1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-20 20:51:04 +00:00
hashcat/deps/LZMA-SDK/C/AesOpt.c

777 lines
18 KiB
C

/* AesOpt.c -- AES optimized code for x86 AES hardware instructions
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__clang__)
#if __clang_major__ > 3 || (__clang_major__ == 3 && __clang_minor__ >= 8)
#define USE_INTEL_AES
#define ATTRIB_AES __attribute__((__target__("aes")))
#if (__clang_major__ >= 8)
#define USE_INTEL_VAES
#define ATTRIB_VAES __attribute__((__target__("aes,vaes,avx2")))
#endif
#endif
#elif defined(__GNUC__)
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)
#define USE_INTEL_AES
#ifndef __AES__
#define ATTRIB_AES __attribute__((__target__("aes")))
#endif
#if (__GNUC__ >= 8)
#define USE_INTEL_VAES
#define ATTRIB_VAES __attribute__((__target__("aes,vaes,avx2")))
#endif
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1110)
#define USE_INTEL_AES
#if (__INTEL_COMPILER >= 1900)
#define USE_INTEL_VAES
#endif
#endif
#elif defined(_MSC_VER)
#if (_MSC_VER > 1500) || (_MSC_FULL_VER >= 150030729)
#define USE_INTEL_AES
#if (_MSC_VER >= 1910)
#define USE_INTEL_VAES
#endif
#endif
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#ifndef ATTRIB_VAES
#define ATTRIB_VAES
#endif
#ifdef USE_INTEL_AES
#include <wmmintrin.h>
#ifndef USE_INTEL_VAES
#define AES_TYPE_keys __m128i
#define AES_TYPE_data __m128i
#endif
#define AES_FUNC_START(name) \
void MY_FAST_CALL name(__m128i *p, __m128i *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src);
#define MM_XOR( dest, src) MM_OP(_mm_xor_si128, dest, src);
#define AVX_XOR(dest, src) MM_OP(_mm256_xor_si256, dest, src);
AES_FUNC_START2 (AesCbc_Encode_HW)
{
__m128i m = *p;
const __m128i k0 = p[2];
const __m128i k1 = p[3];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 r = numRounds2;
const __m128i *w = p + 4;
__m128i temp = *data;
MM_XOR (temp, k0);
MM_XOR (m, temp);
MM_OP_m (_mm_aesenc_si128, k1);
do
{
MM_OP_m (_mm_aesenc_si128, w[0]);
MM_OP_m (_mm_aesenc_si128, w[1]);
w += 2;
}
while (--r);
MM_OP_m (_mm_aesenclast_si128, w[0]);
*data = m;
}
*p = m;
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1);
#define WOP_3(op) WOP_2 (op) op (m2, 2);
#define WOP_4(op) WOP_3 (op) op (m3, 3);
#ifdef MY_CPU_AMD64
#define WOP_5(op) WOP_4 (op) op (m4, 4);
#define WOP_6(op) WOP_5 (op) op (m5, 5);
#define WOP_7(op) WOP_6 (op) op (m6, 6);
#define WOP_8(op) WOP_7 (op) op (m7, 7);
#endif
/*
#define WOP_9(op) WOP_8 (op) op (m8, 8);
#define WOP_10(op) WOP_9 (op) op (m9, 9);
#define WOP_11(op) WOP_10(op) op (m10, 10);
#define WOP_12(op) WOP_11(op) op (m11, 11);
#define WOP_13(op) WOP_12(op) op (m12, 12);
#define WOP_14(op) WOP_13(op) op (m13, 13);
*/
#ifdef MY_CPU_AMD64
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#else
#define NUM_WAYS 4
#define WOP_M1 WOP_4
#endif
#define WOP(op) op (m0, 0); WOP_M1(op)
