1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-18 19:51:04 +00:00
hashcat/OpenCL/m28506_a1-pure.cl

446 lines
10 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#define SECP256K1_TMPS_TYPE PRIVATE_AS
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_base58.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_hash_ripemd160.cl)
#include M2S(INCLUDE_PATH/inc_ecc_secp256k1.cl)
#endif
KERNEL_FQ void m28506_mxx (KERN_ATTR_BASIC ())
{
/**
* modifier
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
// copy password to w
u32 w[13] = { 0 }; // 51 bytes needed
// for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
for (u32 idx = 0; idx < 13; idx++)
{
w[idx] = pws[gid].i[idx];
}
if (pw_len > 3)
{
const u32 b = hc_swap32_S (w[0]);
if ((b < 0x35487048) || // '5Hph'
(b > 0x354b6d32)) return; // '5Km2'
}
const bool status_base58 = is_valid_base58 (w, 0, pw_len);
if (status_base58 != true) return;
secp256k1_t preG; // need to change SECP256K1_TMPS_TYPE above to: PRIVATE_AS
set_precomputed_basepoint_g (&preG);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
if ((pw_len + comb_len) != 51) continue;
u32 c[64] = { 0 };
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < 13; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_le_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < 13; i++)
{
c[i] |= w[i];
}
const u32 b = hc_swap32_S (c[0]);
if ((b < 0x35487048) || // '5Hph'
(b > 0x354b6d32)) continue; // '5Km2'
const bool status_base58 = is_valid_base58 (c, pw_len, 51);
if (status_base58 != true) continue;
// convert password from b58 to binary
u32 tmp[16] = { 0 };
const bool status_dec = b58dec_51 (tmp, c);
if (status_dec != true) continue;
// check for bitcoin main network identifier:
if ((tmp[0] & 0xff000000) != 0x80000000) continue;
// verify sha256 (sha256 (tmp[0..37 - 4]))
// real work is done in b58check where sha256 is run twice
const bool status_check = b58check_37 (tmp); // length is 33 (+ 4 checksum bytes)
if (status_check != true) continue;
u32 prv_key[9]; // why is re-using the "tmp" variable here slower ?
prv_key[0] = (tmp[7] << 8) | (tmp[8] >> 24);
prv_key[1] = (tmp[6] << 8) | (tmp[7] >> 24);
prv_key[2] = (tmp[5] << 8) | (tmp[6] >> 24);
prv_key[3] = (tmp[4] << 8) | (tmp[5] >> 24);
prv_key[4] = (tmp[3] << 8) | (tmp[4] >> 24);
prv_key[5] = (tmp[2] << 8) | (tmp[3] >> 24);
prv_key[6] = (tmp[1] << 8) | (tmp[2] >> 24);
prv_key[7] = (tmp[0] << 8) | (tmp[1] >> 24);
// convert: pub_key = G * prv_key
u32 x[8];
u32 y[8];
point_mul_xy (x, y, prv_key, &preG);
// to public key:
u32 pub_key[32] = { 0 };
pub_key[16] = (y[0] << 24);
pub_key[15] = (y[0] >> 8) | (y[1] << 24);
pub_key[14] = (y[1] >> 8) | (y[2] << 24);
pub_key[13] = (y[2] >> 8) | (y[3] << 24);
pub_key[12] = (y[3] >> 8) | (y[4] << 24);
pub_key[11] = (y[4] >> 8) | (y[5] << 24);
pub_key[10] = (y[5] >> 8) | (y[6] << 24);
pub_key[ 9] = (y[6] >> 8) | (y[7] << 24);
pub_key[ 8] = (y[7] >> 8) | (x[0] << 24);
pub_key[ 7] = (x[0] >> 8) | (x[1] << 24);
pub_key[ 6] = (x[1] >> 8) | (x[2] << 24);
pub_key[ 5] = (x[2] >> 8) | (x[3] << 24);
pub_key[ 4] = (x[3] >> 8) | (x[4] << 24);
