mirror of
https://github.com/hashcat/hashcat.git
synced 2025-01-10 15:51:10 +00:00
682 lines
16 KiB
Common Lisp
682 lines
16 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
#define NEW_SIMD_CODE
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include M2S(INCLUDE_PATH/inc_vendor.h)
|
|
#include M2S(INCLUDE_PATH/inc_types.h)
|
|
#include M2S(INCLUDE_PATH/inc_platform.cl)
|
|
#include M2S(INCLUDE_PATH/inc_common.cl)
|
|
#include M2S(INCLUDE_PATH/inc_simd.cl)
|
|
#include M2S(INCLUDE_PATH/inc_hash_sha512.cl)
|
|
#include M2S(INCLUDE_PATH/inc_ecc_secp256k1.cl)
|
|
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
|
|
#include M2S(INCLUDE_PATH/inc_zip_inflate.cl)
|
|
#endif
|
|
|
|
typedef struct electrum
|
|
{
|
|
secp256k1_t coords;
|
|
|
|
u32 data_buf[256];
|
|
|
|
} electrum_t;
|
|
|
|
typedef struct electrum_tmp
|
|
{
|
|
u64 ipad[8];
|
|
u64 opad[8];
|
|
|
|
u64 dgst[8];
|
|
u64 out[8];
|
|
|
|
} electrum_tmp_t;
|
|
|
|
#define MIN_ENTROPY 3.0
|
|
#define MAX_ENTROPY 6.0
|
|
|
|
DECLSPEC void hmac_sha512_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *w4, PRIVATE_AS u32x *w5, PRIVATE_AS u32x *w6, PRIVATE_AS u32x *w7, PRIVATE_AS u64x *ipad, PRIVATE_AS u64x *opad, PRIVATE_AS u64x *digest)
|
|
{
|
|
digest[0] = ipad[0];
|
|
digest[1] = ipad[1];
|
|
digest[2] = ipad[2];
|
|
digest[3] = ipad[3];
|
|
digest[4] = ipad[4];
|
|
digest[5] = ipad[5];
|
|
digest[6] = ipad[6];
|
|
digest[7] = ipad[7];
|
|
|
|
sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest);
|
|
|
|
w0[0] = h32_from_64 (digest[0]);
|
|
w0[1] = l32_from_64 (digest[0]);
|
|
w0[2] = h32_from_64 (digest[1]);
|
|
w0[3] = l32_from_64 (digest[1]);
|
|
w1[0] = h32_from_64 (digest[2]);
|
|
w1[1] = l32_from_64 (digest[2]);
|
|
w1[2] = h32_from_64 (digest[3]);
|
|
w1[3] = l32_from_64 (digest[3]);
|
|
w2[0] = h32_from_64 (digest[4]);
|
|
w2[1] = l32_from_64 (digest[4]);
|
|
w2[2] = h32_from_64 (digest[5]);
|
|
w2[3] = l32_from_64 (digest[5]);
|
|
w3[0] = h32_from_64 (digest[6]);
|
|
w3[1] = l32_from_64 (digest[6]);
|
|
w3[2] = h32_from_64 (digest[7]);
|
|
w3[3] = l32_from_64 (digest[7]);
|
|
w4[0] = 0x80000000;
|
|
w4[1] = 0;
|
|
w4[2] = 0;
|
|
w4[3] = 0;
|
|
w5[0] = 0;
|
|
w5[1] = 0;
|
|
w5[2] = 0;
|
|
w5[3] = 0;
|
|
w6[0] = 0;
|
|
w6[1] = 0;
|
|
w6[2] = 0;
|
|
w6[3] = 0;
|
|
w7[0] = 0;
|
|
w7[1] = 0;
|
|
w7[2] = 0;
|
|
w7[3] = (128 + 64) * 8;
|
|
|
|
digest[0] = opad[0];
|
|
digest[1] = opad[1];
