1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-05 13:21:13 +00:00
hashcat/OpenCL/inc_cipher_twofish.cl

373 lines
12 KiB
Common Lisp

/* This is an independent implementation of the encryption algorithm: */
/* */
/* Twofish by Bruce Schneier and colleagues */
/* */
/* which is a candidate algorithm in the Advanced Encryption Standard */
/* programme of the US National Institute of Standards and Technology. */
/* */
/* Copyright in this implementation is held by Dr B R Gladman but I */
/* hereby give permission for its free direct or derivative use subject */
/* to acknowledgment of its origin and compliance with any conditions */
/* that the originators of t he algorithm place on its exploitation. */
/* */
/* My thanks to Doug Whiting and Niels Ferguson for comments that led */
/* to improvements in this implementation. */
/* */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
/* */
/* -------------------------------------------------------------------- */
/* */
/* Cleaned and optimized for GPU use with hashcat by Jens Steube */
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_common.h"
#include "inc_cipher_twofish.h"
#define extract_byte(x,n) (((x) >> (8 * (n))) & 0xff)
#define g1_fun128(x) \
(mds (0, q20 (extract_byte (x, 3), sk)) ^ \
mds (1, q21 (extract_byte (x, 0), sk)) ^ \
mds (2, q22 (extract_byte (x, 1), sk)) ^ \
mds (3, q23 (extract_byte (x, 2), sk)))
#define g0_fun128(x) \
(mds (0, q20 (extract_byte (x, 0), sk)) ^ \
mds (1, q21 (extract_byte (x, 1), sk)) ^ \
mds (2, q22 (extract_byte (x, 2), sk)) ^ \
mds (3, q23 (extract_byte (x, 3), sk)))
#define f_rnd128(i) \
{ \
u32 t0 = g0_fun128 (data[0]); \
u32 t1 = g1_fun128 (data[1]); \
data[2] = hc_rotr32_S (data[2] ^ (t0 + t1 + lk[4 * (i) + 8]), 1); \
data[3] = hc_rotl32_S (data[3], 1) ^ (t0 + 2 * t1 + lk[4 * (i) + 9]); \
u32 t2 = g0_fun128 (data[2]); \
u32 t3 = g1_fun128 (data[3]); \
data[0] = hc_rotr32_S (data[0] ^ (t2 + t3 + lk[4 * (i) + 10]), 1); \
data[1] = hc_rotl32_S (data[1], 1) ^ (t2 + 2 * t3 + lk[4 * (i) + 11]); \
}
#define i_rnd128(i) \
{ \
u32 t0 = g0_fun128 (data[0]); \
u32 t1 = g1_fun128 (data[1]); \
data[2] = hc_rotl32_S (data[2], 1) ^ (t0 + t1 + lk[4 * (i) + 10]); \
data[3] = hc_rotr32_S (data[3] ^ (t0 + 2 * t1 + lk[4 * (i) + 11]), 1); \
u32 t2 = g0_fun128 (data[2]); \
u32 t3 = g1_fun128 (data[3]); \
data[0] = hc_rotl32_S (data[0], 1) ^ (t2 + t3 + lk[4 * (i) + 8]); \
data[1] = hc_rotr32_S (data[1] ^ (t2 + 2 * t3 + lk[4 * (i) + 9]), 1); \
}
#define f_rnd256(i) \
{ \
u32 t0 = g0_fun256 (data[0]); \
u32 t1 = g1_fun256 (data[1]); \
data[2] = hc_rotr32_S (data[2] ^ (t0 + t1 + lk[4 * (i) + 8]), 1); \
data[3] = hc_rotl32_S (data[3], 1) ^ (t0 + 2 * t1 + lk[4 * (i) + 9]); \
u32 t2 = g0_fun256 (data[2]); \
u32 t3 = g1_fun256 (data[3]); \
data[0] = hc_rotr32_S (data[0] ^ (t2 + t3 + lk[4 * (i) + 10]), 1); \
data[1] = hc_rotl32_S (data[1], 1) ^ (t2 + 2 * t3 + lk[4 * (i) + 11]); \
}
#define i_rnd256(i) \
{ \
u32 t0 = g0_fun256 (data[0]); \
u32 t1 = g1_fun256 (data[1]); \
data[2] = hc_rotl32_S (data[2], 1) ^ (t0 + t1 + lk[4 * (i) + 10]); \
data[3] = hc_rotr32_S (data[3] ^ (t0 + 2 * t1 + lk[4 * (i) + 11]), 1); \
u32 t2 = g0_fun256 (data[2]); \
u32 t3 = g1_fun256 (data[3]); \
