mirror of
https://github.com/hashcat/hashcat.git
synced 2025-01-01 11:21:11 +00:00
709 lines
18 KiB
Common Lisp
709 lines
18 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include "inc_vendor.h"
|
|
#include "inc_types.h"
|
|
#include "inc_platform.cl"
|
|
#include "inc_common.cl"
|
|
#include "inc_hash_sha256.cl"
|
|
#endif
|
|
|
|
#define COMPARE_S "inc_comp_single.cl"
|
|
#define COMPARE_M "inc_comp_multi.cl"
|
|
|
|
typedef struct
|
|
{
|
|
#ifndef SCRYPT_TMP_ELEM
|
|
#define SCRYPT_TMP_ELEM 1
|
|
#endif
|
|
|
|
uint4 P[SCRYPT_TMP_ELEM];
|
|
|
|
} scrypt_tmp_t;
|
|
|
|
typedef struct ethereum_scrypt
|
|
{
|
|
u32 salt_buf[16];
|
|
u32 ciphertext[8];
|
|
|
|
} ethereum_scrypt_t;
|
|
|
|
#if defined IS_CUDA || defined IS_HIP
|
|
|
|
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
|
|
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
|
|
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
|
|
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
|
|
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
|
|
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
|
|
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
|
|
|
|
inline __device__ uint4 rotate (const uint4 a, const int n)
|
|
{
|
|
return ((a << n) | ((a >> (32 - n))));
|
|
}
|
|
|
|
#endif
|
|
|
|
DECLSPEC uint4 hc_swap32_4 (uint4 v)
|
|
{
|
|
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
|
|
}
|
|
|
|
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
|
|
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
|
|
#define GET_STATE_CNT(r) (2 * (r) * 16)
|
|
|
|
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
|
|
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
|
|
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
|
|
#define STATE_CNT4 (STATE_CNT / 4)
|
|
|
|
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
|
|
|
|
#if defined IS_CUDA || defined IS_HIP
|
|
|
|
#define SALSA20_2R() \
|
|
{ \
|
|
ADD_ROTATE_XOR (X1, X0, X3, 7); \
|
|
ADD_ROTATE_XOR (X2, X1, X0, 9); \
|
|
ADD_ROTATE_XOR (X3, X2, X1, 13); \
|
|
ADD_ROTATE_XOR (X0, X3, X2, 18); \
|
|
\
|
|
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
|
|
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
|
|
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
|
|
\
|
|
ADD_ROTATE_XOR (X3, X0, X1, 7); \
|
|
ADD_ROTATE_XOR (X2, X3, X0, 9); \
|
|
ADD_ROTATE_XOR (X1, X2, X3, 13); \
|
|
ADD_ROTATE_XOR (X0, X1, X2, 18); \
|
|
\
|
|
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
|
|
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
|
|
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
|
|
}
|
|
#else
|
|
#define SALSA20_2R() \
|
|
{ \
|
|
ADD_ROTATE_XOR (X1, X0, X3, 7); \
|
|
ADD_ROTATE_XOR (X2, X1, X0, 9); \
|
|
ADD_ROTATE_XOR (X3, X2, X1, 13); \
|
|
ADD_ROTATE_XOR (X0, X3, X2, 18); \
|
|
\
|
|
X1 = X1.s3012; \
|
|