#define DECLARE_VAR(reg, ii) __m128i reg
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1]);
#endif
#define AVX__DECLARE_VAR(reg, ii) __m256i reg
#define AVX__LOAD_data( reg, ii) reg = ((const __m256i *)(const void *)data)[ii];
#define AVX__STORE_data( reg, ii) ((__m256i *)(void *)data)[ii] = reg;
#define AVX__XOR_data_M1(reg, ii) AVX_XOR (reg, (((const __m256i *)(const void *)(data - 1))[ii]));
#define MM_OP_key(op, reg) MM_OP(op, reg, key);
#define AES_DEC( reg, ii) MM_OP_key (_mm_aesdec_si128, reg)
#define AES_DEC_LAST( reg, ii) MM_OP_key (_mm_aesdeclast_si128, reg)
#define AES_ENC( reg, ii) MM_OP_key (_mm_aesenc_si128, reg)
#define AES_ENC_LAST( reg, ii) MM_OP_key (_mm_aesenclast_si128, reg)
#define AES_XOR( reg, ii) MM_OP_key (_mm_xor_si128, reg)
#define AVX__AES_DEC( reg, ii) MM_OP_key (_mm256_aesdec_epi128, reg)
#define AVX__AES_DEC_LAST( reg, ii) MM_OP_key (_mm256_aesdeclast_epi128, reg)
#define AVX__AES_ENC( reg, ii) MM_OP_key (_mm256_aesenc_epi128, reg)
#define AVX__AES_ENC_LAST( reg, ii) MM_OP_key (_mm256_aesenclast_epi128, reg)
#define AVX__AES_XOR( reg, ii) MM_OP_key (_mm256_xor_si256, reg)
#define CTR_START(reg, ii) MM_OP (_mm_add_epi64, ctr, one); reg = ctr;
#define CTR_END( reg, ii) MM_XOR (data[ii], reg);
#define AVX__CTR_START(reg, ii) MM_OP (_mm256_add_epi64, ctr2, two); reg = _mm256_xor_si256(ctr2, key);
#define AVX__CTR_END( reg, ii) AVX_XOR (((__m256i *)(void *)data)[ii], reg);
#define WOP_KEY(op, n) { \
const __m128i key = w[n]; \
WOP(op); }
#define AVX__WOP_KEY(op, n) { \
const __m256i key = w[n]; \
WOP(op); }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
#define NUM_AES_KEYS_MAX 15
#define WIDE_LOOP_START_AVX(OP) \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS * 2) \
{ __m256i keys[NUM_AES_KEYS_MAX]; \
UInt32 ii; \
OP \
for (ii = 0; ii < numRounds; ii++) \
keys[ii] = _mm256_broadcastsi128_si256(p[ii]); \
dataEnd -= NUM_WAYS * 2; do { \
#define WIDE_LOOP_END_AVX(OP) \
data += NUM_WAYS * 2; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS * 2; \
OP \
_mm256_zeroupper(); \
} \
/* MSVC for x86: If we don't call _mm256_zeroupper(), and -arch:IA32 is not specified,
MSVC still can insert vzeroupper instruction. */
AES_FUNC_START2 (AesCbc_Decode_HW)
{
__m128i iv = *p;
const __m128i *wStart = p + *(const UInt32 *)(p + 1) * 2 + 2 - 1;
const __m128i *dataEnd;
p += 2;
WIDE_LOOP_START
{
const __m128i *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data);
WOP_KEY (AES_XOR, 1)
do
{
WOP_KEY (AES_DEC, 0)
w--;
}
while (w != p);
WOP_KEY (AES_DEC_LAST, 0)
MM_XOR (m0, iv);
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data);
}
WIDE_LOOP_END
SINGLE_LOOP
{
const __m128i *w = wStart - 1;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
MM_OP_m (_mm_aesdec_si128, w[1]);
MM_OP_m (_mm_aesdec_si128, w[0]);
w -= 2;
}