data[0] = hc_rotl32_S (data[0], 1) ^ (t2 + t3 + lk[4 * (i) + 8]); \
data[1] = hc_rotr32_S (data[1] ^ (t2 + 2 * t3 + lk[4 * (i) + 9]), 1); \
}
#define q(n,x) q_tab[n][x]
#define mds(n,x) m_tab[n][x]
#define q20(x,k) q (0, q (0, x) ^ extract_byte (k[1], 0)) ^ extract_byte (k[0], 0)
#define q21(x,k) q (0, q (1, x) ^ extract_byte (k[1], 1)) ^ extract_byte (k[0], 1)
#define q22(x,k) q (1, q (0, x) ^ extract_byte (k[1], 2)) ^ extract_byte (k[0], 2)
#define q23(x,k) q (1, q (1, x) ^ extract_byte (k[1], 3)) ^ extract_byte (k[0], 3)
#define q40(x,k) q (0, q (0, q (1, q (1, x) ^ extract_byte (k[3], 0)) ^ extract_byte (k[2], 0)) ^ extract_byte (k[1], 0)) ^ extract_byte (k[0], 0)
#define q41(x,k) q (0, q (1, q (1, q (0, x) ^ extract_byte (k[3], 1)) ^ extract_byte (k[2], 1)) ^ extract_byte (k[1], 1)) ^ extract_byte (k[0], 1)
#define q42(x,k) q (1, q (0, q (0, q (0, x) ^ extract_byte (k[3], 2)) ^ extract_byte (k[2], 2)) ^ extract_byte (k[1], 2)) ^ extract_byte (k[0], 2)
#define q43(x,k) q (1, q (1, q (0, q (1, x) ^ extract_byte (k[3], 3)) ^ extract_byte (k[2], 3)) ^ extract_byte (k[1], 3)) ^ extract_byte (k[0], 3)
DECLSPEC u32 mds_rem (u32 p0, u32 p1)
{
#define G_MOD 0x14d
#define MDS_REM_ROUND() \
{ \
u32 t = p1 >> 24; \
p1 = (p1 << 8) | (p0 >> 24); \
p0 <<= 8; \
u32 u = (t << 1); \
if (t & 0x80) u ^= G_MOD; \
p1 ^= t ^ (u << 16); \
u ^= (t >> 1); \
if (t & 0x01) u ^= G_MOD >> 1; \
p1 ^= (u << 24) | (u << 8); \
}
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
MDS_REM_ROUND();
#undef MDS_REM_ROUND
return p1;
}
DECLSPEC u32 h_fun128 (u32 *sk, u32 *lk, const u32 x, const u32 *key)
{
u32 b0, b1, b2, b3;
b0 = extract_byte (x, 0);
b1 = extract_byte (x, 1);
b2 = extract_byte (x, 2);
b3 = extract_byte (x, 3);
b0 = q (0, (q (0, b0) ^ extract_byte (key[1], 0))) ^ extract_byte (key[0], 0);
b1 = q (0, (q (1, b1) ^ extract_byte (key[1], 1))) ^ extract_byte (key[0], 1);
b2 = q (1, (q (0, b2) ^ extract_byte (key[1], 2))) ^ extract_byte (key[0], 2);
b3 = q (1, (q (1, b3) ^ extract_byte (key[1], 3))) ^ extract_byte (key[0], 3);
return mds (0, b0) ^ mds (1, b1) ^ mds (2, b2) ^ mds (3, b3);
}
DECLSPEC void twofish128_set_key (u32 *sk, u32 *lk, const u32 *ukey)
{
u32 me_key[2];
me_key[0] = ukey[0];
me_key[1] = ukey[2];
u32 mo_key[2];
mo_key[0] = ukey[1];
mo_key[1] = ukey[3];
sk[1] = mds_rem (me_key[0], mo_key[0]);
sk[0] = mds_rem (me_key[1], mo_key[1]);
for (int i = 0; i < 40; i += 2)
{
u32 a = 0x01010101 * i;
u32 b = 0x01010101 + a;
a = h_fun128 (sk, lk, a, me_key);
b = h_fun128 (sk, lk, b, mo_key);
b = hc_rotl32_S (b, 8);
lk[i + 0] = a + b;
lk[i + 1] = hc_rotl32_S (a + 2 * b, 9);
}
}
DECLSPEC void twofish128_encrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out)
{
u32 data[4];
data[0] = in[0] ^ lk[0];
data[1] = in[1] ^ lk[1];
data[2] = in[2] ^ lk[2];
data[3] = in[3] ^ lk[3];
f_rnd128 (0);
f_rnd128 (1);
f_rnd128 (2);
f_rnd128 (3);
f_rnd128 (4);
f_rnd128 (5);
f_rnd128 (6);
f_rnd128 (7);
out[0] = data[2] ^ lk[4];
out[1] = data[3] ^ lk[5];
out[2] = data[0] ^ lk[6];
out[3] = data[1] ^ lk[7];
}
DECLSPEC void twofish128_decrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out)
{
u32 data[4];
data[0] = in[0] ^ lk[4];
data[1] = in[1] ^ lk[5];
data[2] = in[2] ^ lk[6];
data[3] = in[3] ^ lk[7];
i_rnd128 (7);
i_rnd128 (6);
