1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-23 15:18:16 +00:00
hashcat/OpenCL/m22000-pure.cl

1039 lines
22 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_md5.cl"
#include "inc_hash_sha1.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#else
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.h"
#include "inc_common.h"
#include "inc_simd.h"
#include "inc_hash_md5.h"
#include "inc_hash_sha1.h"
#include "inc_hash_sha256.h"
#include "inc_cipher_aes.h"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct wpa_pbkdf2_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} wpa_pbkdf2_tmp_t;
typedef struct wpa
{
u32 essid_buf[16];
u32 essid_len;
u32 mac_ap[2];
u32 mac_sta[2];
u32 type; // 1 = PMKID, 2 = EAPOL
// PMKID specific
u32 pmkid[4];
u32 pmkid_data[16];
// EAPOL specific
u32 keymic[4];
u32 anonce[8];
u32 keyver;
u32 eapol[64 + 16];
u32 eapol_len;
u32 pke[32];
int message_pair_chgd;
u32 message_pair;
int nonce_error_corrections_chgd;
int nonce_error_corrections;
int nonce_compare;
int detected_le;
int detected_be;
} wpa_t;
DECLSPEC void make_kn (u32 *k)
{
u32 kl[4];
u32 kr[4];
kl[0] = (k[0] << 1) & 0xfefefefe;
kl[1] = (k[1] << 1) & 0xfefefefe;
kl[2] = (k[2] << 1) & 0xfefefefe;
kl[3] = (k[3] << 1) & 0xfefefefe;
kr[0] = (k[0] >> 7) & 0x01010101;
kr[1] = (k[1] >> 7) & 0x01010101;
kr[2] = (k[2] >> 7) & 0x01010101;
kr[3] = (k[3] >> 7) & 0x01010101;
const u32 c = kr[0] & 1;
kr[0] = kr[0] >> 8 | kr[1] << 24;
kr[1] = kr[1] >> 8 | kr[2] << 24;
kr[2] = kr[2] >> 8 | kr[3] << 24;
kr[3] = kr[3] >> 8;
k[0] = kl[0] | kr[0];
k[1] = kl[1] | kr[1];
k[2] = kl[2] | kr[2];
k[3] = kl[3] | kr[3];
k[3] ^= c * 0x87000000;
}
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m22000_init (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
sha1_hmac_update_global_swap (&sha1_hmac_ctx, esalt_bufs[digests_offset].essid_buf, esalt_bufs[digests_offset].essid_len);
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m22000_loop (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
for (u32 i = 0; i < 8; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m22000_comp (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
// not in use here, special case...
}
KERNEL_FQ void m22000_aux1 (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 out0[4];
u32 out1[4];
out0[0] = tmps[gid].out[0];
out0[1] = tmps[gid].out[1];
out0[2] = tmps[gid].out[2];
out0[3] = tmps[gid].out[3];
out1[0] = tmps[gid].out[4];
out1[1] = tmps[gid].out[5];
out1[2] = tmps[gid].out[6];
out1[3] = tmps[gid].out[7];
const u32 digest_pos = loop_pos;
const u32 digest_cur = digests_offset + digest_pos;
GLOBAL_AS const wpa_t *wpa = &esalt_bufs[digest_cur];
u32 pke[32];
pke[ 0] = wpa->pke[ 0];
pke[ 1] = wpa->pke[ 1];
pke[ 2] = wpa->pke[ 2];
pke[ 3] = wpa->pke[ 3];
pke[ 4] = wpa->pke[ 4];
pke[ 5] = wpa->pke[ 5];
pke[ 6] = wpa->pke[ 6];
