1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-23 00:28:11 +00:00
hashcat/OpenCL/m22700-pure.cl

706 lines
17 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
// fixed MultiBit salt (not a bug)
#define MULTIBIT_S0 0x35510380
#define MULTIBIT_S1 0x75a3b0c5
#define MULTIBIT_IV0 0x1f3944a3
#define MULTIBIT_IV1 0xb3118353
#define MULTIBIT_IV2 0x16865429
#define MULTIBIT_IV3 0x3e7289c4
typedef struct
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} scrypt_tmp_t;
DECLSPEC int is_valid_bitcoinj_8 (const u8 v)
{
// .abcdefghijklmnopqrstuvwxyz
if (v > (u8) 'z') return 0;
if (v < (u8) '.') return 0;
if ((v > (u8) '.') && (v < (u8) 'a')) return 0;
return 1;
}
DECLSPEC int is_valid_bitcoinj (const u32 *w)
{
if ((w[0] & 0x000000ff) != 0x0000000a) return 0;
if ((w[0] & 0x0000ff00) > 0x00007f00) return 0;
// check for "org." substring:
if ((w[0] & 0xffff0000) != 0x726f0000) return 0;
if ((w[1] & 0x0000ffff) != 0x00002e67) return 0;
if (is_valid_bitcoinj_8 (w[1] >> 16) == 0) return 0;
if (is_valid_bitcoinj_8 (w[1] >> 24) == 0) return 0;
if (is_valid_bitcoinj_8 (w[2] >> 0) == 0) return 0;
if (is_valid_bitcoinj_8 (w[2] >> 8) == 0) return 0;
if (is_valid_bitcoinj_8 (w[2] >> 16) == 0) return 0;
if (is_valid_bitcoinj_8 (w[2] >> 24) == 0) return 0;
if (is_valid_bitcoinj_8 (w[3] >> 0) == 0) return 0;
if (is_valid_bitcoinj_8 (w[3] >> 8) == 0) return 0;
return 1;
}
#ifdef IS_CUDA
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
inline __device__ uint4 rotate (const uint4 a, const int n)
{
return ((a << n) | ((a >> (32 - n))));
}
#endif
DECLSPEC uint4 hc_swap32_4 (uint4 v)
{
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
}
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
#define GET_STATE_CNT(r) (2 * (r) * 16)
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
#define STATE_CNT4 (STATE_CNT / 4)
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
#ifdef IS_CUDA
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
}
#else
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = X1.s3012; \
X2 = X2.s2301; \
X3 = X3.s1230; \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = X1.s1230; \
X2 = X2.s2301; \
X3 = X3.s3012; \
}
#endif
#define SALSA20_8_XOR() \
{ \
R0 = R0 ^ Y0; \
R1 = R1 ^ Y1; \
R2 = R2 ^ Y2; \
R3 = R3 ^ Y3; \
\
uint4 X0 = R0; \
uint4 X1 = R1; \
uint4 X2 = R2; \
uint4 X3 = R3; \
\
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
SALSA20_2R (); \
\
R0 = R0 + X0; \
R1 = R1 + X1; \
R2 = R2 + X2; \
R3 = R3 + X3; \
}
DECLSPEC void salsa_r (uint4 *TI)
{
uint4 R0 = TI[STATE_CNT4 - 4];
uint4 R1 = TI[STATE_CNT4 - 3];
uint4 R2 = TI[STATE_CNT4 - 2];
uint4 R3 = TI[STATE_CNT4 - 1];
uint4 TO[STATE_CNT4];
int idx_y = 0;
int idx_r1 = 0;
int idx_r2 = SCRYPT_R * 4;
for (int i = 0; i < SCRYPT_R; i++)
{
uint4 Y0;
uint4 Y1;
uint4 Y2;
uint4 Y3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r1++] = R0;
TO[idx_r1++] = R1;
TO[idx_r1++] = R2;
TO[idx_r1++] = R3;
Y0 = TI[idx_y++];
Y1 = TI[idx_y++];
Y2 = TI[idx_y++];
Y3 = TI[idx_y++];
SALSA20_8_XOR ();
TO[idx_r2++] = R0;
TO[idx_r2++] = R1;
TO[idx_r2++] = R2;
TO[idx_r2++] = R3;
}
#pragma unroll
for (int i = 0; i < STATE_CNT4; i++)
{
TI[i] = TO[i];
}
}
DECLSPEC void scrypt_smix (uint4 *X, uint4 *T, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
#define CO Coord(xd4,y,z)
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