pub_key[ 3] = (x[4] >> 8) | (x[5] << 24);
pub_key[ 2] = (x[5] >> 8) | (x[6] << 24);
pub_key[ 1] = (x[6] >> 8) | (x[7] << 24);
pub_key[ 0] = (x[7] >> 8) | (0x04000000);
// calculate HASH160 for pub key
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, pub_key, 65); // length of public key: 65
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
// tmp[ 8] = 0; tmp[ 9] = 0; tmp[10] = 0; tmp[11] = 0;
// tmp[12] = 0; tmp[13] = 0; tmp[14] = 0; tmp[15] = 0;
for (u32 i = 8; i < 16; i++) tmp[i] = 0;
// now let's do RIPEMD-160 on the sha256sum
ripemd160_ctx_t rctx;
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
/*
* 2nd RIPEMD160 (SHA256 ()):
*/
tmp[0] = (rctx.h[0] << 16) | ( 0x1400); // (swapped) OP_0 operation (0x00),
tmp[1] = (rctx.h[1] << 16) | (rctx.h[0] >> 16); // 0x14 == 20, this indicates the
tmp[2] = (rctx.h[2] << 16) | (rctx.h[1] >> 16); // data len
tmp[3] = (rctx.h[3] << 16) | (rctx.h[2] >> 16);
tmp[4] = (rctx.h[4] << 16) | (rctx.h[3] >> 16);
tmp[5] = (rctx.h[4] >> 16);
for (u32 i = 6; i < 16; i++) tmp[i] = 0;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp, 22);
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
const u32 r0 = rctx.h[0];
const u32 r1 = rctx.h[1];
const u32 r2 = rctx.h[2];
const u32 r3 = rctx.h[3];
COMPARE_M_SCALAR (r0, r1, r2, r3);
}
}
KERNEL_FQ void m28506_sxx (KERN_ATTR_BASIC ())
{
/**
* modifier
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
};
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
// copy password to w
u32 w[13] = { 0 }; // 51 bytes needed
// for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
for (u32 idx = 0; idx < 13; idx++)
{
w[idx] = pws[gid].i[idx];
}
if (pw_len > 3)
{
const u32 b = hc_swap32_S (w[0]);
if ((b < 0x35487048) || // '5Hph'
(b > 0x354b6d32)) return; // '5Km2'
}
const bool status_base58 = is_valid_base58 (w, 0, pw_len);
if (status_base58 != true) return;
secp256k1_t preG; // need to change SECP256K1_TMPS_TYPE above to: PRIVATE_AS
set_precomputed_basepoint_g (&preG);
/**
* loop
*/
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++)
{
const u32 comb_len = combs_buf[il_pos].pw_len;
if ((pw_len + comb_len) != 51) continue;
u32 c[64] = { 0 };
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < 13; i++)
{
c[i] = combs_buf[il_pos].i[i];
}
switch_buffer_by_offset_1x64_le_S (c, pw_len);
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0; i < 13; i++)
{
c[i] |= w[i];
}
const u32 b = hc_swap32_S (c[0]);
if ((b < 0x35487048) || // '5Hph'
(b > 0x354b6d32)) continue; // '5Km2'
const bool status_base58 = is_valid_base58 (c, pw_len, 51);
if (status_base58 != true) continue;
// convert password from b58 to binary
u32 tmp[16] = { 0 };
const bool status_dec = b58dec_51 (tmp, c);
if (status_dec != true) continue;
// check for bitcoin main network identifier:
if ((tmp[0] & 0xff000000) != 0x80000000) continue;
// verify sha256 (sha256 (tmp[0..37 - 4]))
// real work is done in b58check where sha256 is run twice
const bool status_check = b58check_37 (tmp); // length is 33 (+ 4 checksum bytes)
if (status_check != true) continue;
u32 prv_key[9]; // why is re-using the "tmp" variable here slower ?