i_rnd128 (5);
i_rnd128 (4);
i_rnd128 (3);
i_rnd128 (2);
i_rnd128 (1);
i_rnd128 (0);
out[0] = data[2] ^ lk[0];
out[1] = data[3] ^ lk[1];
out[2] = data[0] ^ lk[2];
out[3] = data[1] ^ lk[3];
}
// 256 bit key
#define g1_fun256(x) \
(mds (0, q40 (extract_byte (x, 3), sk)) ^ \
mds (1, q41 (extract_byte (x, 0), sk)) ^ \
mds (2, q42 (extract_byte (x, 1), sk)) ^ \
mds (3, q43 (extract_byte (x, 2), sk)))
#define g0_fun256(x) \
(mds (0, q40 (extract_byte (x, 0), sk)) ^ \
mds (1, q41 (extract_byte (x, 1), sk)) ^ \
mds (2, q42 (extract_byte (x, 2), sk)) ^ \
mds (3, q43 (extract_byte (x, 3), sk)))
DECLSPEC u32 h_fun256 (u32 *sk, u32 *lk, const u32 x, const u32 *key)
{
u32 b0, b1, b2, b3;
b0 = extract_byte (x, 0);
b1 = extract_byte (x, 1);
b2 = extract_byte (x, 2);
b3 = extract_byte (x, 3);
b0 = q (1, b0) ^ extract_byte (key[3], 0);
b1 = q (0, b1) ^ extract_byte (key[3], 1);
b2 = q (0, b2) ^ extract_byte (key[3], 2);
b3 = q (1, b3) ^ extract_byte (key[3], 3);
b0 = q (1, b0) ^ extract_byte (key[2], 0);
b1 = q (1, b1) ^ extract_byte (key[2], 1);
b2 = q (0, b2) ^ extract_byte (key[2], 2);
b3 = q (0, b3) ^ extract_byte (key[2], 3);
b0 = q (0, (q (0, b0) ^ extract_byte (key[1], 0))) ^ extract_byte (key[0], 0);
b1 = q (0, (q (1, b1) ^ extract_byte (key[1], 1))) ^ extract_byte (key[0], 1);
b2 = q (1, (q (0, b2) ^ extract_byte (key[1], 2))) ^ extract_byte (key[0], 2);
b3 = q (1, (q (1, b3) ^ extract_byte (key[1], 3))) ^ extract_byte (key[0], 3);
return mds (0, b0) ^ mds (1, b1) ^ mds (2, b2) ^ mds (3, b3);
}
DECLSPEC void twofish256_set_key (u32 *sk, u32 *lk, const u32 *ukey)
{
u32 me_key[4];
me_key[0] = ukey[0];
me_key[1] = ukey[2];
me_key[2] = ukey[4];
me_key[3] = ukey[6];
u32 mo_key[4];
mo_key[0] = ukey[1];
mo_key[1] = ukey[3];
mo_key[2] = ukey[5];
mo_key[3] = ukey[7];
sk[3] = mds_rem (me_key[0], mo_key[0]);
sk[2] = mds_rem (me_key[1], mo_key[1]);
sk[1] = mds_rem (me_key[2], mo_key[2]);
sk[0] = mds_rem (me_key[3], mo_key[3]);
for (int i = 0; i < 40; i += 2)
{
u32 a = 0x01010101 * i;
u32 b = 0x01010101 + a;
a = h_fun256 (sk, lk, a, me_key);
b = h_fun256 (sk, lk, b, mo_key);
b = hc_rotl32_S (b, 8);
lk[i + 0] = a + b;
lk[i + 1] = hc_rotl32_S (a + 2 * b, 9);
}
}
DECLSPEC void twofish256_encrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out)
{
u32 data[4];
data[0] = in[0] ^ lk[0];
data[1] = in[1] ^ lk[1];
data[2] = in[2] ^ lk[2];
data[3] = in[3] ^ lk[3];
f_rnd256 (0);
f_rnd256 (1);
f_rnd256 (2);
f_rnd256 (3);
f_rnd256 (4);
f_rnd256 (5);
f_rnd256 (6);
f_rnd256 (7);
out[0] = data[2] ^ lk[4];
out[1] = data[3] ^ lk[5];
out[2] = data[0] ^ lk[6];
out[3] = data[1] ^ lk[7];
}
DECLSPEC void twofish256_decrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out)
{
u32 data[4];
data[0] = in[0] ^ lk[4];
data[1] = in[1] ^ lk[5];
data[2] = in[2] ^ lk[6];
data[3] = in[3] ^ lk[7];
i_rnd256 (7);
i_rnd256 (6);
i_rnd256 (5);
i_rnd256 (4);
i_rnd256 (3);
i_rnd256 (2);
i_rnd256 (1);
i_rnd256 (0);
out[0] = data[2] ^ lk[0];
out[1] = data[3] ^ lk[1];
out[2] = data[0] ^ lk[2];
out[3] = data[1] ^ lk[3];
}
#undef g1_fun128
#undef g0_fun128
#undef f_rnd128
#undef i_rnd128
#undef f_rnd256
#undef i_rnd256
#undef q
#undef mds
#undef q20
#undef q21
#undef q22
#undef q23
#undef q40
#undef q41
#undef q42
#undef q43