X2 = X2.s2301; \
|
|
X3 = X3.s1230; \
|
|
\
|
|
ADD_ROTATE_XOR (X3, X0, X1, 7); \
|
|
ADD_ROTATE_XOR (X2, X3, X0, 9); \
|
|
ADD_ROTATE_XOR (X1, X2, X3, 13); \
|
|
ADD_ROTATE_XOR (X0, X1, X2, 18); \
|
|
\
|
|
X1 = X1.s1230; \
|
|
X2 = X2.s2301; \
|
|
X3 = X3.s3012; \
|
|
}
|
|
#endif
|
|
|
|
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
|
|
#define CO Coord(xd4,y,z)
|
|
|
|
DECLSPEC void salsa_r (uint4 *TI)
|
|
{
|
|
uint4 R0 = TI[STATE_CNT4 - 4];
|
|
uint4 R1 = TI[STATE_CNT4 - 3];
|
|
uint4 R2 = TI[STATE_CNT4 - 2];
|
|
uint4 R3 = TI[STATE_CNT4 - 1];
|
|
|
|
for (int i = 0; i < STATE_CNT4; i += 4)
|
|
{
|
|
uint4 Y0 = TI[i + 0];
|
|
uint4 Y1 = TI[i + 1];
|
|
uint4 Y2 = TI[i + 2];
|
|
uint4 Y3 = TI[i + 3];
|
|
|
|
R0 = R0 ^ Y0;
|
|
R1 = R1 ^ Y1;
|
|
R2 = R2 ^ Y2;
|
|
R3 = R3 ^ Y3;
|
|
|
|
uint4 X0 = R0;
|
|
uint4 X1 = R1;
|
|
uint4 X2 = R2;
|
|
uint4 X3 = R3;
|
|
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
SALSA20_2R ();
|
|
|
|
R0 = R0 + X0;
|
|
R1 = R1 + X1;
|
|
R2 = R2 + X2;
|
|
R3 = R3 + X3;
|
|
|
|
TI[i + 0] = R0;
|
|
TI[i + 1] = R1;
|
|
TI[i + 2] = R2;
|
|
TI[i + 3] = R3;
|
|
}
|
|
|
|
#if SCRYPT_R > 1
|
|
|
|
uint4 TT[STATE_CNT4 / 2];
|
|
|
|
for (int dst_off = 0, src_off = 4; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
|
|
{
|
|
TT[dst_off + 0] = TI[src_off + 0];
|
|
TT[dst_off + 1] = TI[src_off + 1];
|
|
TT[dst_off + 2] = TI[src_off + 2];
|
|
TT[dst_off + 3] = TI[src_off + 3];
|
|
}
|
|
|
|
for (int dst_off = 4, src_off = 8; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
|
|
{
|
|
TI[dst_off + 0] = TI[src_off + 0];
|
|
TI[dst_off + 1] = TI[src_off + 1];
|
|
TI[dst_off + 2] = TI[src_off + 2];
|
|
TI[dst_off + 3] = TI[src_off + 3];
|
|
}
|
|
|
|
for (int dst_off = STATE_CNT4 / 2, src_off = 0; dst_off < STATE_CNT4; dst_off += 4, src_off += 4)
|
|
{
|
|
TI[dst_off + 0] = TT[src_off + 0];
|
|
TI[dst_off + 1] = TT[src_off + 1];
|
|
TI[dst_off + 2] = TT[src_off + 2];
|
|
TI[dst_off + 3] = TT[src_off + 3];
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
DECLSPEC void scrypt_smix_init (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
|
|
{
|
|
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
|
|
const u32 zSIZE = STATE_CNT4;
|
|
|
|
const u32 x = get_global_id (0);
|
|
|
|
const u32 xd4 = x / 4;
|
|
const u32 xm4 = x & 3;
|
|
|
|
GLOBAL_AS uint4 *V;
|
|
|
|
switch (xm4)
|
|
{
|
|
case 0: V = V0; break;
|
|
case 1: V = V1; break;
|
|
case 2: V = V2; break;
|
|
case 3: V = V3; break;
|
|
}
|
|
|
|
for (u32 y = 0; y < ySIZE; y++)
|
|
{
|
|
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
|
|
|
|
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
|
|
}
|
|
}
|
|
|
|
DECLSPEC void scrypt_smix_loop (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
|
|
{
|
|
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
|
|
const u32 zSIZE = STATE_CNT4;