prv_key[0] = (tmp[7] << 8) | (tmp[8] >> 24);
prv_key[1] = (tmp[6] << 8) | (tmp[7] >> 24);
prv_key[2] = (tmp[5] << 8) | (tmp[6] >> 24);
prv_key[3] = (tmp[4] << 8) | (tmp[5] >> 24);
prv_key[4] = (tmp[3] << 8) | (tmp[4] >> 24);
prv_key[5] = (tmp[2] << 8) | (tmp[3] >> 24);
prv_key[6] = (tmp[1] << 8) | (tmp[2] >> 24);
prv_key[7] = (tmp[0] << 8) | (tmp[1] >> 24);
// convert: pub_key = G * prv_key
u32 x[8];
u32 y[8];
point_mul_xy (x, y, prv_key, &preG);
// to public key:
u32 pub_key[32] = { 0 };
pub_key[16] = (y[0] << 24);
pub_key[15] = (y[0] >> 8) | (y[1] << 24);
pub_key[14] = (y[1] >> 8) | (y[2] << 24);
pub_key[13] = (y[2] >> 8) | (y[3] << 24);
pub_key[12] = (y[3] >> 8) | (y[4] << 24);
pub_key[11] = (y[4] >> 8) | (y[5] << 24);
pub_key[10] = (y[5] >> 8) | (y[6] << 24);
pub_key[ 9] = (y[6] >> 8) | (y[7] << 24);
pub_key[ 8] = (y[7] >> 8) | (x[0] << 24);
pub_key[ 7] = (x[0] >> 8) | (x[1] << 24);
pub_key[ 6] = (x[1] >> 8) | (x[2] << 24);
pub_key[ 5] = (x[2] >> 8) | (x[3] << 24);
pub_key[ 4] = (x[3] >> 8) | (x[4] << 24);
pub_key[ 3] = (x[4] >> 8) | (x[5] << 24);
pub_key[ 2] = (x[5] >> 8) | (x[6] << 24);
pub_key[ 1] = (x[6] >> 8) | (x[7] << 24);
pub_key[ 0] = (x[7] >> 8) | (0x04000000);
// calculate HASH160 for pub key
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, pub_key, 65); // length of public key: 65
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
// tmp[ 8] = 0; tmp[ 9] = 0; tmp[10] = 0; tmp[11] = 0;
// tmp[12] = 0; tmp[13] = 0; tmp[14] = 0; tmp[15] = 0;
for (u32 i = 8; i < 16; i++) tmp[i] = 0;
// now let's do RIPEMD-160 on the sha256sum
ripemd160_ctx_t rctx;
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
/*
* 2nd RIPEMD160 (SHA256 ()):
*/
tmp[0] = (rctx.h[0] << 16) | ( 0x1400); // (swapped) OP_0 operation (0x00),
tmp[1] = (rctx.h[1] << 16) | (rctx.h[0] >> 16); // 0x14 == 20, this indicates the
tmp[2] = (rctx.h[2] << 16) | (rctx.h[1] >> 16); // data len
tmp[3] = (rctx.h[3] << 16) | (rctx.h[2] >> 16);
tmp[4] = (rctx.h[4] << 16) | (rctx.h[3] >> 16);
tmp[5] = (rctx.h[4] >> 16);
for (u32 i = 6; i < 16; i++) tmp[i] = 0;
sha256_init (&ctx);
sha256_update_swap (&ctx, tmp, 22);
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) tmp[i] = ctx.h[i];
ripemd160_init (&rctx);
ripemd160_update_swap (&rctx, tmp, 32);
ripemd160_final (&rctx);
const u32 r0 = rctx.h[0];
const u32 r1 = rctx.h[1];
const u32 r2 = rctx.h[2];
const u32 r3 = rctx.h[3];
COMPARE_S_SCALAR (r0, r1, r2, r3);
}
}