#ifdef IS_CUDA
T[0] = make_uint4 (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w);
T[1] = make_uint4 (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w);
T[2] = make_uint4 (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w);
T[3] = make_uint4 (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w);
#else
T[0] = (uint4) (X[i + 0].x, X[i + 1].y, X[i + 2].z, X[i + 3].w);
T[1] = (uint4) (X[i + 1].x, X[i + 2].y, X[i + 3].z, X[i + 0].w);
T[2] = (uint4) (X[i + 2].x, X[i + 3].y, X[i + 0].z, X[i + 1].w);
T[3] = (uint4) (X[i + 3].x, X[i + 0].y, X[i + 1].z, X[i + 2].w);
#endif
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
for (u32 y = 0; y < ySIZE; y++)
{
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
}
for (u32 i = 0; i < SCRYPT_N; i++)
{
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
const u32 y = k / SCRYPT_TMTO;
const u32 km = k - (y * SCRYPT_TMTO);
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
for (u32 i = 0; i < km; i++) salsa_r (T);
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
salsa_r (X);
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < STATE_CNT4; i += 4)
{
#ifdef IS_CUDA
T[0] = make_uint4 (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w);
T[1] = make_uint4 (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w);
T[2] = make_uint4 (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w);
T[3] = make_uint4 (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w);
#else
T[0] = (uint4) (X[i + 0].x, X[i + 3].y, X[i + 2].z, X[i + 1].w);
T[1] = (uint4) (X[i + 1].x, X[i + 0].y, X[i + 3].z, X[i + 2].w);
T[2] = (uint4) (X[i + 2].x, X[i + 1].y, X[i + 0].z, X[i + 3].w);
T[3] = (uint4) (X[i + 3].x, X[i + 2].y, X[i + 1].z, X[i + 0].w);
#endif
X[i + 0] = T[0];
X[i + 1] = T[1];
X[i + 2] = T[2];
X[i + 3] = T[3];
}
}
KERNEL_FQ void m22700_init (KERN_ATTR_TMPS (scrypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
// convert password to utf16be:
const u32 pw_len = pws[gid].pw_len;
const u32 pw_len_utf16be = pw_len * 2;
u32 w[128] = { 0 };
for (u32 i = 0, j = 0; i < 64; i += 4, j += 8)
{
u32 in[4];
in[0] = pws[gid].i[i + 0];
in[1] = pws[gid].i[i + 1];
in[2] = pws[gid].i[i + 2];
in[3] = pws[gid].i[i + 3];
u32 out0[4];
u32 out1[4];
make_utf16be_S (in, out0, out1);
w[j + 0] = out0[0];
w[j + 1] = out0[1];
w[j + 2] = out0[2];
w[j + 3] = out0[3];
w[j + 4] = out1[0];
w[j + 5] = out1[1];
w[j + 6] = out1[2];
w[j + 7] = out1[3];
}
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_swap (&sha256_hmac_ctx, w, pw_len_utf16be);
u32 s0[4] = { 0 };
u32 s1[4] = { 0 };
u32 s2[4] = { 0 };
u32 s3[4] = { 0 };
s0[0] = MULTIBIT_S0;
s0[1] = MULTIBIT_S1;
sha256_hmac_update_64 (&sha256_hmac_ctx, s0, s1, s2, s3, 8);
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
u32 digest[8];
digest[0] = sha256_hmac_ctx2.opad.h[0];
digest[1] = sha256_hmac_ctx2.opad.h[1];
digest[2] = sha256_hmac_ctx2.opad.h[2];
digest[3] = sha256_hmac_ctx2.opad.h[3];
digest[4] = sha256_hmac_ctx2.opad.h[4];
digest[5] = sha256_hmac_ctx2.opad.h[5];
digest[6] = sha256_hmac_ctx2.opad.h[6];
digest[7] = sha256_hmac_ctx2.opad.h[7];
#ifdef IS_CUDA
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
#else
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
#endif
tmps[gid].P[k + 0] = tmp0;
tmps[gid].P[k + 1] = tmp1;
}
}
