void m07400_loop (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
const u32 pw_len = pws[gid].pw_len;
/**
* base
*/
u32 p_bytes[4];
p_bytes[0] = tmps[gid].p_bytes[0];
p_bytes[1] = tmps[gid].p_bytes[1];
p_bytes[2] = tmps[gid].p_bytes[2];
p_bytes[3] = tmps[gid].p_bytes[3];
u32 p_bytes_x80[4];
p_bytes_x80[0] = tmps[gid].p_bytes[0];
p_bytes_x80[1] = tmps[gid].p_bytes[1];
p_bytes_x80[2] = tmps[gid].p_bytes[2];
p_bytes_x80[3] = tmps[gid].p_bytes[3];
append_0x80_1x4 (p_bytes_x80, pw_len);
u32 s_bytes[4];
s_bytes[0] = tmps[gid].s_bytes[0];
s_bytes[1] = tmps[gid].s_bytes[1];
s_bytes[2] = tmps[gid].s_bytes[2];
s_bytes[3] = tmps[gid].s_bytes[3];
u32 alt_result[8];
alt_result[0] = tmps[gid].alt_result[0];
alt_result[1] = tmps[gid].alt_result[1];
alt_result[2] = tmps[gid].alt_result[2];
alt_result[3] = tmps[gid].alt_result[3];
alt_result[4] = tmps[gid].alt_result[4];
alt_result[5] = tmps[gid].alt_result[5];
alt_result[6] = tmps[gid].alt_result[6];
alt_result[7] = tmps[gid].alt_result[7];
u32 salt_len = salt_bufs[salt_pos].salt_len;
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++)
{
u32 tmp[8];
init_ctx (tmp);
u32 block[32];
bzero16 (&block[ 0]);
bzero16 (&block[16]);
u32 block_len = 0;
const u32 j1 = (j & 1) ? 1 : 0;
const u32 j3 = (j % 3) ? 1 : 0;
const u32 j7 = (j % 7) ? 1 : 0;
if (j1)
{
block[0] = p_bytes[0];
block[1] = p_bytes[1];
block[2] = p_bytes[2];
block[3] = p_bytes[3];
block_len = pw_len;
}
else
{
block[0] = alt_result[0];
block[1] = alt_result[1];
block[2] = alt_result[2];
block[3] = alt_result[3];
block[4] = alt_result[4];
block[5] = alt_result[5];
block[6] = alt_result[6];
block[7] = alt_result[7];
block_len = 32;
}
if (j3)
{
block_len = memcat20 (block, block_len, s_bytes, salt_len);
}
if (j7)
{
block_len = memcat20 (block, block_len, p_bytes, pw_len);
}
if (j1)
{
block_len = memcat20 (block, block_len, &alt_result[0], 16);
block_len = memcat20_x80 (block, block_len, &alt_result[4], 16);
}
else
{
block_len = memcat20 (block, block_len, p_bytes_x80, pw_len);
}
if (block_len >= 56)
{
sha256_transform (block, tmp);
block[ 0] = block[16];
block[ 1] = block[17];
block[ 2] = block[18];
block[ 3] = block[19];
block[ 4] = 0;
block[ 5] = 0;
block[ 6] = 0;
block[ 7] = 0;
block[ 8] = 0;
block[ 9] = 0;
block[10] = 0;
block[11] = 0;
block[12] = 0;
block[13] = 0;
block[14] = 0;
block[15] = 0;
}
block[15] = swap32 (block_len * 8);
sha256_transform_no14 (block, tmp);
bswap8 (tmp);
alt_result[0] = tmp[0];
alt_result[1] = tmp[1];
alt_result[2] = tmp[2];
alt_result[3] = tmp[3];
alt_result[4] = tmp[4];
alt_result[5] = tmp[5];
alt_result[6] = tmp[6];
alt_result[7] = tmp[7];
}
tmps[gid].alt_result[0] = alt_result[0];
tmps[gid].alt_result[1] = alt_result[1];
tmps[gid].alt_result[2] = alt_result[2];
tmps[gid].alt_result[3] = alt_result[3];
tmps[gid].alt_result[4] = alt_result[4];
tmps[gid].alt_result[5] = alt_result[5];