|
|
digest[2] = opad[2];
|
|
digest[3] = opad[3];
|
|
digest[4] = opad[4];
|
|
digest[5] = opad[5];
|
|
digest[6] = opad[6];
|
|
digest[7] = opad[7];
|
|
|
|
sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest);
|
|
}
|
|
|
|
KERNEL_FQ void m21800_init (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
sha512_hmac_ctx_t sha512_hmac_ctx;
|
|
|
|
sha512_hmac_init_global_swap (&sha512_hmac_ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
tmps[gid].ipad[0] = sha512_hmac_ctx.ipad.h[0];
|
|
tmps[gid].ipad[1] = sha512_hmac_ctx.ipad.h[1];
|
|
tmps[gid].ipad[2] = sha512_hmac_ctx.ipad.h[2];
|
|
tmps[gid].ipad[3] = sha512_hmac_ctx.ipad.h[3];
|
|
tmps[gid].ipad[4] = sha512_hmac_ctx.ipad.h[4];
|
|
tmps[gid].ipad[5] = sha512_hmac_ctx.ipad.h[5];
|
|
tmps[gid].ipad[6] = sha512_hmac_ctx.ipad.h[6];
|
|
tmps[gid].ipad[7] = sha512_hmac_ctx.ipad.h[7];
|
|
|
|
tmps[gid].opad[0] = sha512_hmac_ctx.opad.h[0];
|
|
tmps[gid].opad[1] = sha512_hmac_ctx.opad.h[1];
|
|
tmps[gid].opad[2] = sha512_hmac_ctx.opad.h[2];
|
|
tmps[gid].opad[3] = sha512_hmac_ctx.opad.h[3];
|
|
tmps[gid].opad[4] = sha512_hmac_ctx.opad.h[4];
|
|
tmps[gid].opad[5] = sha512_hmac_ctx.opad.h[5];
|
|
tmps[gid].opad[6] = sha512_hmac_ctx.opad.h[6];
|
|
tmps[gid].opad[7] = sha512_hmac_ctx.opad.h[7];
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
u32 w4[4];
|
|
u32 w5[4];
|
|
u32 w6[4];
|
|
u32 w7[4];
|
|
|
|
w0[0] = 1;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
w4[0] = 0;
|
|
w4[1] = 0;
|
|
w4[2] = 0;
|
|
w4[3] = 0;
|
|
w5[0] = 0;
|
|
w5[1] = 0;
|
|
w5[2] = 0;
|
|
w5[3] = 0;
|
|
w6[0] = 0;
|
|
w6[1] = 0;
|
|
w6[2] = 0;
|
|
w6[3] = 0;
|
|
w7[0] = 0;
|
|
w7[1] = 0;
|
|
w7[2] = 0;
|
|
w7[3] = 0;
|
|
|
|
sha512_hmac_update_128 (&sha512_hmac_ctx, w0, w1, w2, w3, w4, w5, w6, w7, 4);
|
|
|
|
sha512_hmac_final (&sha512_hmac_ctx);
|
|
|
|
tmps[gid].dgst[0] = sha512_hmac_ctx.opad.h[0];
|
|
tmps[gid].dgst[1] = sha512_hmac_ctx.opad.h[1];
|
|
tmps[gid].dgst[2] = sha512_hmac_ctx.opad.h[2];
|
|
tmps[gid].dgst[3] = sha512_hmac_ctx.opad.h[3];
|
|
tmps[gid].dgst[4] = sha512_hmac_ctx.opad.h[4];
|
|
tmps[gid].dgst[5] = sha512_hmac_ctx.opad.h[5];
|
|
tmps[gid].dgst[6] = sha512_hmac_ctx.opad.h[6];
|
|
tmps[gid].dgst[7] = sha512_hmac_ctx.opad.h[7];
|
|
|
|
tmps[gid].out[0] = tmps[gid].dgst[0];
|
|
tmps[gid].out[1] = tmps[gid].dgst[1];
|
|
tmps[gid].out[2] = tmps[gid].dgst[2];
|
|
tmps[gid].out[3] = tmps[gid].dgst[3];