pke[ 7] = wpa->pke[ 7];
pke[ 8] = wpa->pke[ 8];
pke[ 9] = wpa->pke[ 9];
pke[10] = wpa->pke[10];
pke[11] = wpa->pke[11];
pke[12] = wpa->pke[12];
pke[13] = wpa->pke[13];
pke[14] = wpa->pke[14];
pke[15] = wpa->pke[15];
pke[16] = wpa->pke[16];
pke[17] = wpa->pke[17];
pke[18] = wpa->pke[18];
pke[19] = wpa->pke[19];
pke[20] = wpa->pke[20];
pke[21] = wpa->pke[21];
pke[22] = wpa->pke[22];
pke[23] = wpa->pke[23];
pke[24] = wpa->pke[24];
pke[25] = wpa->pke[25];
pke[26] = wpa->pke[26];
pke[27] = wpa->pke[27];
pke[28] = wpa->pke[28];
pke[29] = wpa->pke[29];
pke[30] = wpa->pke[30];
pke[31] = wpa->pke[31];
u32 z[4];
z[0] = 0;
z[1] = 0;
z[2] = 0;
z[3] = 0;
u32 to;
u32 m0;
u32 m1;
if (wpa->nonce_compare < 0)
{
m0 = pke[15] & ~0x000000ff;
m1 = pke[16] & ~0xffffff00;
to = pke[15] << 24
| pke[16] >> 8;
}
else
{
m0 = pke[23] & ~0x000000ff;
m1 = pke[24] & ~0xffffff00;
to = pke[23] << 24
| pke[24] >> 8;
}
u32 bo_loops = wpa->detected_le + wpa->detected_be;
bo_loops = (bo_loops == 0) ? 2 : bo_loops;
const u32 nonce_error_corrections = wpa->nonce_error_corrections;
for (u32 nonce_error_correction = 0; nonce_error_correction <= nonce_error_corrections; nonce_error_correction++)
{
for (u32 bo_pos = 0; bo_pos < bo_loops; bo_pos++)
{
u32 t = to;
if (bo_loops == 1)
{
if (wpa->detected_le == 1)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (wpa->detected_be == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
else
{
if (bo_pos == 0)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (bo_pos == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
if (wpa->nonce_compare < 0)
{
pke[15] = m0 | (t >> 24);
pke[16] = m1 | (t << 8);
}
else
{
pke[23] = m0 | (t >> 24);
pke[24] = m1 | (t << 8);
}
sha1_hmac_ctx_t ctx1;
sha1_hmac_init_64 (&ctx1, out0, out1, z, z);
sha1_hmac_update (&ctx1, pke, 100);
sha1_hmac_final (&ctx1);
ctx1.opad.h[0] = hc_swap32_S (ctx1.opad.h[0]);
ctx1.opad.h[1] = hc_swap32_S (ctx1.opad.h[1]);
ctx1.opad.h[2] = hc_swap32_S (ctx1.opad.h[2]);
ctx1.opad.h[3] = hc_swap32_S (ctx1.opad.h[3]);
md5_hmac_ctx_t ctx2;
md5_hmac_init_64 (&ctx2, ctx1.opad.h, z, z, z);
md5_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len);
md5_hmac_final (&ctx2);
ctx2.opad.h[0] = hc_swap32_S (ctx2.opad.h[0]);
ctx2.opad.h[1] = hc_swap32_S (ctx2.opad.h[1]);
ctx2.opad.h[2] = hc_swap32_S (ctx2.opad.h[2]);
ctx2.opad.h[3] = hc_swap32_S (ctx2.opad.h[3]);
/**
* final compare
*/
if ((ctx2.opad.h[0] == wpa->keymic[0])
&& (ctx2.opad.h[1] == wpa->keymic[1])
&& (ctx2.opad.h[2] == wpa->keymic[2])
&& (ctx2.opad.h[3] == wpa->keymic[3]))
{
if (atomic_inc (&hashes_shown[digest_cur]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0, 0, 0);
}
}
}
}
}
KERNEL_FQ void m22000_aux2 (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 out0[4];
u32 out1[4];
out0[0] = tmps[gid].out[0];
out0[1] = tmps[gid].out[1];
out0[2] = tmps[gid].out[2];