tmps[gid].alt_result[6] = alt_result[6];
tmps[gid].alt_result[7] = alt_result[7];
}
__kernel void m07400_comp (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
const u32 lid = get_local_id (0);
const u32 r0 = tmps[gid].alt_result[0];
const u32 r1 = tmps[gid].alt_result[1];
const u32 r2 = tmps[gid].alt_result[2];
const u32 r3 = tmps[gid].alt_result[3];
#define il_pos 0
#include COMPARE_M
}
#else
// this is basically a much cleaner version, but apparently drops speeds by over 100% :(
#define PUTCHAR32_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c)
#define GETCHAR32_BE(a,p) ((u8 *)(a))[(p) ^ 3]
typedef struct
{
u32 state[8];
u32 buf[32];
int len;
} sha256_ctx_t;
void sha256_transform (const u32 w[16], u32 digest[8])
{
u32 a = digest[0];
u32 b = digest[1];
u32 c = digest[2];
u32 d = digest[3];
u32 e = digest[4];
u32 f = digest[5];
u32 g = digest[6];
u32 h = digest[7];
u32 w0_t = w[ 0];
u32 w1_t = w[ 1];
u32 w2_t = w[ 2];
u32 w3_t = w[ 3];
u32 w4_t = w[ 4];
u32 w5_t = w[ 5];
u32 w6_t = w[ 6];
u32 w7_t = w[ 7];
u32 w8_t = w[ 8];
u32 w9_t = w[ 9];
u32 wa_t = w[10];
u32 wb_t = w[11];
u32 wc_t = w[12];
u32 wd_t = w[13];
u32 we_t = w[14];
u32 wf_t = w[15];
#define ROUND_EXPAND() \
{ \
w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \
w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \
w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \
w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \
w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \
w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \
w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \
w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \
w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \
w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \
wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \
wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \
wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \
wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \
we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \
wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \
}
#define ROUND_STEP(i) \
{ \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \
}
ROUND_STEP (0);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 16; i < 64; i += 16)
{
ROUND_EXPAND (); ROUND_STEP (i);
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
digest[5] += f;
digest[6] += g;
digest[7] += h;
}
void sha256_init (sha256_ctx_t *sha256_ctx)
{
sha256_ctx->state[0] = SHA256M_A;
sha256_ctx->state[1] = SHA256M_B;
sha256_ctx->state[2] = SHA256M_C;
sha256_ctx->state[3] = SHA256M_D;
sha256_ctx->state[4] = SHA256M_E;
sha256_ctx->state[5] = SHA256M_F;
sha256_ctx->state[6] = SHA256M_G;
sha256_ctx->state[7] = SHA256M_H;
sha256_ctx->len = 0;
}
void sha256_update (sha256_ctx_t *sha256_ctx, const u32 *buf, int len)
{
int pos = sha256_ctx->len & 0x3f;