|
|
tmps[gid].out[4] = tmps[gid].dgst[4];
|
|
tmps[gid].out[5] = tmps[gid].dgst[5];
|
|
tmps[gid].out[6] = tmps[gid].dgst[6];
|
|
tmps[gid].out[7] = tmps[gid].dgst[7];
|
|
}
|
|
|
|
KERNEL_FQ void m21800_loop (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if ((gid * VECT_SIZE) >= GID_CNT) return;
|
|
|
|
u64x ipad[8];
|
|
u64x opad[8];
|
|
|
|
ipad[0] = pack64v (tmps, ipad, gid, 0);
|
|
ipad[1] = pack64v (tmps, ipad, gid, 1);
|
|
ipad[2] = pack64v (tmps, ipad, gid, 2);
|
|
ipad[3] = pack64v (tmps, ipad, gid, 3);
|
|
ipad[4] = pack64v (tmps, ipad, gid, 4);
|
|
ipad[5] = pack64v (tmps, ipad, gid, 5);
|
|
ipad[6] = pack64v (tmps, ipad, gid, 6);
|
|
ipad[7] = pack64v (tmps, ipad, gid, 7);
|
|
|
|
opad[0] = pack64v (tmps, opad, gid, 0);
|
|
opad[1] = pack64v (tmps, opad, gid, 1);
|
|
opad[2] = pack64v (tmps, opad, gid, 2);
|
|
opad[3] = pack64v (tmps, opad, gid, 3);
|
|
opad[4] = pack64v (tmps, opad, gid, 4);
|
|
opad[5] = pack64v (tmps, opad, gid, 5);
|
|
opad[6] = pack64v (tmps, opad, gid, 6);
|
|
opad[7] = pack64v (tmps, opad, gid, 7);
|
|
|
|
u64x dgst[8];
|
|
u64x out[8];
|
|
|
|
dgst[0] = pack64v (tmps, dgst, gid, 0);
|
|
dgst[1] = pack64v (tmps, dgst, gid, 1);
|
|
dgst[2] = pack64v (tmps, dgst, gid, 2);
|
|
dgst[3] = pack64v (tmps, dgst, gid, 3);
|
|
dgst[4] = pack64v (tmps, dgst, gid, 4);
|
|
dgst[5] = pack64v (tmps, dgst, gid, 5);
|
|
dgst[6] = pack64v (tmps, dgst, gid, 6);
|
|
dgst[7] = pack64v (tmps, dgst, gid, 7);
|
|
|
|
out[0] = pack64v (tmps, out, gid, 0);
|
|
out[1] = pack64v (tmps, out, gid, 1);
|
|
out[2] = pack64v (tmps, out, gid, 2);
|
|
out[3] = pack64v (tmps, out, gid, 3);
|
|
out[4] = pack64v (tmps, out, gid, 4);
|
|
out[5] = pack64v (tmps, out, gid, 5);
|
|
out[6] = pack64v (tmps, out, gid, 6);
|
|
out[7] = pack64v (tmps, out, gid, 7);
|
|
|
|
for (u32 j = 0; j < LOOP_CNT; j++)
|
|
{
|
|
u32x w0[4];
|
|
u32x w1[4];
|
|
u32x w2[4];
|
|
u32x w3[4];
|
|
u32x w4[4];
|
|
u32x w5[4];
|
|
u32x w6[4];
|
|
u32x w7[4];
|
|
|
|
w0[0] = h32_from_64 (dgst[0]);
|
|
w0[1] = l32_from_64 (dgst[0]);
|
|
w0[2] = h32_from_64 (dgst[1]);
|
|
w0[3] = l32_from_64 (dgst[1]);
|
|
w1[0] = h32_from_64 (dgst[2]);
|
|
w1[1] = l32_from_64 (dgst[2]);
|
|
w1[2] = h32_from_64 (dgst[3]);
|
|
w1[3] = l32_from_64 (dgst[3]);
|
|
w2[0] = h32_from_64 (dgst[4]);
|
|
w2[1] = l32_from_64 (dgst[4]);
|
|
w2[2] = h32_from_64 (dgst[5]);
|
|
w2[3] = l32_from_64 (dgst[5]);
|