KERNEL_FQ void m22700_loop (KERN_ATTR_TMPS (scrypt_tmp_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
uint4 X[STATE_CNT4];
uint4 T[STATE_CNT4];
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[z]);
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
#ifdef _unroll
#pragma unroll
#endif
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[z] = hc_swap32_4 (X[z]);
#if SCRYPT_P >= 1
for (int i = STATE_CNT4; i < SCRYPT_CNT4; i += STATE_CNT4)
{
for (int z = 0; z < STATE_CNT4; z++) X[z] = hc_swap32_4 (tmps[gid].P[i + z]);
scrypt_smix (X, T, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) tmps[gid].P[i + z] = hc_swap32_4 (X[z]);
}
#endif
}
KERNEL_FQ void m22700_comp (KERN_ATTR_TMPS (scrypt_tmp_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/**
* 2nd pbkdf2, creates B
*/
// convert password to utf16be:
const u32 pw_len = pws[gid].pw_len;
const u32 pw_len_utf16be = pw_len * 2;
u32 w[128] = { 0 };
for (u32 i = 0, j = 0; i < 64; i += 4, j += 8)
{
u32 in[4];
in[0] = pws[gid].i[i + 0];
in[1] = pws[gid].i[i + 1];
in[2] = pws[gid].i[i + 2];
in[3] = pws[gid].i[i + 3];
u32 out0[4];
u32 out1[4];
make_utf16be_S (in, out0, out1);
w[j + 0] = out0[0];
w[j + 1] = out0[1];
w[j + 2] = out0[2];
w[j + 3] = out0[3];
w[j + 4] = out1[0];
w[j + 5] = out1[1];
w[j + 6] = out1[2];
w[j + 7] = out1[3];
}
sha256_hmac_ctx_t ctx;
sha256_hmac_init_swap (&ctx, w, pw_len_utf16be);
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 tmp;
tmp = tmps[gid].P[l + 0];
w0[0] = tmp.x;
w0[1] = tmp.y;
w0[2] = tmp.z;
w0[3] = tmp.w;
tmp = tmps[gid].P[l + 1];
w1[0] = tmp.x;
w1[1] = tmp.y;
w1[2] = tmp.z;
w1[3] = tmp.w;
tmp = tmps[gid].P[l + 2];
w2[0] = tmp.x;
w2[1] = tmp.y;
w2[2] = tmp.z;
w2[3] = tmp.w;
tmp = tmps[gid].P[l + 3];
w3[0] = tmp.x;
w3[1] = tmp.y;
w3[2] = tmp.z;
w3[3] = tmp.w;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
}
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
sha256_hmac_final (&ctx);
// AES256-CBC decrypt with IV from salt buffer (dynamic, alternative 1):
u32 key[8];
key[0] = ctx.opad.h[0];
key[1] = ctx.opad.h[1];
key[2] = ctx.opad.h[2];
key[3] = ctx.opad.h[3];
key[4] = ctx.opad.h[4];
key[5] = ctx.opad.h[5];
key[6] = ctx.opad.h[6];
key[7] = ctx.opad.h[7];
#define KEYLEN 60
u32 ks[KEYLEN];
AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 iv[4];
iv[0] = salt_bufs[salt_pos].salt_buf[0];
iv[1] = salt_bufs[salt_pos].salt_buf[1];
iv[2] = salt_bufs[salt_pos].salt_buf[2];
iv[3] = salt_bufs[salt_pos].salt_buf[3];
u32 enc[4];
enc[0] = salt_bufs[salt_pos].salt_buf[4];
enc[1] = salt_bufs[salt_pos].salt_buf[5];
enc[2] = salt_bufs[salt_pos].salt_buf[6];
enc[3] = salt_bufs[salt_pos].salt_buf[7];
u32 dec[4];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv[0];
dec[1] ^= iv[1];
dec[2] ^= iv[2];
dec[3] ^= iv[3];
if (is_valid_bitcoinj (dec) == 1)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, 0, 0, 0);
}
return;
}
// alternative 2 (second block, fixed IV):
enc[0] = salt_bufs[salt_pos].salt_buf[ 8];
enc[1] = salt_bufs[salt_pos].salt_buf[ 9];
enc[2] = salt_bufs[salt_pos].salt_buf[10];
enc[3] = salt_bufs[salt_pos].salt_buf[11];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= MULTIBIT_IV0;
dec[1] ^= MULTIBIT_IV1;
dec[2] ^= MULTIBIT_IV2;
dec[3] ^= MULTIBIT_IV3;
if (is_valid_bitcoinj (dec) == 1)
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, 0, 0, 0);
}
return;
}
}