sha256_ctx->len += len;
if ((pos + len) < 64)
{
for (int i = 0; i < len; i++)
{
PUTCHAR32_BE (sha256_ctx->buf, pos++, GETCHAR32_BE (buf, i));
}
return;
}
int cnt = 64 - pos;
for (int i = 0; i < cnt; i++)
{
PUTCHAR32_BE (sha256_ctx->buf, pos++, GETCHAR32_BE (buf, i));
}
sha256_transform (sha256_ctx->buf, sha256_ctx->state);
len -= cnt;
for (int i = 0; i < len; i++)
{
PUTCHAR32_BE (sha256_ctx->buf, i, GETCHAR32_BE (buf, cnt + i));
}
}
void sha256_final (sha256_ctx_t *sha256_ctx)
{
int pos = sha256_ctx->len & 0x3f;
for (int i = pos; i < 64; i++)
{
PUTCHAR32_BE (sha256_ctx->buf, i, 0);
}
PUTCHAR32_BE (sha256_ctx->buf, pos, 0x80);
if (pos >= 56)
{
sha256_transform (sha256_ctx->buf, sha256_ctx->state);
sha256_ctx->buf[ 0] = 0;
sha256_ctx->buf[ 1] = 0;
sha256_ctx->buf[ 2] = 0;
sha256_ctx->buf[ 3] = 0;
sha256_ctx->buf[ 4] = 0;
sha256_ctx->buf[ 5] = 0;
sha256_ctx->buf[ 6] = 0;
sha256_ctx->buf[ 7] = 0;
sha256_ctx->buf[ 8] = 0;
sha256_ctx->buf[ 9] = 0;
sha256_ctx->buf[10] = 0;
sha256_ctx->buf[11] = 0;
sha256_ctx->buf[12] = 0;
sha256_ctx->buf[13] = 0;
sha256_ctx->buf[14] = 0;
sha256_ctx->buf[15] = 0;
}
sha256_ctx->buf[15] = sha256_ctx->len * 8;
sha256_transform (sha256_ctx->buf, sha256_ctx->state);
}
__kernel void m07400_init (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 pw[4];
pw[0] = swap32 (pws[gid].i[0]);
pw[1] = swap32 (pws[gid].i[1]);
pw[2] = swap32 (pws[gid].i[2]);
pw[3] = swap32 (pws[gid].i[3]);
const u32 pw_len = pws[gid].pw_len;
/**
* salt
*/
u32 salt[4];
salt[0] = swap32 (salt_bufs[salt_pos].salt_buf[0]);
salt[1] = swap32 (salt_bufs[salt_pos].salt_buf[1]);
salt[2] = swap32 (salt_bufs[salt_pos].salt_buf[2]);
salt[3] = swap32 (salt_bufs[salt_pos].salt_buf[3]);
u32 salt_len = salt_bufs[salt_pos].salt_len;
/**
* begin
*/
sha256_ctx_t sha256_ctx;
sha256_init (&sha256_ctx);
sha256_update (&sha256_ctx, pw, pw_len);
sha256_update (&sha256_ctx, salt, salt_len);
sha256_update (&sha256_ctx, pw, pw_len);
sha256_final (&sha256_ctx);
u32 tmp[8];
tmp[0] = sha256_ctx.state[0];
tmp[1] = sha256_ctx.state[1];
tmp[2] = sha256_ctx.state[2];
tmp[3] = sha256_ctx.state[3];
tmp[4] = sha256_ctx.state[4];
tmp[5] = sha256_ctx.state[5];
tmp[6] = sha256_ctx.state[6];
tmp[7] = sha256_ctx.state[7];
sha256_init (&sha256_ctx);
sha256_update (&sha256_ctx, pw, pw_len);
sha256_update (&sha256_ctx, salt, salt_len);
sha256_update (&sha256_ctx, tmp, pw_len);
for (u32 j = pw_len; j; j >>= 1)
{
if (j & 1)
{
sha256_update (&sha256_ctx, tmp, 32);
}
else
{
sha256_update (&sha256_ctx, pw, pw_len);
}
}
sha256_final (&sha256_ctx);
tmps[gid].alt_result[0] = sha256_ctx.state[0];
tmps[gid].alt_result[1] = sha256_ctx.state[1];
tmps[gid].alt_result[2] = sha256_ctx.state[2];
tmps[gid].alt_result[3] = sha256_ctx.state[3];
tmps[gid].alt_result[4] = sha256_ctx.state[4];
tmps[gid].alt_result[5] = sha256_ctx.state[5];
tmps[gid].alt_result[6] = sha256_ctx.state[6];