|
w3[0] = h32_from_64 (dgst[6]);
|
|
w3[1] = l32_from_64 (dgst[6]);
|
|
w3[2] = h32_from_64 (dgst[7]);
|
|
w3[3] = l32_from_64 (dgst[7]);
|
|
w4[0] = 0x80000000;
|
|
w4[1] = 0;
|
|
w4[2] = 0;
|
|
w4[3] = 0;
|
|
w5[0] = 0;
|
|
w5[1] = 0;
|
|
w5[2] = 0;
|
|
w5[3] = 0;
|
|
w6[0] = 0;
|
|
w6[1] = 0;
|
|
w6[2] = 0;
|
|
w6[3] = 0;
|
|
w7[0] = 0;
|
|
w7[1] = 0;
|
|
w7[2] = 0;
|
|
w7[3] = (128 + 64) * 8;
|
|
|
|
hmac_sha512_run_V (w0, w1, w2, w3, w4, w5, w6, w7, ipad, opad, dgst);
|
|
|
|
out[0] ^= dgst[0];
|
|
out[1] ^= dgst[1];
|
|
out[2] ^= dgst[2];
|
|
out[3] ^= dgst[3];
|
|
out[4] ^= dgst[4];
|
|
out[5] ^= dgst[5];
|
|
out[6] ^= dgst[6];
|
|
out[7] ^= dgst[7];
|
|
}
|
|
|
|
unpack64v (tmps, dgst, gid, 0, dgst[0]);
|
|
unpack64v (tmps, dgst, gid, 1, dgst[1]);
|
|
unpack64v (tmps, dgst, gid, 2, dgst[2]);
|
|
unpack64v (tmps, dgst, gid, 3, dgst[3]);
|
|
unpack64v (tmps, dgst, gid, 4, dgst[4]);
|
|
unpack64v (tmps, dgst, gid, 5, dgst[5]);
|
|
unpack64v (tmps, dgst, gid, 6, dgst[6]);
|
|
unpack64v (tmps, dgst, gid, 7, dgst[7]);
|
|
|
|
unpack64v (tmps, out, gid, 0, out[0]);
|
|
unpack64v (tmps, out, gid, 1, out[1]);
|
|
unpack64v (tmps, out, gid, 2, out[2]);
|
|
unpack64v (tmps, out, gid, 3, out[3]);
|
|
unpack64v (tmps, out, gid, 4, out[4]);
|
|
unpack64v (tmps, out, gid, 5, out[5]);
|
|
unpack64v (tmps, out, gid, 6, out[6]);
|
|
unpack64v (tmps, out, gid, 7, out[7]);
|
|
}
|
|
|
|
KERNEL_FQ void m21800_comp (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
LOCAL_VK u32 s_td0[256];
|
|
LOCAL_VK u32 s_td1[256];
|
|
LOCAL_VK u32 s_td2[256];
|
|
LOCAL_VK u32 s_td3[256];
|
|
LOCAL_VK u32 s_td4[256];
|
|
|
|
LOCAL_VK u32 s_te0[256];
|
|
LOCAL_VK u32 s_te1[256];
|
|
LOCAL_VK u32 s_te2[256];
|
|
LOCAL_VK u32 s_te3[256];
|
|
LOCAL_VK u32 s_te4[256];
|
|
|
|
for (u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
SYNC_THREADS ();
|
|
|
|
#else
|
|
|
|
CONSTANT_AS u32a *s_td0 = td0;
|
|
CONSTANT_AS u32a *s_td1 = td1;
|
|
CONSTANT_AS u32a *s_td2 = td2;
|
|
CONSTANT_AS u32a *s_td3 = td3;
|
|
CONSTANT_AS u32a *s_td4 = td4;
|
|
|
|
CONSTANT_AS u32a *s_te0 = te0;
|
|
CONSTANT_AS u32a *s_te1 = te1;
|
|
CONSTANT_AS u32a *s_te2 = te2;
|
|
CONSTANT_AS u32a *s_te3 = te3;
|
|
CONSTANT_AS u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
|
|
/*
|
|
* Start by copying/aligning the data
|
|
*/
|
|
|
|
u64 out[8];
|
|
|
|
out[0] = tmps[gid].out[0];
|
|
out[1] = tmps[gid].out[1];
