You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hashcat/OpenCL/m08900-pure.cl

402 lines
8.9 KiB

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "inc_vendor.cl"
#include "inc_hash_constants.h"
#include "inc_hash_functions.cl"
#include "inc_types.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
DECLSPEC uint4 swap32_4 (uint4 v)
{
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
}
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
#define GET_STATE_CNT(r) (2 * (r) * 16)
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
#define STATE_CNT4 (STATE_CNT / 4)
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = X1.s3012; \
X2 = X2.s2301; \
X3 = X3.s1230; \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = X1.s1230; \
X2 = X2.s2301; \
X3 = X3.s3012; \
}
#define SALSA20_8_XOR() \
{ \
R0 = R0 ^ Y0; \
R1 = R1 ^ Y1; \
R2 = R2 ^ Y2; \
R3 = R3 ^ Y3; \
\
uint4 X0 = R0; \
uint4 X1 = R1; \
uint4 X2 = R2; \
uint4 X3 = R3; \
\
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
\
R0 = R0 + X0; \
R1 = R1 + X1; \
R2 = R2 + X2; \
R3 = R3 + X3; \
}
DECLSPEC void salsa_r (uint4 *TI)
{
uint4 R0 = TI[STATE_CNT4 - 4];
uint4 R1 = TI[STATE_CNT4 - 3];
uint4 R2 = TI[STATE_CNT4 - 2];
uint4 R3 = TI[STATE_CNT4 - 1];
uint4 TO[STATE_CNT4];
int idx_y = 0;
int idx_r1 = 0;
int idx_r2 = SCRYPT_R * 4;
for (int i = 0; i < SCRYPT_R; i++)
{
uint4 Y0;
uint4 Y1;
uint4 Y2;
uint4 Y3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r1++] = R0;
TO[idx_r1++] = R1;
TO[idx_r1++] = R2;
TO[idx_r1++] = R3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r2++] = R0;
TO[idx_r2++] = R1;
TO[idx_r2++] = R2;
TO[idx_r2++] = R3;
}
#pragma unroll
for (int i = 0; i < STATE_CNT4; i++)
{
TI[i] = TO[i];
}
}
DECLSPEC void scrypt_smix (uint4 *X, uint4 *T, __global uint4 * restrict V0, __global uint4 * restrict V1, __global uint4 * restrict V2, __global uint4 * restrict V3)
{
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
#define CO Coord(xd4,y,z)
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
__global uint4 * restrict V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
T[0] = (uint4) (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w);
T[1] = (uint4) (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w);
T[2] = (uint4) (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w);
T[3] = (uint4) (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w);
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
for (u32 y = 0; y < ySIZE; y++)
{
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
}
for (u32 i = 0; i < SCRYPT_N; i++)
{
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
const u32 y = k / SCRYPT_TMTO;
const u32 km = k - (y * SCRYPT_TMTO);
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
for (u32 i = 0; i < km; i++) salsa_r (T);
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
salsa_r (X);
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
T[0] = (uint4) (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w);
T[1] = (uint4) (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w);
T[2] = (uint4) (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w);
T[3] = (uint4) (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w);
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
}
// there can be no __attribute__((reqd_work_group_size(16, 1, 1))) because kernel is used by both -m 8900 and -m 9300
__kernel void m08900_init (KERN_ATTR_TMPS (scrypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len & 255);
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[salt_pos].salt_buf, salt_bufs[salt_pos].salt_len);
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
u32 digest[8];
digest[0] = sha256_hmac_ctx2.opad.h[0];
digest[1] = sha256_hmac_ctx2.opad.h[1];
digest[2] = sha256_hmac_ctx2.opad.h[2];
digest[3] = sha256_hmac_ctx2.opad.h[3];
digest[4] = sha256_hmac_ctx2.opad.h[4];
digest[5] = sha256_hmac_ctx2.opad.h[5];
digest[6] = sha256_hmac_ctx2.opad.h[6];
digest[7] = sha256_hmac_ctx2.opad.h[7];
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
tmps[gid].P[k + 0] = tmp0;
tmps[gid].P[k + 1] = tmp1;
}
}
__kernel void m08900_loop (KERN_ATTR_TMPS (scrypt_tmp_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
__global uint4 * restrict d_scrypt0_buf = d_extra0_buf;
__global uint4 * restrict d_scrypt1_buf = d_extra1_buf;
__global uint4 * restrict d_scrypt2_buf = d_extra2_buf;
__global uint4 * restrict d_scrypt3_buf = d_extra3_buf;
uint4 X[STATE_CNT4];
uint4 T[STATE_CNT4];
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) X[z] = swap32_4 (tmps[gid].P[z]);
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[z] = swap32_4 (X[z]);
#if SCRYPT_P >= 1
for (int i = STATE_CNT4; i < SCRYPT_CNT4; i += STATE_CNT4)
{
for (int z = 0; z < STATE_CNT4; z++) X[z] = swap32_4 (tmps[gid].P[i + z]);
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[i + z] = swap32_4 (X[z]);
}
#endif
}
__kernel void m08900_comp (KERN_ATTR_TMPS (scrypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
/**
* 2nd pbkdf2, creates B
*/
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
sha256_hmac_ctx_t ctx;
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len & 255);
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 tmp;
tmp = tmps[gid].P[l + 0];
w0[0] = tmp.s0;
w0[1] = tmp.s1;
w0[2] = tmp.s2;
w0[3] = tmp.s3;
tmp = tmps[gid].P[l + 1];
w1[0] = tmp.s0;
w1[1] = tmp.s1;
w1[2] = tmp.s2;
w1[3] = tmp.s3;
tmp = tmps[gid].P[l + 2];
w2[0] = tmp.s0;
w2[1] = tmp.s1;
w2[2] = tmp.s2;
w2[3] = tmp.s3;
tmp = tmps[gid].P[l + 3];
w3[0] = tmp.s0;
w3[1] = tmp.s1;
w3[2] = tmp.s2;
w3[3] = tmp.s3;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
}
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
sha256_hmac_final (&ctx);
const u32 r0 = swap32_S (ctx.opad.h[DGST_R0]);
const u32 r1 = swap32_S (ctx.opad.h[DGST_R1]);
const u32 r2 = swap32_S (ctx.opad.h[DGST_R2]);
const u32 r3 = swap32_S (ctx.opad.h[DGST_R3]);
#define il_pos 0
#include COMPARE_M
}