out0[3] = tmps[gid].out[3];
out1[0] = tmps[gid].out[4];
out1[1] = tmps[gid].out[5];
out1[2] = tmps[gid].out[6];
out1[3] = tmps[gid].out[7];
const u32 digest_pos = loop_pos;
const u32 digest_cur = digests_offset + digest_pos;
GLOBAL_AS const wpa_t *wpa = &esalt_bufs[digest_cur];
u32 pke[32];
pke[ 0] = wpa->pke[ 0];
pke[ 1] = wpa->pke[ 1];
pke[ 2] = wpa->pke[ 2];
pke[ 3] = wpa->pke[ 3];
pke[ 4] = wpa->pke[ 4];
pke[ 5] = wpa->pke[ 5];
pke[ 6] = wpa->pke[ 6];
pke[ 7] = wpa->pke[ 7];
pke[ 8] = wpa->pke[ 8];
pke[ 9] = wpa->pke[ 9];
pke[10] = wpa->pke[10];
pke[11] = wpa->pke[11];
pke[12] = wpa->pke[12];
pke[13] = wpa->pke[13];
pke[14] = wpa->pke[14];
pke[15] = wpa->pke[15];
pke[16] = wpa->pke[16];
pke[17] = wpa->pke[17];
pke[18] = wpa->pke[18];
pke[19] = wpa->pke[19];
pke[20] = wpa->pke[20];
pke[21] = wpa->pke[21];
pke[22] = wpa->pke[22];
pke[23] = wpa->pke[23];
pke[24] = wpa->pke[24];
pke[25] = wpa->pke[25];
pke[26] = wpa->pke[26];
pke[27] = wpa->pke[27];
pke[28] = wpa->pke[28];
pke[29] = wpa->pke[29];
pke[30] = wpa->pke[30];
pke[31] = wpa->pke[31];
u32 z[4];
z[0] = 0;
z[1] = 0;
z[2] = 0;
z[3] = 0;
u32 to;
u32 m0;
u32 m1;
if (wpa->nonce_compare < 0)
{
m0 = pke[15] & ~0x000000ff;
m1 = pke[16] & ~0xffffff00;
to = pke[15] << 24
| pke[16] >> 8;
}
else
{
m0 = pke[23] & ~0x000000ff;
m1 = pke[24] & ~0xffffff00;
to = pke[23] << 24
| pke[24] >> 8;
}
u32 bo_loops = wpa->detected_le + wpa->detected_be;
bo_loops = (bo_loops == 0) ? 2 : bo_loops;
const u32 nonce_error_corrections = wpa->nonce_error_corrections;
for (u32 nonce_error_correction = 0; nonce_error_correction <= nonce_error_corrections; nonce_error_correction++)
{
for (u32 bo_pos = 0; bo_pos < bo_loops; bo_pos++)
{
u32 t = to;
if (bo_loops == 1)
{
if (wpa->detected_le == 1)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (wpa->detected_be == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
else
{
if (bo_pos == 0)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (bo_pos == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
if (wpa->nonce_compare < 0)
{
pke[15] = m0 | (t >> 24);
pke[16] = m1 | (t << 8);
}
else
{
pke[23] = m0 | (t >> 24);
pke[24] = m1 | (t << 8);
}
sha1_hmac_ctx_t ctx1;
sha1_hmac_init_64 (&ctx1, out0, out1, z, z);
sha1_hmac_update (&ctx1, pke, 100);
sha1_hmac_final (&ctx1);
sha1_hmac_ctx_t ctx2;
sha1_hmac_init_64 (&ctx2, ctx1.opad.h, z, z, z);
sha1_hmac_update_global (&ctx2, wpa->eapol, wpa->eapol_len);
sha1_hmac_final (&ctx2);
/**
* final compare
*/
if ((ctx2.opad.h[0] == wpa->keymic[0])
&& (ctx2.opad.h[1] == wpa->keymic[1])
&& (ctx2.opad.h[2] == wpa->keymic[2])
&& (ctx2.opad.h[3] == wpa->keymic[3]))
{
if (atomic_inc (&hashes_shown[digest_cur]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0, 0, 0);
}
}
}
}
}
KERNEL_FQ void m22000_aux3 (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
/**
* aes shared
*/