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1]);
MM_OP_m (_mm_aesdeclast_si128, w[0]);
MM_XOR (m, iv);
iv = *data;
*data = m;
}
p[-2] = iv;
}
AES_FUNC_START2 (AesCtr_Code_HW)
{
__m128i ctr = *p;
UInt32 numRoundsMinus2 = *(const UInt32 *)(p + 1) * 2 - 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
p += 2;
WIDE_LOOP_START
{
const __m128i *w = p;
UInt32 r = numRoundsMinus2;
WOP (DECLARE_VAR)
WOP (CTR_START);
WOP_KEY (AES_XOR, 0)
w += 1;
do
{
WOP_KEY (AES_ENC, 0)
w += 1;
}
while (--r);
WOP_KEY (AES_ENC_LAST, 0)
WOP (CTR_END);
}
WIDE_LOOP_END
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
MM_OP (_mm_add_epi64, ctr, one);
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
MM_OP_m (_mm_aesenc_si128, w[0]);
MM_OP_m (_mm_aesenc_si128, w[1]);
w += 2;
}
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0]);
MM_OP_m (_mm_aesenclast_si128, w[1]);
MM_XOR (*data, m);
}
p[-2] = ctr;
}
#ifdef USE_INTEL_VAES
#if defined(__clang__) && defined(_MSC_VER)
#define __SSE4_2__
#define __AES__
#define __AVX__
#define __AVX2__
#define __VAES__
#define __AVX512F__
#define __AVX512VL__
#endif
#include <immintrin.h>
#define VAES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_VAES \
AES_FUNC_START (name)
VAES_FUNC_START2 (AesCbc_Decode_HW_256)
{
__m128i iv = *p;
const __m128i *dataEnd;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
p += 2;
WIDE_LOOP_START_AVX(;)
{
const __m256i *w = keys + numRounds - 2;
WOP (AVX__DECLARE_VAR)
WOP (AVX__LOAD_data);
AVX__WOP_KEY (AVX__AES_XOR, 1)
do
{
AVX__WOP_KEY (AVX__AES_DEC, 0)
w--;
}
while (w != keys);
AVX__WOP_KEY (AVX__AES_DEC_LAST, 0)
AVX_XOR (m0, _mm256_setr_m128i(iv, data[0]));
WOP_M1 (AVX__XOR_data_M1)
iv = data[NUM_WAYS * 2 - 1];
WOP (AVX__STORE_data);
}
WIDE_LOOP_END_AVX(;)
SINGLE_LOOP
{
const __m128i *w = p + *(const UInt32 *)(p + 1 - 2) * 2 + 1 - 3;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
MM_OP_m (_mm_aesdec_si128, w[1]);
MM_OP_m (_mm_aesdec_si128, w[0]);
w -= 2;
}
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1]);
MM_OP_m (_mm_aesdeclast_si128, w[0]);
MM_XOR (m, iv);
iv = *data;
*data = m;
}
p[-2] = iv;
}
/*
SSE2: _mm_cvtsi32_si128 : movd
AVX: _mm256_setr_m128i : vinsertf128
AVX2: _mm256_add_epi64 : vpaddq ymm, ymm, ymm
_mm256_extracti128_si256 : vextracti128
_mm256_broadcastsi128_si256 : vbroadcasti128
*/
#define AVX__CTR_LOOP_START \
ctr2 = _mm256_setr_m128i(_mm_sub_epi64(ctr, one), ctr); \
two = _mm256_setr_m128i(one, one); \
two = _mm256_add_epi64(two, two); \
// two = _mm256_setr_epi64x(2, 0, 2, 0);
#define AVX__CTR_LOOP_ENC \
ctr = _mm256_extracti128_si256 (ctr2, 1); \
VAES_FUNC_START2 (AesCtr_Code_HW_256)
{
__m128i ctr = *p;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
__m256i ctr2, two;
p += 2;
WIDE_LOOP_START_AVX (AVX__CTR_LOOP_START)
{
const __m256i *w = keys;
UInt32 r = numRounds - 2;