|
|
out[2] = tmps[gid].out[2];
|
|
out[3] = tmps[gid].out[3];
|
|
out[4] = tmps[gid].out[4];
|
|
out[5] = tmps[gid].out[5];
|
|
out[6] = tmps[gid].out[6];
|
|
out[7] = tmps[gid].out[7];
|
|
|
|
/*
|
|
* First calculate the modulo of the pbkdf2 hash with SECP256K1_N:
|
|
*/
|
|
|
|
u32 a[16];
|
|
|
|
a[ 0] = h32_from_64_S (out[0]);
|
|
a[ 1] = l32_from_64_S (out[0]);
|
|
a[ 2] = h32_from_64_S (out[1]);
|
|
a[ 3] = l32_from_64_S (out[1]);
|
|
a[ 4] = h32_from_64_S (out[2]);
|
|
a[ 5] = l32_from_64_S (out[2]);
|
|
a[ 6] = h32_from_64_S (out[3]);
|
|
a[ 7] = l32_from_64_S (out[3]);
|
|
a[ 8] = h32_from_64_S (out[4]);
|
|
a[ 9] = l32_from_64_S (out[4]);
|
|
a[10] = h32_from_64_S (out[5]);
|
|
a[11] = l32_from_64_S (out[5]);
|
|
a[12] = h32_from_64_S (out[6]);
|
|
a[13] = l32_from_64_S (out[6]);
|
|
a[14] = h32_from_64_S (out[7]);
|
|
a[15] = l32_from_64_S (out[7]);
|
|
|
|
mod_512 (a);
|
|
|
|
// copy the last 256 bit (32 bytes) of modulo (a):
|
|
|
|
u32 tweak[8];
|
|
|
|
tweak[0] = a[15];
|
|
tweak[1] = a[14];
|
|
tweak[2] = a[13];
|
|
tweak[3] = a[12];
|
|
tweak[4] = a[11];
|
|
tweak[5] = a[10];
|
|
tweak[6] = a[ 9];
|
|
tweak[7] = a[ 8];
|
|
|
|
|
|
/*
|
|
* the main secp256k1 point multiplication by a scalar/tweak:
|
|
*/
|
|
|
|
GLOBAL_AS secp256k1_t *coords = (GLOBAL_AS secp256k1_t *) &esalt_bufs[DIGESTS_OFFSET_HOST].coords;
|
|
|
|
u32 pubkey[64] = { 0 }; // for point_mul () we need: 1 + 32 bytes (for sha512 () we need more)
|
|
|
|
point_mul (pubkey, tweak, coords);
|
|
|
|
|
|
/*
|
|
* sha512 () of the pubkey:
|
|
*/
|
|
|
|
sha512_ctx_t sha512_ctx;
|
|
|
|
sha512_init (&sha512_ctx);
|
|
sha512_update (&sha512_ctx, pubkey, 33); // 33 because of 32 byte curve point + sign
|
|
sha512_final (&sha512_ctx);
|
|
|
|
// ... now we have the result in sha512_ctx.h[0]...sha512_ctx.h[7]
|
|
|
|
u32 iv[4];
|
|
|
|
iv[0] = h32_from_64_S (sha512_ctx.h[0]);
|
|
iv[1] = l32_from_64_S (sha512_ctx.h[0]);
|
|
iv[2] = h32_from_64_S (sha512_ctx.h[1]);
|
|
iv[3] = l32_from_64_S (sha512_ctx.h[1]);
|
|
|
|
iv[0] = hc_swap32_S (iv[0]);
|
|
iv[1] = hc_swap32_S (iv[1]);
|
|
iv[2] = hc_swap32_S (iv[2]);
|
|
iv[3] = hc_swap32_S (iv[3]);
|
|
|
|
u32 key[4];
|
|
|
|
key[0] = h32_from_64_S (sha512_ctx.h[2]);
|
|
key[1] = l32_from_64_S (sha512_ctx.h[2]);
|
|
key[2] = h32_from_64_S (sha512_ctx.h[3]);
|
|
key[3] = l32_from_64_S (sha512_ctx.h[3]);
|
|
|
|
key[0] = hc_swap32_S (key[0]);
|
|
