1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-30 03:48:17 +00:00
hashcat/OpenCL/m15300-pure.cl
2019-05-07 09:01:32 +02:00

626 lines
13 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_md4.cl"
#include "inc_hash_sha1.cl"
#include "inc_cipher_des.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct dpapimk
{
u32 context;
u32 SID[32];
u32 SID_len;
u32 SID_offset;
/* here only for possible
forward compatibiliy
*/
// u8 cipher_algo[16];
// u8 hash_algo[16];
u32 iv[4];
u32 contents_len;
u32 contents[128];
} dpapimk_t;
typedef struct dpapimk_tmp_v1
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
u32 userKey[5];
} dpapimk_tmp_v1_t;
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m15300_init (KERN_ATTR_TMPS_ESALT (dpapimk_tmp_v1_t, dpapimk_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
/**
* main
*/
u32 digest_context[5];
if (esalt_bufs[digests_offset].context == 1)
{
/* local credentials */
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_global_utf16le_swap (&ctx, pws[gid].i, pws[gid].pw_len);
sha1_final (&ctx);
digest_context[0] = ctx.h[0];
digest_context[1] = ctx.h[1];
digest_context[2] = ctx.h[2];
digest_context[3] = ctx.h[3];
digest_context[4] = ctx.h[4];
}
else if (esalt_bufs[digests_offset].context == 2)
{
/* domain credentials */
md4_ctx_t ctx;
md4_init (&ctx);
md4_update_global_utf16le (&ctx, pws[gid].i, pws[gid].pw_len);
md4_final (&ctx);
digest_context[0] = ctx.h[0];
digest_context[1] = ctx.h[1];
digest_context[2] = ctx.h[2];
digest_context[3] = ctx.h[3];
digest_context[4] = 0;
digest_context[0] = hc_swap32_S (digest_context[0]);
digest_context[1] = hc_swap32_S (digest_context[1]);
digest_context[2] = hc_swap32_S (digest_context[2]);
digest_context[3] = hc_swap32_S (digest_context[3]);
}
/* initialize hmac-sha1 */
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = digest_context[0];
w0[1] = digest_context[1];
w0[2] = digest_context[2];
w0[3] = digest_context[3];
w1[0] = digest_context[4];
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_ctx_t ctx;
sha1_hmac_init_64 (&ctx, w0, w1, w2, w3);
sha1_hmac_update_global (&ctx, esalt_bufs[digests_offset].SID, esalt_bufs[digests_offset].SID_len);
sha1_hmac_final (&ctx);
u32 key[5];
key[0] = ctx.opad.h[0];
key[1] = ctx.opad.h[1];
key[2] = ctx.opad.h[2];
key[3] = ctx.opad.h[3];
key[4] = ctx.opad.h[4];
/* this key is used as password for pbkdf2-hmac-sha1 */
tmps[gid].userKey[0] = key[0];
tmps[gid].userKey[1] = key[1];
tmps[gid].userKey[2] = key[2];
tmps[gid].userKey[3] = key[3];
tmps[gid].userKey[4] = key[4];
w0[0] = key[0];
w0[1] = key[1];
w0[2] = key[2];
w0[3] = key[3];
w1[0] = key[4];
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_64 (&sha1_hmac_ctx, w0, w1, w2, w3);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
w0[0] = esalt_bufs[digests_offset].iv[0];
w0[1] = esalt_bufs[digests_offset].iv[1];
w0[2] = esalt_bufs[digests_offset].iv[2];
w0[3] = esalt_bufs[digests_offset].iv[3];
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx, w0, w1, w2, w3, 16);
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m15300_loop (KERN_ATTR_TMPS_ESALT (dpapimk_tmp_v1_t, dpapimk_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
for (u32 i = 0; i < 8; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
w1[0] = out[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m15300_comp (KERN_ATTR_TMPS_ESALT (dpapimk_tmp_v1_t, dpapimk_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* des shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_SPtrans[8][64];
LOCAL_VK u32 s_skb[8][64];
for (u32 i = lid; i < 64; i += lsz)
{
s_SPtrans[0][i] = c_SPtrans[0][i];
s_SPtrans[1][i] = c_SPtrans[1][i];
s_SPtrans[2][i] = c_SPtrans[2][i];
s_SPtrans[3][i] = c_SPtrans[3][i];
s_SPtrans[4][i] = c_SPtrans[4][i];
s_SPtrans[5][i] = c_SPtrans[5][i];
s_SPtrans[6][i] = c_SPtrans[6][i];
s_SPtrans[7][i] = c_SPtrans[7][i];
s_skb[0][i] = c_skb[0][i];
s_skb[1][i] = c_skb[1][i];
s_skb[2][i] = c_skb[2][i];