WOP (AVX__DECLARE_VAR)
AVX__WOP_KEY (AVX__CTR_START, 0);
w += 1;
do
{
AVX__WOP_KEY (AVX__AES_ENC, 0)
w += 1;
}
while (--r);
AVX__WOP_KEY (AVX__AES_ENC_LAST, 0)
WOP (AVX__CTR_END);
}
WIDE_LOOP_END_AVX (AVX__CTR_LOOP_ENC)
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
MM_OP (_mm_add_epi64, ctr, one);
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
MM_OP_m (_mm_aesenc_si128, w[0]);
MM_OP_m (_mm_aesenc_si128, w[1]);
w += 2;
}
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0]);
MM_OP_m (_mm_aesenclast_si128, w[1]);
MM_XOR (*data, m);
}
p[-2] = ctr;
}
#endif // USE_INTEL_VAES
#else // USE_INTEL_AES
/* no USE_INTEL_AES */
#pragma message("AES HW_SW stub was used")
#define AES_TYPE_keys UInt32
#define AES_TYPE_data Byte
#define AES_FUNC_START(name) \
void MY_FAST_CALL name(UInt32 *p, Byte *data, size_t numBlocks) \
#define AES_COMPAT_STUB(name) \
AES_FUNC_START(name); \
AES_FUNC_START(name ## _HW) \
{ name(p, data, numBlocks); }
AES_COMPAT_STUB (AesCbc_Encode)
AES_COMPAT_STUB (AesCbc_Decode)
AES_COMPAT_STUB (AesCtr_Code)
#endif // USE_INTEL_AES
#ifndef USE_INTEL_VAES
#pragma message("VAES HW_SW stub was used")
#define VAES_COMPAT_STUB(name) \
void MY_FAST_CALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks); \
void MY_FAST_CALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks) \
{ name((AES_TYPE_keys *)(void *)p, (AES_TYPE_data *)(void *)data, numBlocks); }
VAES_COMPAT_STUB (AesCbc_Decode_HW)
VAES_COMPAT_STUB (AesCtr_Code_HW)
#endif // ! USE_INTEL_VAES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#ifdef USE_HW_AES
// #pragma message("=== AES HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_AES __attribute__((__target__("+crypto")))
#else
#define ATTRIB_AES __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint8x16_t v128;
#define AES_FUNC_START(name) \
void MY_FAST_CALL name(v128 *p, v128 *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src);
#define MM_OP1_m(op) m = op(m);
#define MM_XOR( dest, src) MM_OP(veorq_u8, dest, src);
#define MM_XOR_m( src) MM_XOR(m, src);
#define AES_E_m(k) MM_OP_m (vaeseq_u8, k);
#define AES_E_MC_m(k) AES_E_m (k); MM_OP1_m(vaesmcq_u8);
AES_FUNC_START2 (AesCbc_Encode_HW)
{
v128 m = *p;
const v128 k0 = p[2];
const v128 k1 = p[3];
const v128 k2 = p[4];
const v128 k3 = p[5];
const v128 k4 = p[6];
const v128 k5 = p[7];
const v128 k6 = p[8];
const v128 k7 = p[9];
const v128 k8 = p[10];
const v128 k9 = p[11];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const v128 *w = p + ((size_t)numRounds2 * 2);
const v128 k_z1 = w[1];
const v128 k_z0 = w[2];
for (; numBlocks != 0; numBlocks--, data++)
{
MM_XOR_m (*data);
AES_E_MC_m (k0)
AES_E_MC_m (k1)
AES_E_MC_m (k2)
AES_E_MC_m (k3)
AES_E_MC_m (k4)
AES_E_MC_m (k5)
AES_E_MC_m (k6)
AES_E_MC_m (k7)
AES_E_MC_m (k8)
if (numRounds2 >= 6)
{
AES_E_MC_m (k9)