#ifdef REAL_SHM
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
#ifdef IS_CUDA
__syncthreads();
#else
SYNC_THREADS ();
#endif
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 out0[4];
u32 out1[4];
out0[0] = tmps[gid].out[0];
out0[1] = tmps[gid].out[1];
out0[2] = tmps[gid].out[2];
out0[3] = tmps[gid].out[3];
out1[0] = tmps[gid].out[4];
out1[1] = tmps[gid].out[5];
out1[2] = tmps[gid].out[6];
out1[3] = tmps[gid].out[7];
const u32 digest_pos = loop_pos;
const u32 digest_cur = digests_offset + digest_pos;
GLOBAL_AS const wpa_t *wpa = &esalt_bufs[digest_cur];
u32 pke[32];
pke[ 0] = wpa->pke[ 0];
pke[ 1] = wpa->pke[ 1];
pke[ 2] = wpa->pke[ 2];
pke[ 3] = wpa->pke[ 3];
pke[ 4] = wpa->pke[ 4];
pke[ 5] = wpa->pke[ 5];
pke[ 6] = wpa->pke[ 6];
pke[ 7] = wpa->pke[ 7];
pke[ 8] = wpa->pke[ 8];
pke[ 9] = wpa->pke[ 9];
pke[10] = wpa->pke[10];
pke[11] = wpa->pke[11];
pke[12] = wpa->pke[12];
pke[13] = wpa->pke[13];
pke[14] = wpa->pke[14];
pke[15] = wpa->pke[15];
pke[16] = wpa->pke[16];
pke[17] = wpa->pke[17];
pke[18] = wpa->pke[18];
pke[19] = wpa->pke[19];
pke[20] = wpa->pke[20];
pke[21] = wpa->pke[21];
pke[22] = wpa->pke[22];
pke[23] = wpa->pke[23];
pke[24] = wpa->pke[24];
pke[25] = wpa->pke[25];
pke[26] = wpa->pke[26];
pke[27] = wpa->pke[27];
pke[28] = wpa->pke[28];
pke[29] = wpa->pke[29];
pke[30] = wpa->pke[30];
pke[31] = wpa->pke[31];
u32 z[4];
z[0] = 0;
z[1] = 0;
z[2] = 0;
z[3] = 0;
u32 to;
u32 m0;
u32 m1;
if (wpa->nonce_compare < 0)
{
m0 = pke[15] & ~0x000000ff;
m1 = pke[16] & ~0xffffff00;
to = pke[15] << 24
| pke[16] >> 8;
}
else
{
m0 = pke[23] & ~0x000000ff;
m1 = pke[24] & ~0xffffff00;
to = pke[23] << 24
| pke[24] >> 8;
}
u32 bo_loops = wpa->detected_le + wpa->detected_be;
bo_loops = (bo_loops == 0) ? 2 : bo_loops;
const u32 nonce_error_corrections = wpa->nonce_error_corrections;
for (u32 nonce_error_correction = 0; nonce_error_correction <= nonce_error_corrections; nonce_error_correction++)
{
for (u32 bo_pos = 0; bo_pos < bo_loops; bo_pos++)
{
u32 t = to;
if (bo_loops == 1)
{
if (wpa->detected_le == 1)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (wpa->detected_be == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
else
{
if (bo_pos == 0)
{
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
}
else if (bo_pos == 1)
{
t = hc_swap32_S (t);
t -= nonce_error_corrections / 2;
t += nonce_error_correction;
t = hc_swap32_S (t);
}
}
if (wpa->nonce_compare < 0)
{
pke[15] = m0 | (t >> 24);
pke[16] = m1 | (t << 8);
}
else
{
pke[23] = m0 | (t >> 24);
pke[24] = m1 | (t << 8);
}
sha256_hmac_ctx_t ctx1;
sha256_hmac_init_64 (&ctx1, out0, out1, z, z);
sha256_hmac_update (&ctx1, pke, 102);
sha256_hmac_final (&ctx1);
ctx1.opad.h[0] = hc_swap32_S (ctx1.opad.h[0]);
ctx1.opad.h[1] = hc_swap32_S (ctx1.opad.h[1]);
ctx1.opad.h[2] = hc_swap32_S (ctx1.opad.h[2]);
ctx1.opad.h[3] = hc_swap32_S (ctx1.opad.h[3]);