s_skb[3][i] = c_skb[3][i];
s_skb[4][i] = c_skb[4][i];
s_skb[5][i] = c_skb[5][i];
s_skb[6][i] = c_skb[6][i];
s_skb[7][i] = c_skb[7][i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a (*s_SPtrans)[64] = c_SPtrans;
CONSTANT_AS u32a (*s_skb)[64] = c_skb;
#endif
if (gid >= gid_max) return;
/**
* main
*/
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 key[6];
key[0] = hc_swap32_S (tmps[gid].out[0]);
key[1] = hc_swap32_S (tmps[gid].out[1]);
key[2] = hc_swap32_S (tmps[gid].out[2]);
key[3] = hc_swap32_S (tmps[gid].out[3]);
key[4] = hc_swap32_S (tmps[gid].out[4]);
key[5] = hc_swap32_S (tmps[gid].out[5]);
u32 iv[2];
iv[0] = hc_swap32_S (tmps[gid].out[6]);
iv[1] = hc_swap32_S (tmps[gid].out[7]);
u32 decrypted[26];
/* Construct 3DES keys */
const u32 a = (key[0]);
const u32 b = (key[1]);
u32 Ka[16];
u32 Kb[16];
_des_crypt_keysetup (a, b, Ka, Kb, s_skb);
const u32 c = (key[2]);
const u32 d = (key[3]);
u32 Kc[16];
u32 Kd[16];
_des_crypt_keysetup (c, d, Kc, Kd, s_skb);
const u32 e = (key[4]);
const u32 f = (key[5]);
u32 Ke[16];
u32 Kf[16];
_des_crypt_keysetup (e, f, Ke, Kf, s_skb);
u32 contents_pos;
u32 contents_off;
u32 wx_off;
for (wx_off = 0, contents_pos = 0, contents_off = 0; contents_pos < esalt_bufs[digests_offset].contents_len; wx_off += 2, contents_pos += 8, contents_off += 2)
{
/* First Pass */
u32 data[2];
data[0] = hc_swap32_S (esalt_bufs[digests_offset].contents[contents_off + 0]);
data[1] = hc_swap32_S (esalt_bufs[digests_offset].contents[contents_off + 1]);
u32 p1[2];
_des_crypt_decrypt (p1, data, Ke, Kf, s_SPtrans);
/* Second Pass */
u32 p2[2];
_des_crypt_encrypt (p2, p1, Kc, Kd, s_SPtrans);
/* Third Pass */
u32 out[2];
_des_crypt_decrypt (out, p2, Ka, Kb, s_SPtrans);
out[0] ^= iv[0];
out[1] ^= iv[1];
decrypted[wx_off + 0] = out[0];
decrypted[wx_off + 1] = out[1];
iv[0] = data[0];
iv[1] = data[1];
}
u32 hmacSalt[4];
u32 expectedHmac[4];
u32 lastKey[16];
hmacSalt[0] = hc_swap32_S (decrypted[0]);
hmacSalt[1] = hc_swap32_S (decrypted[1]);
hmacSalt[2] = hc_swap32_S (decrypted[2]);
hmacSalt[3] = hc_swap32_S (decrypted[3]);
expectedHmac[0] = hc_swap32_S (decrypted[4 + 0]);
expectedHmac[1] = hc_swap32_S (decrypted[4 + 1]);
expectedHmac[2] = hc_swap32_S (decrypted[4 + 2]);
expectedHmac[3] = hc_swap32_S (decrypted[4 + 3]);
for(int i = 0; i < 16; i++)
{
lastKey[i] = decrypted[i + 26 - 16];
}
w0[0] = tmps[gid].userKey[0];
w0[1] = tmps[gid].userKey[1];
w0[2] = tmps[gid].userKey[2];
w0[3] = tmps[gid].userKey[3];
w1[0] = tmps[gid].userKey[4];
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_ctx_t ctx;
sha1_hmac_init_64 (&ctx, w0, w1, w2, w3);
w0[0] = hmacSalt[0];
w0[1] = hmacSalt[1];
w0[2] = hmacSalt[2];
w0[3] = hmacSalt[3];
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&ctx, w0, w1, w2, w3, 16);
sha1_hmac_final (&ctx);
w0[0] = ctx.opad.h[0];
w0[1] = ctx.opad.h[1];
w0[2] = ctx.opad.h[2];
w0[3] = ctx.opad.h[3];
w1[0] = ctx.opad.h[4];
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_init_64 (&ctx, w0, w1, w2, w3);
w0[0] = hc_swap32_S (lastKey[ 0]);
w0[1] = hc_swap32_S (lastKey[ 1]);
w0[2] = hc_swap32_S (lastKey[ 2]);
w0[3] = hc_swap32_S (lastKey[ 3]);
w1[0] = hc_swap32_S (lastKey[ 4]);
w1[1] = hc_swap32_S (lastKey[ 5]);
w1[2] = hc_swap32_S (lastKey[ 6]);
w1[3] = hc_swap32_S (lastKey[ 7]);
w2[0] = hc_swap32_S (lastKey[ 8]);
w2[1] = hc_swap32_S (lastKey[ 9]);
w2[2] = hc_swap32_S (lastKey[10]);
w2[3] = hc_swap32_S (lastKey[11]);
w3[0] = hc_swap32_S (lastKey[12]);
w3[1] = hc_swap32_S (lastKey[13]);
w3[2] = hc_swap32_S (lastKey[14]);
w3[3] = hc_swap32_S (lastKey[15]);
sha1_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
sha1_hmac_final (&ctx);
#define il_pos 0
if ((expectedHmac[0] == ctx.opad.h[0])
&& (expectedHmac[1] == ctx.opad.h[1])
&& (expectedHmac[2] == ctx.opad.h[2])
&& (expectedHmac[3] == ctx.opad.h[3]))
{
if (atomic_inc (&hashes_shown[digests_offset]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, il_pos, 0, 0);
}
}
}