AES_E_MC_m (p[12])
if (numRounds2 != 6)
{
AES_E_MC_m (p[13])
AES_E_MC_m (p[14])
}
}
AES_E_m (k_z1);
MM_XOR_m (k_z0);
*data = m;
}
*p = m;
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1);
#define WOP_3(op) WOP_2 (op) op (m2, 2);
#define WOP_4(op) WOP_3 (op) op (m3, 3);
#define WOP_5(op) WOP_4 (op) op (m4, 4);
#define WOP_6(op) WOP_5 (op) op (m5, 5);
#define WOP_7(op) WOP_6 (op) op (m6, 6);
#define WOP_8(op) WOP_7 (op) op (m7, 7);
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#define WOP(op) op (m0, 0); WOP_M1(op)
#define DECLARE_VAR(reg, ii) v128 reg
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1]);
#endif
#define MM_OP_key(op, reg) MM_OP (op, reg, key);
#define AES_D_m(k) MM_OP_m (vaesdq_u8, k);
#define AES_D_IMC_m(k) AES_D_m (k); MM_OP1_m (vaesimcq_u8);
#define AES_XOR( reg, ii) MM_OP_key (veorq_u8, reg)
#define AES_D( reg, ii) MM_OP_key (vaesdq_u8, reg)
#define AES_E( reg, ii) MM_OP_key (vaeseq_u8, reg)
#define AES_D_IMC( reg, ii) AES_D (reg, ii); reg = vaesimcq_u8(reg)
#define AES_E_MC( reg, ii) AES_E (reg, ii); reg = vaesmcq_u8(reg)
#define CTR_START(reg, ii) MM_OP (vaddq_u64, ctr, one); reg = vreinterpretq_u8_u64(ctr);
#define CTR_END( reg, ii) MM_XOR (data[ii], reg);
#define WOP_KEY(op, n) { \
const v128 key = w[n]; \
WOP(op); }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
AES_FUNC_START2 (AesCbc_Decode_HW)
{
v128 iv = *p;
const v128 *wStart = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
p += 2;
WIDE_LOOP_START
{
const v128 *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data);
WOP_KEY (AES_D_IMC, 2)
do
{
WOP_KEY (AES_D_IMC, 1)
WOP_KEY (AES_D_IMC, 0)
w -= 2;
}
while (w != p);
WOP_KEY (AES_D, 1)
WOP_KEY (AES_XOR, 0)
MM_XOR (m0, iv);
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data);
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = wStart;
v128 m = *data;
AES_D_IMC_m (w[2])
do
{
AES_D_IMC_m (w[1]);
AES_D_IMC_m (w[0]);
w -= 2;
}
while (w != p);
AES_D_m (w[1]);
MM_XOR_m (w[0]);
MM_XOR_m (iv);
iv = *data;
*data = m;
}
p[-2] = iv;
}
AES_FUNC_START2 (AesCtr_Code_HW)
{
uint64x2_t ctr = vreinterpretq_u64_u8(*p);
const v128 *wEnd = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
uint64x2_t one = vdupq_n_u64(0);
one = vsetq_lane_u64(1, one, 0);
p += 2;
WIDE_LOOP_START
{
const v128 *w = p;
WOP (DECLARE_VAR)
WOP (CTR_START);
do
{
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E_MC, 1)
w += 2;
}
while (w != wEnd);
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E, 1)
WOP_KEY (AES_XOR, 2)
WOP (CTR_END);
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = p;
v128 m;
CTR_START (m, 0);
do
{
AES_E_MC_m (w[0]);
AES_E_MC_m (w[1]);
w += 2;
}
while (w != wEnd);
AES_E_MC_m (w[0]);
AES_E_m (w[1]);
MM_XOR_m (w[2]);
CTR_END (m, 0);
}
p[-2] = vreinterpretq_u8_u64(ctr);
}
#endif // USE_HW_AES
#endif // MY_CPU_ARM_OR_ARM64