// AES CMAC
u32 ks[44];
aes128_set_encrypt_key (ks, ctx1.opad.h, s_te0, s_te1, s_te2, s_te3);
u32 m[4];
m[0] = 0;
m[1] = 0;
m[2] = 0;
m[3] = 0;
u32 iv[4];
iv[0] = 0;
iv[1] = 0;
iv[2] = 0;
iv[3] = 0;
int eapol_left;
int eapol_idx;
for (eapol_left = wpa->eapol_len, eapol_idx = 0; eapol_left > 16; eapol_left -= 16, eapol_idx += 4)
{
m[0] = wpa->eapol[eapol_idx + 0] ^ iv[0];
m[1] = wpa->eapol[eapol_idx + 1] ^ iv[1];
m[2] = wpa->eapol[eapol_idx + 2] ^ iv[2];
m[3] = wpa->eapol[eapol_idx + 3] ^ iv[3];
aes128_encrypt (ks, m, iv, s_te0, s_te1, s_te2, s_te3, s_te4);
}
m[0] = wpa->eapol[eapol_idx + 0];
m[1] = wpa->eapol[eapol_idx + 1];
m[2] = wpa->eapol[eapol_idx + 2];
m[3] = wpa->eapol[eapol_idx + 3];
u32 k[4];
k[0] = 0;
k[1] = 0;
k[2] = 0;
k[3] = 0;
aes128_encrypt (ks, k, k, s_te0, s_te1, s_te2, s_te3, s_te4);
make_kn (k);
if (eapol_left < 16)
{
make_kn (k);
}
m[0] ^= k[0];
m[1] ^= k[1];
m[2] ^= k[2];
m[3] ^= k[3];
m[0] ^= iv[0];
m[1] ^= iv[1];
m[2] ^= iv[2];
m[3] ^= iv[3];
u32 keymic[4];
keymic[0] = 0;
keymic[1] = 0;
keymic[2] = 0;
keymic[3] = 0;
aes128_encrypt (ks, m, keymic, s_te0, s_te1, s_te2, s_te3, s_te4);
/**
* final compare
*/
keymic[0] = hc_swap32_S (keymic[0]);
keymic[1] = hc_swap32_S (keymic[1]);
keymic[2] = hc_swap32_S (keymic[2]);
keymic[3] = hc_swap32_S (keymic[3]);
if ((keymic[0] == wpa->keymic[0])
&& (keymic[1] == wpa->keymic[1])
&& (keymic[2] == wpa->keymic[2])
&& (keymic[3] == wpa->keymic[3]))
{
if (atomic_inc (&hashes_shown[digest_cur]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0, 0, 0);
}
}
}
}
}
KERNEL_FQ void m22000_aux4 (KERN_ATTR_TMPS_ESALT (wpa_pbkdf2_tmp_t, wpa_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 w[16];
w[ 0] = tmps[gid].out[0];
w[ 1] = tmps[gid].out[1];
w[ 2] = tmps[gid].out[2];
w[ 3] = tmps[gid].out[3];
w[ 4] = tmps[gid].out[4];
w[ 5] = tmps[gid].out[5];
w[ 6] = tmps[gid].out[6];
w[ 7] = tmps[gid].out[7];
w[ 8] = 0;
w[ 9] = 0;
w[10] = 0;
w[11] = 0;
w[12] = 0;
w[13] = 0;
w[14] = 0;
w[15] = 0;
const u32 digest_pos = loop_pos;
const u32 digest_cur = digests_offset + digest_pos;
GLOBAL_AS const wpa_t *wpa = &esalt_bufs[digest_cur];
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init (&sha1_hmac_ctx, w, 32);
sha1_hmac_update_global_swap (&sha1_hmac_ctx, wpa->pmkid_data, 20);
sha1_hmac_final (&sha1_hmac_ctx);
const u32 r0 = sha1_hmac_ctx.opad.h[0];
const u32 r1 = sha1_hmac_ctx.opad.h[1];
const u32 r2 = sha1_hmac_ctx.opad.h[2];
const u32 r3 = sha1_hmac_ctx.opad.h[3];
#ifdef KERNEL_STATIC
#define il_pos 0
#include COMPARE_M
#else
if ((hc_swap32_S (r0) == wpa->pmkid[0])
&& (hc_swap32_S (r1) == wpa->pmkid[1])
&& (hc_swap32_S (r2) == wpa->pmkid[2])
&& (hc_swap32_S (r3) == wpa->pmkid[3]))
{
if (atomic_inc (&hashes_shown[digest_cur]) == 0)
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, digest_pos, digest_cur, gid, 0, 0, 0);
}
}
#endif
}