key[1] = hc_swap32_S (key[1]);
|
|
key[2] = hc_swap32_S (key[2]);
|
|
key[3] = hc_swap32_S (key[3]);
|
|
|
|
|
|
/*
|
|
* AES decrypt the data_buf
|
|
*/
|
|
|
|
// init AES
|
|
|
|
#define KEYLEN 44
|
|
|
|
u32 ks[KEYLEN];
|
|
|
|
aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
|
|
|
|
// #define AES_LEN 1024
|
|
// in my tests it also worked with only 128 input bytes !
|
|
#define AES_LEN 1024
|
|
#define AES_LEN_DIV_4 256
|
|
|
|
u32 buf_full[AES_LEN_DIV_4];
|
|
|
|
// we need to run it at least once:
|
|
|
|
GLOBAL_AS u32 *data_buf = (GLOBAL_AS u32 *) esalt_bufs[DIGESTS_OFFSET_HOST].data_buf;
|
|
|
|
u32 data[4];
|
|
|
|
data[0] = data_buf[0];
|
|
data[1] = data_buf[1];
|
|
data[2] = data_buf[2];
|
|
data[3] = data_buf[3];
|
|
|
|
u32 buf[4];
|
|
|
|
aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
buf[0] ^= iv[0];
|
|
|
|
// early reject
|
|
|
|
// changed: 17.11.2021
|
|
// I had not cracked some sample Salt Type 5 wallets with known passwords provided by the owner.
|
|
// It was necessary to remove this early rejection and add a new signature
|
|
// The decrypted data was this: {"seed_version": ...
|
|
//if ((buf[0] & 0x0006ffff) != 0x00049c78) return; // allow 0b100 or 0b101 at the end of 3rd byte
|
|
|
|
buf[1] ^= iv[1];
|
|
buf[2] ^= iv[2];
|
|
buf[3] ^= iv[3];
|
|
|
|
buf_full[0] = buf[0];
|
|
buf_full[1] = buf[1];
|
|
buf_full[2] = buf[2];
|
|
buf_full[3] = buf[3];
|
|
|
|
iv[0] = data[0];
|
|
iv[1] = data[1];
|
|
iv[2] = data[2];
|
|
iv[3] = data[3];
|
|
|
|
// for AES_LEN > 16 we need to loop
|
|
|
|
for (int i = 16, j = 4; i < AES_LEN; i += 16, j += 4)
|
|
{
|
|
data[0] = data_buf[j + 0];
|
|
data[1] = data_buf[j + 1];
|
|
data[2] = data_buf[j + 2];
|
|
data[3] = data_buf[j + 3];
|
|
|
|
aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
buf[0] ^= iv[0];
|
|
buf[1] ^= iv[1];
|
|
buf[2] ^= iv[2];
|
|
buf[3] ^= iv[3];
|
|
|
|
iv[0] = data[0];
|
|
iv[1] = data[1];
|
|
iv[2] = data[2];
|
|
iv[3] = data[3];
|
|
|
|
buf_full[j + 0] = buf[0];
|
|
buf_full[j + 1] = buf[1];
|
|
buf_full[j + 2] = buf[2];
|
|
buf_full[j + 3] = buf[3];
|
|
}
|
|
|
|
/*
|
|
* zlib inflate/decompress:
|
|
*/
|
|
|
|
mz_stream infstream;
|
|
|
|
infstream.opaque = Z_NULL;
|
|
|
|
// input:
|
|
|
|
infstream.avail_in = AES_LEN;
|
|
infstream.next_in = (u8 *) buf_full;
|
|
|
|
// output:
|
|
|
|
#define OUT_SIZE 1024
|
|
|
|
u8 tmp[OUT_SIZE];
|
|
|
|
infstream.avail_out = OUT_SIZE;