|
|
|
|
const u32 x = get_global_id (0);
|
|
|
|
const u32 xd4 = x / 4;
|
|
const u32 xm4 = x & 3;
|
|
|
|
GLOBAL_AS uint4 *V;
|
|
|
|
switch (xm4)
|
|
{
|
|
case 0: V = V0; break;
|
|
case 1: V = V1; break;
|
|
case 2: V = V2; break;
|
|
case 3: V = V3; break;
|
|
}
|
|
|
|
// note: fixed 1024 iterations = forced -u 1024
|
|
|
|
for (u32 N_pos = 0; N_pos < 1024; N_pos++)
|
|
{
|
|
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
|
|
|
|
const u32 y = k / SCRYPT_TMTO;
|
|
|
|
const u32 km = k - (y * SCRYPT_TMTO);
|
|
|
|
uint4 T[STATE_CNT4];
|
|
|
|
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
|
|
|
|
for (u32 i = 0; i < km; i++) salsa_r (T);
|
|
|
|
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
|
|
|
|
salsa_r (X);
|
|
}
|
|
}
|
|
|
|
#ifndef KECCAK_ROUNDS
|
|
#define KECCAK_ROUNDS 24
|
|
#endif
|
|
|
|
#define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s])
|
|
|
|
#define Theta2(s) \
|
|
{ \
|
|
st[ 0 + s] ^= t; \
|
|
st[ 5 + s] ^= t; \
|
|
st[10 + s] ^= t; \
|
|
st[15 + s] ^= t; \
|
|
st[20 + s] ^= t; \
|
|
}
|
|
|
|
#define Rho_Pi(s) \
|
|
{ \
|
|
u32 j = keccakf_piln[s]; \
|
|
u32 k = keccakf_rotc[s]; \
|
|
bc0 = st[j]; \
|
|
st[j] = hc_rotl64_S (t, k); \
|
|
t = bc0; \
|
|
}
|
|
|
|
#define Chi(s) \
|
|
{ \
|
|
bc0 = st[0 + s]; \
|
|
bc1 = st[1 + s]; \
|
|
bc2 = st[2 + s]; \
|
|
bc3 = st[3 + s]; \
|
|
bc4 = st[4 + s]; \
|
|
st[0 + s] ^= ~bc1 & bc2; \
|
|
st[1 + s] ^= ~bc2 & bc3; \
|
|
st[2 + s] ^= ~bc3 & bc4; \
|
|
st[3 + s] ^= ~bc4 & bc0; \
|
|
st[4 + s] ^= ~bc0 & bc1; \
|
|
}
|
|
|
|
CONSTANT_VK u64a keccakf_rndc[24] =
|
|
{
|
|
KECCAK_RNDC_00, KECCAK_RNDC_01, KECCAK_RNDC_02, KECCAK_RNDC_03,
|
|
KECCAK_RNDC_04, KECCAK_RNDC_05, KECCAK_RNDC_06, KECCAK_RNDC_07,
|
|
KECCAK_RNDC_08, KECCAK_RNDC_09, KECCAK_RNDC_10, KECCAK_RNDC_11,
|
|
KECCAK_RNDC_12, KECCAK_RNDC_13, KECCAK_RNDC_14, KECCAK_RNDC_15,
|
|
KECCAK_RNDC_16, KECCAK_RNDC_17, KECCAK_RNDC_18, KECCAK_RNDC_19,
|
|
KECCAK_RNDC_20, KECCAK_RNDC_21, KECCAK_RNDC_22, KECCAK_RNDC_23
|
|
};
|
|
|
|
DECLSPEC void keccak_transform_S (u64 *st)
|
|
{
|
|
const u8 keccakf_rotc[24] =
|
|
{
|
|
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
|
|
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
|
|
};
|
|
|
|
const u8 keccakf_piln[24] =
|
|
{
|
|
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
|
|
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
|
|
};
|
|
|
|
/**
|
|
* Keccak
|
|
*/
|
|
|
|
int round;
|
|
|
|
for (round = 0; round < KECCAK_ROUNDS; round++)
|
|
{
|
|
// Theta
|
|
|
|
u64 bc0 = Theta1 (0);
|
|
u64 bc1 = Theta1 (1);
|
|
u64 bc2 = Theta1 (2);
|
|
u64 bc3 = Theta1 (3);
|
|
u64 bc4 = Theta1 (4);
|
|
|
|
u64 t;
|
|
|
|
t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0);
|
|
t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1);
|
|
t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2);
