1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-10 15:51:10 +00:00
hashcat/OpenCL/m07400-pure.cl
Jens Steube 04d5e5a119 New Attack-Mode: Association Attack. Like JtR's single mode. Very early
stage. See hashcat Forum for detailed writeup.
2020-09-29 15:56:32 +02:00

371 lines
7.4 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct sha256crypt_tmp
{
// pure version
u32 alt_result[8];
u32 p_bytes[64];
u32 s_bytes[64];
} sha256crypt_tmp_t;
KERNEL_FQ void m07400_init (KERN_ATTR_TMPS (sha256crypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
/**
* init
*/
const u32 pw_len = pws[gid].pw_len;
u32 w[64] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = hc_swap32_S (w[idx]);
}
const u32 salt_len = salt_bufs[SALT_POS].salt_len;
u32 s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
{
s[idx] = salt_bufs[SALT_POS].salt_buf[idx];
}
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
{
s[idx] = hc_swap32_S (s[idx]);
}
/**
* prepare
*/
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, w, pw_len);
sha256_update (&ctx, s, salt_len);
sha256_update (&ctx, w, pw_len);
sha256_final (&ctx);
u32 final[16] = { 0 };
final[0] = ctx.h[0];
final[1] = ctx.h[1];
final[2] = ctx.h[2];
final[3] = ctx.h[3];
final[4] = ctx.h[4];
final[5] = ctx.h[5];
final[6] = ctx.h[6];
final[7] = ctx.h[7];
// alt_result
sha256_init (&ctx);
sha256_update (&ctx, w, pw_len);
sha256_update (&ctx, s, salt_len);
int pl;
for (pl = pw_len; pl > 32; pl -= 32)
{
sha256_update (&ctx, final, 32);
}
u32 t_final[16] = { 0 };
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 8; i++) t_final[i] = final[i];
truncate_block_16x4_be_S (t_final + 0, t_final + 4, t_final + 8, t_final + 12, pl);
sha256_update (&ctx, t_final, pl);
for (int cnt = pw_len; cnt > 0; cnt >>= 1)
{
if ((cnt & 1) != 0)
{
sha256_update (&ctx, final, 32);
}
else
{
sha256_update (&ctx, w, pw_len);
}
}
sha256_final (&ctx);
tmps[gid].alt_result[0] = ctx.h[0];
tmps[gid].alt_result[1] = ctx.h[1];
tmps[gid].alt_result[2] = ctx.h[2];
tmps[gid].alt_result[3] = ctx.h[3];
tmps[gid].alt_result[4] = ctx.h[4];
tmps[gid].alt_result[5] = ctx.h[5];
tmps[gid].alt_result[6] = ctx.h[6];
tmps[gid].alt_result[7] = ctx.h[7];
// p_bytes
sha256_init (&ctx);
for (u32 j = 0; j < pw_len; j++)
{
sha256_update (&ctx, w, pw_len);
}
sha256_final (&ctx);
final[ 0] = ctx.h[0];
final[ 1] = ctx.h[1];
final[ 2] = ctx.h[2];
final[ 3] = ctx.h[3];
final[ 4] = ctx.h[4];
final[ 5] = ctx.h[5];
final[ 6] = ctx.h[6];
final[ 7] = ctx.h[7];
final[ 8] = 0;
final[ 9] = 0;
final[10] = 0;
final[11] = 0;
final[12] = 0;
final[13] = 0;
final[14] = 0;
final[15] = 0;
u32 p_final[64] = { 0 };
int idx;
for (pl = pw_len, idx = 0; pl > 32; pl -= 32, idx += 8)
{
p_final[idx + 0] = final[0];
p_final[idx + 1] = final[1];
p_final[idx + 2] = final[2];
p_final[idx + 3] = final[3];
p_final[idx + 4] = final[4];
p_final[idx + 5] = final[5];
p_final[idx + 6] = final[6];
p_final[idx + 7] = final[7];
}
truncate_block_16x4_be_S (final + 0, final + 4, final + 8, final + 12, pl);
p_final[idx + 0] = final[0];
p_final[idx + 1] = final[1];
p_final[idx + 2] = final[2];
p_final[idx + 3] = final[3];
p_final[idx + 4] = final[4];
p_final[idx + 5] = final[5];
p_final[idx + 6] = final[6];
p_final[idx + 7] = final[7];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++) tmps[gid].p_bytes[i] = p_final[i];