|
|
infstream.next_out = tmp;
|
|
|
|
|
|
// decompress it:
|
|
|
|
inflate_state pStream;
|
|
|
|
mz_inflateInit2 (&infstream, MAX_WBITS, &pStream);
|
|
|
|
const int zlib_ret = inflate (&infstream, Z_NO_FLUSH);
|
|
|
|
if ((zlib_ret != MZ_OK) && (zlib_ret != MZ_STREAM_END))
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (int i = 1; i < infstream.total_out; i++)
|
|
{
|
|
if (tmp[i] == '\t') continue;
|
|
if (tmp[i] == '\r') continue;
|
|
if (tmp[i] == '\n') continue;
|
|
|
|
if (tmp[i] < 0x20)
|
|
{
|
|
// https://datatracker.ietf.org/doc/html/rfc7159
|
|
// 7. Strings
|
|
// All Unicode characters may be placed within the
|
|
// quotation marks, except for the characters that must be escaped:
|
|
// quotation mark, reverse solidus, and the control characters (U+0000
|
|
// through U+001F).
|
|
|
|
if (tmp[i - 1] != '\\') return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check with some strange signature.
|
|
* The main problem is that the (invalid) decrypted data processed by zlib often results in random patterns but with low entropy,
|
|
* so that a simple entropy check is not sufficient
|
|
*/
|
|
|
|
if (tmp[0] == '{')
|
|
{
|
|
int qcnt1 = 0;
|
|
int ccnt1 = 0;
|
|
|
|
for (int i = 1; i < 16; i++)
|
|
{
|
|
if (tmp[i] == '"') qcnt1++;
|
|
if (tmp[i] == ':') ccnt1++;
|
|
}
|
|
|
|
int qcnt2 = 0;
|
|
int ccnt2 = 0;
|
|
|
|
for (int i = 1; i < infstream.total_out; i++)
|
|
{
|
|
if (tmp[i] == '"') qcnt2++;
|
|
if (tmp[i] == ':') ccnt2++;
|
|
}
|
|
|
|
if ((qcnt1 >= 1) && (ccnt1 >= 1) && (qcnt2 >= 4) && (ccnt2 >= 3))
|
|
{
|
|
const float entropy = hc_get_entropy ((const u32 *) tmp, infstream.total_out / 4);
|
|
|
|
if ((entropy >= MIN_ENTROPY) && (entropy <= MAX_ENTROPY))
|
|
{
|
|
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
|
|
{
|
|
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify if decompressed data is either:
|
|
* - "{\n \"" or
|
|
* - "{\r\n \""
|
|
*/
|
|
|
|
if (((tmp[0] == 0x7b) && (tmp[1] == 0x0a) && (tmp[2] == 0x20) && (tmp[3] == 0x20) &&
|
|
(tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x22)) ||
|
|
((tmp[0] == 0x7b) && (tmp[1] == 0x0d) && (tmp[2] == 0x0a) && (tmp[3] == 0x20) &&
|
|
(tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x20) && (tmp[7] == 0x22)))
|
|
{
|
|
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
|
|
{
|
|
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|