tmps[gid].alt_result[7] = sha256_ctx.state[7];
// p_bytes
sha256_init (&sha256_ctx);
for (u32 j = 0; j < pw_len; j++)
{
sha256_update (&sha256_ctx, pw, pw_len);
}
sha256_final (&sha256_ctx);
tmps[gid].p_bytes[0] = sha256_ctx.state[0];
tmps[gid].p_bytes[1] = sha256_ctx.state[1];
tmps[gid].p_bytes[2] = sha256_ctx.state[2];
tmps[gid].p_bytes[3] = sha256_ctx.state[3];
// s_bytes
sha256_init (&sha256_ctx);
for (u32 j = 0; j < 16 + ((tmps[gid].alt_result[0] >> 24) & 0xff); j++)
{
sha256_update (&sha256_ctx, salt, salt_len);
}
sha256_final (&sha256_ctx);
tmps[gid].s_bytes[0] = sha256_ctx.state[0];
tmps[gid].s_bytes[1] = sha256_ctx.state[1];
tmps[gid].s_bytes[2] = sha256_ctx.state[2];
tmps[gid].s_bytes[3] = sha256_ctx.state[3];
}
__kernel void m07400_loop (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 p_bytes0[4];
p_bytes0[0] = tmps[gid].p_bytes[0];
p_bytes0[1] = tmps[gid].p_bytes[1];
p_bytes0[2] = tmps[gid].p_bytes[2];
p_bytes0[3] = tmps[gid].p_bytes[3];
const u32 pw_len = pws[gid].pw_len;
u32 s_bytes0[4];
s_bytes0[0] = tmps[gid].s_bytes[0];
s_bytes0[1] = tmps[gid].s_bytes[1];
s_bytes0[2] = tmps[gid].s_bytes[2];
s_bytes0[3] = tmps[gid].s_bytes[3];
const u32 salt_len = salt_bufs[salt_pos].salt_len;
u32 wpc_len[8];
wpc_len[0] = 32 + 0 + 0 + pw_len;
wpc_len[1] = pw_len + 0 + 0 + 32;
wpc_len[2] = 32 + salt_len + 0 + pw_len;
wpc_len[3] = pw_len + salt_len + 0 + 32;
wpc_len[4] = 32 + 0 + pw_len + pw_len;
wpc_len[5] = pw_len + 0 + pw_len + 32;
wpc_len[6] = 32 + salt_len + pw_len + pw_len;
wpc_len[7] = pw_len + salt_len + pw_len + 32;
u32 wpc[8][32] = { { 0 } };
for (u32 i = 0; i < 8; i++)
{
u32 block_len = 0;
if (i & 1)
{
for (u32 j = 0; j < pw_len; j++)
{
PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j));
}
}
else
{
block_len += 32;
}
if (i & 2)
{
for (u32 j = 0; j < salt_len; j++)
{
PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (s_bytes0, j));
}
}
if (i & 4)
{
for (u32 j = 0; j < pw_len; j++)
{
PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j));
}
}
if (i & 1)
{
block_len += 32;
}
else
{
for (u32 j = 0; j < pw_len; j++)
{
PUTCHAR32_BE (wpc[i], block_len++, GETCHAR32_BE (p_bytes0, j));
}
}
PUTCHAR32_BE (wpc[i], block_len, 0x80);
if (block_len < 56)
{
wpc[i][15] = block_len * 8;
}
else
{
wpc[i][31] = block_len * 8;
}
}
/**
* base
*/
u32 alt_result[8];
alt_result[0] = tmps[gid].alt_result[0];
alt_result[1] = tmps[gid].alt_result[1];
alt_result[2] = tmps[gid].alt_result[2];
alt_result[3] = tmps[gid].alt_result[3];
alt_result[4] = tmps[gid].alt_result[4];
alt_result[5] = tmps[gid].alt_result[5];
alt_result[6] = tmps[gid].alt_result[6];
alt_result[7] = tmps[gid].alt_result[7];
/* Repeatedly run the collected hash value through SHA256 to burn
CPU cycles. */
for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++)
{
const u32 j1 = (j & 1) ? 1 : 0;
const u32 j3 = (j % 3) ? 2 : 0;
const u32 j7 = (j % 7) ? 4 : 0;