// s_bytes
sha256_init (&ctx);
for (u32 j = 0; j < 16 + (tmps[gid].alt_result[0] >> 24); j++)
{
sha256_update (&ctx, s, salt_len);
}
sha256_final (&ctx);
final[ 0] = ctx.h[0];
final[ 1] = ctx.h[1];
final[ 2] = ctx.h[2];
final[ 3] = ctx.h[3];
final[ 4] = ctx.h[4];
final[ 5] = ctx.h[5];
final[ 6] = ctx.h[6];
final[ 7] = ctx.h[7];
final[ 8] = 0;
final[ 9] = 0;
final[10] = 0;
final[11] = 0;
final[12] = 0;
final[13] = 0;
final[14] = 0;
final[15] = 0;
u32 s_final[64] = { 0 };
for (pl = salt_len, idx = 0; pl > 32; pl -= 32, idx += 8)
{
s_final[idx + 0] = final[0];
s_final[idx + 1] = final[1];
s_final[idx + 2] = final[2];
s_final[idx + 3] = final[3];
s_final[idx + 4] = final[4];
s_final[idx + 5] = final[5];
s_final[idx + 6] = final[6];
s_final[idx + 7] = final[7];
}
truncate_block_16x4_be_S (final + 0, final + 4, final + 8, final + 12, pl);
s_final[idx + 0] = final[0];
s_final[idx + 1] = final[1];
s_final[idx + 2] = final[2];
s_final[idx + 3] = final[3];
s_final[idx + 4] = final[4];
s_final[idx + 5] = final[5];
s_final[idx + 6] = final[6];
s_final[idx + 7] = final[7];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0; i < 64; i++) tmps[gid].s_bytes[i] = s_final[i];
}
KERNEL_FQ void m07400_loop (KERN_ATTR_TMPS (sha256crypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
const u32 pw_len = pws[gid].pw_len;
const u32 salt_len = salt_bufs[SALT_POS].salt_len;
u32 alt_result[16] = { 0 };
alt_result[0] = tmps[gid].alt_result[0];
alt_result[1] = tmps[gid].alt_result[1];
alt_result[2] = tmps[gid].alt_result[2];
alt_result[3] = tmps[gid].alt_result[3];
alt_result[4] = tmps[gid].alt_result[4];
alt_result[5] = tmps[gid].alt_result[5];
alt_result[6] = tmps[gid].alt_result[6];
alt_result[7] = tmps[gid].alt_result[7];
/* Repeatedly run the collected hash value through sha256 to burn
CPU cycles. */
for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++)
{
sha256_ctx_t ctx;
sha256_init (&ctx);
if (j & 1)
{
sha256_update_global (&ctx, tmps[gid].p_bytes, pw_len);
}
else
{
sha256_update (&ctx, alt_result, 32);
}
if (j % 3)
{
sha256_update_global (&ctx, tmps[gid].s_bytes, salt_len);
}
if (j % 7)
{
sha256_update_global (&ctx, tmps[gid].p_bytes, pw_len);
}
if (j & 1)
{
sha256_update (&ctx, alt_result, 32);
}
else
{
sha256_update_global (&ctx, tmps[gid].p_bytes, pw_len);
}
sha256_final (&ctx);
alt_result[0] = ctx.h[0];
alt_result[1] = ctx.h[1];
alt_result[2] = ctx.h[2];
alt_result[3] = ctx.h[3];
alt_result[4] = ctx.h[4];
alt_result[5] = ctx.h[5];
alt_result[6] = ctx.h[6];
alt_result[7] = ctx.h[7];
}
tmps[gid].alt_result[0] = alt_result[0];
tmps[gid].alt_result[1] = alt_result[1];
tmps[gid].alt_result[2] = alt_result[2];
tmps[gid].alt_result[3] = alt_result[3];
tmps[gid].alt_result[4] = alt_result[4];
tmps[gid].alt_result[5] = alt_result[5];
tmps[gid].alt_result[6] = alt_result[6];
tmps[gid].alt_result[7] = alt_result[7];
}
KERNEL_FQ void m07400_comp (KERN_ATTR_TMPS (sha256crypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
const u64 lid = get_local_id (0);
const u32 r0 = hc_swap32_S (tmps[gid].alt_result[0]);
const u32 r1 = hc_swap32_S (tmps[gid].alt_result[1]);
const u32 r2 = hc_swap32_S (tmps[gid].alt_result[2]);
const u32 r3 = hc_swap32_S (tmps[gid].alt_result[3]);
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}