|
|
t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3);
|
|
t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4);
|
|
|
|
// Rho Pi
|
|
|
|
t = st[1];
|
|
|
|
Rho_Pi (0);
|
|
Rho_Pi (1);
|
|
Rho_Pi (2);
|
|
Rho_Pi (3);
|
|
Rho_Pi (4);
|
|
Rho_Pi (5);
|
|
Rho_Pi (6);
|
|
Rho_Pi (7);
|
|
Rho_Pi (8);
|
|
Rho_Pi (9);
|
|
Rho_Pi (10);
|
|
Rho_Pi (11);
|
|
Rho_Pi (12);
|
|
Rho_Pi (13);
|
|
Rho_Pi (14);
|
|
Rho_Pi (15);
|
|
Rho_Pi (16);
|
|
Rho_Pi (17);
|
|
Rho_Pi (18);
|
|
Rho_Pi (19);
|
|
Rho_Pi (20);
|
|
Rho_Pi (21);
|
|
Rho_Pi (22);
|
|
Rho_Pi (23);
|
|
|
|
// Chi
|
|
|
|
Chi (0);
|
|
Chi (5);
|
|
Chi (10);
|
|
Chi (15);
|
|
Chi (20);
|
|
|
|
// Iota
|
|
|
|
st[0] ^= keccakf_rndc[round];
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m15700_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
sha256_hmac_ctx_t sha256_hmac_ctx;
|
|
|
|
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len);
|
|
|
|
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
|
|
{
|
|
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
w0[0] = j;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
|
|
|
|
sha256_hmac_final (&sha256_hmac_ctx2);
|
|
|
|
u32 digest[8];
|
|
|
|
digest[0] = sha256_hmac_ctx2.opad.h[0];
|
|
digest[1] = sha256_hmac_ctx2.opad.h[1];
|
|
digest[2] = sha256_hmac_ctx2.opad.h[2];
|
|
digest[3] = sha256_hmac_ctx2.opad.h[3];
|
|
digest[4] = sha256_hmac_ctx2.opad.h[4];
|
|
digest[5] = sha256_hmac_ctx2.opad.h[5];
|
|
digest[6] = sha256_hmac_ctx2.opad.h[6];
|
|
digest[7] = sha256_hmac_ctx2.opad.h[7];
|
|
|
|
#if defined IS_CUDA
|
|
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
|
|
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
|
|
#else
|
|
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
|
|
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
|
|
#endif
|
|
|
|
tmps[gid].P[k + 0] = tmp0;
|
|
tmps[gid].P[k + 1] = tmp1;
|
|
}
|
|
|
|
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
|
|
{
|
|
uint4 T[4];
|
|
|
|
T[0] = tmps[gid].P[l + 0];
|
|
T[1] = tmps[gid].P[l + 1];
|
|
T[2] = tmps[gid].P[l + 2];
|
|
T[3] = tmps[gid].P[l + 3];
|
|
|
|
T[0] = hc_swap32_4 (T[0]);
|
|
T[1] = hc_swap32_4 (T[1]);
|
|
T[2] = hc_swap32_4 (T[2]);
|
|
T[3] = hc_swap32_4 (T[3]);
|
|
|
|
uint4 X[4];
|
|
|
|
#if defined IS_CUDA
|
|
X[0] = make_uint4 (T[0].x, T[1].y, T[2].z, T[3].w);
|
|
X[1] = make_uint4 (T[1].x, T[2].y, T[3].z, T[0].w);
|
|
X[2] = make_uint4 (T[2].x, T[3].y, T[0].z, T[1].w);
|
|
X[3] = make_uint4 (T[3].x, T[0].y, T[1].z, T[2].w);
|
|
#else
|
|
X[0] = (uint4) (T[0].x, T[1].y, T[2].z, T[3].w);
|
|
X[1] = (uint4) (T[1].x, T[2].y, T[3].z, T[0].w);
|
|
X[2] = (uint4) (T[2].x, T[3].y, T[0].z, T[1].w);
|
|
X[3] = (uint4) (T[3].x, T[0].y, T[1].z, T[2].w);
|
|
#endif
|
|
|
|
tmps[gid].P[l + 0] = X[0];
|
|
tmps[gid].P[l + 1] = X[1];
|
|
tmps[gid].P[l + 2] = X[2];