const u32 pc = j1 + j3 + j7;
u32 block[32];
block[ 0] = wpc[pc][ 0];
block[ 1] = wpc[pc][ 1];
block[ 2] = wpc[pc][ 2];
block[ 3] = wpc[pc][ 3];
block[ 4] = wpc[pc][ 4];
block[ 5] = wpc[pc][ 5];
block[ 6] = wpc[pc][ 6];
block[ 7] = wpc[pc][ 7];
block[ 8] = wpc[pc][ 8];
block[ 9] = wpc[pc][ 9];
block[10] = wpc[pc][10];
block[11] = wpc[pc][11];
block[12] = wpc[pc][12];
block[13] = wpc[pc][13];
block[14] = wpc[pc][14];
block[15] = wpc[pc][15];
block[16] = wpc[pc][16];
block[17] = wpc[pc][17];
block[18] = wpc[pc][18];
block[19] = wpc[pc][19];
block[20] = wpc[pc][20];
block[21] = wpc[pc][21];
block[22] = wpc[pc][22];
block[23] = wpc[pc][23];
block[24] = wpc[pc][24];
block[25] = wpc[pc][25];
block[26] = wpc[pc][26];
block[27] = wpc[pc][27];
block[28] = wpc[pc][28];
block[29] = wpc[pc][29];
block[30] = wpc[pc][30];
block[31] = wpc[pc][31];
const u32 block_len = wpc_len[pc];
if (j1)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 k = 0, p = block_len - 32; k < 32; k++, p++)
{
PUTCHAR32_BE (block, p, GETCHAR32_BE (alt_result, k));
}
}
else
{
block[0] = alt_result[0];
block[1] = alt_result[1];
block[2] = alt_result[2];
block[3] = alt_result[3];
block[4] = alt_result[4];
block[5] = alt_result[5];
block[6] = alt_result[6];
block[7] = alt_result[7];
}
alt_result[0] = SHA256M_A;
alt_result[1] = SHA256M_B;
alt_result[2] = SHA256M_C;
alt_result[3] = SHA256M_D;
alt_result[4] = SHA256M_E;
alt_result[5] = SHA256M_F;
alt_result[6] = SHA256M_G;
alt_result[7] = SHA256M_H;
sha256_transform (block, alt_result);
if (block_len >= 56)
{
sha256_transform (block + 16, alt_result);
}
}
tmps[gid].alt_result[0] = alt_result[0];
tmps[gid].alt_result[1] = alt_result[1];
tmps[gid].alt_result[2] = alt_result[2];
tmps[gid].alt_result[3] = alt_result[3];
tmps[gid].alt_result[4] = alt_result[4];
tmps[gid].alt_result[5] = alt_result[5];
tmps[gid].alt_result[6] = alt_result[6];
tmps[gid].alt_result[7] = alt_result[7];
}
__kernel void m07400_comp (__global pw_t *pws, __global kernel_rule_t *rules_buf, __global comb_t *combs_buf, __global bf_t *bfs_buf, __global sha256crypt_tmp_t *tmps, __global void *hooks, __global u32 *bitmaps_buf_s1_a, __global u32 *bitmaps_buf_s1_b, __global u32 *bitmaps_buf_s1_c, __global u32 *bitmaps_buf_s1_d, __global u32 *bitmaps_buf_s2_a, __global u32 *bitmaps_buf_s2_b, __global u32 *bitmaps_buf_s2_c, __global u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global digest_t *digests_buf, __global u32 *hashes_shown, __global salt_t *salt_bufs, __global void *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 il_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
const u32 lid = get_local_id (0);
const u32 r0 = swap32 (tmps[gid].alt_result[0]);
const u32 r1 = swap32 (tmps[gid].alt_result[1]);
const u32 r2 = swap32 (tmps[gid].alt_result[2]);
const u32 r3 = swap32 (tmps[gid].alt_result[3]);
#define il_pos 0
#include COMPARE_M
}
#endif