|
|
tmps[gid].P[l + 3] = X[3];
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m15700_loop_prepare (KERN_ATTR_TMPS (scrypt_tmp_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
// SCRYPT part, init V
|
|
|
|
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
|
|
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
|
|
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
|
|
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
|
|
|
|
uint4 X[STATE_CNT4];
|
|
|
|
const u32 P_offset = SALT_REPEAT * STATE_CNT4;
|
|
|
|
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
|
|
|
|
scrypt_smix_init (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
|
|
}
|
|
|
|
KERNEL_FQ void m15700_loop (KERN_ATTR_TMPS (scrypt_tmp_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
|
|
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
|
|
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
|
|
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
|
|
|
|
uint4 X[STATE_CNT4];
|
|
|
|
const u32 P_offset = SALT_REPEAT * STATE_CNT4;
|
|
|
|
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
|
|
|
|
scrypt_smix_loop (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
|
|
|
|
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
|
|
}
|
|
|
|
KERNEL_FQ void m15700_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
/**
|
|
* 2nd pbkdf2, creates B
|
|
*/
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
sha256_hmac_ctx_t ctx;
|
|
|
|
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
|
|
{
|
|
uint4 X[4];
|
|
|
|
X[0] = tmps[gid].P[l + 0];
|
|
X[1] = tmps[gid].P[l + 1];
|
|
X[2] = tmps[gid].P[l + 2];
|
|
X[3] = tmps[gid].P[l + 3];
|
|
|
|
uint4 T[4];
|
|
|
|
#if defined IS_CUDA
|
|
T[0] = make_uint4 (X[0].x, X[3].y, X[2].z, X[1].w);
|
|
T[1] = make_uint4 (X[1].x, X[0].y, X[3].z, X[2].w);
|
|
T[2] = make_uint4 (X[2].x, X[1].y, X[0].z, X[3].w);
|
|
T[3] = make_uint4 (X[3].x, X[2].y, X[1].z, X[0].w);
|
|
#else
|
|
T[0] = (uint4) (X[0].x, X[3].y, X[2].z, X[1].w);
|
|
T[1] = (uint4) (X[1].x, X[0].y, X[3].z, X[2].w);
|
|
T[2] = (uint4) (X[2].x, X[1].y, X[0].z, X[3].w);
|
|
T[3] = (uint4) (X[3].x, X[2].y, X[1].z, X[0].w);
|
|
#endif
|
|
|
|
T[0] = hc_swap32_4 (T[0]);
|
|
T[1] = hc_swap32_4 (T[1]);
|
|
T[2] = hc_swap32_4 (T[2]);
|
|
T[3] = hc_swap32_4 (T[3]);
|
|
|
|
w0[0] = T[0].x;
|
|
w0[1] = T[0].y;
|
|
w0[2] = T[0].z;
|
|
w0[3] = T[0].w;
|
|
w1[0] = T[1].x;
|
|
w1[1] = T[1].y;
|
|
w1[2] = T[1].z;
|
|
w1[3] = T[1].w;
|
|
w2[0] = T[2].x;
|
|
w2[1] = T[2].y;
|
|
w2[2] = T[2].z;
|
|
w2[3] = T[2].w;
|
|
w3[0] = T[3].x;
|
|
w3[1] = T[3].y;
|
|
w3[2] = T[3].z;
|
|
w3[3] = T[3].w;
|
|
|
|
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
|
|
}
|
|
|
|
w0[0] = 1;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
|
|
|
|
sha256_hmac_final (&ctx);
|
|
|
|
/**
|
|
* keccak
|
|
*/
|
|
|
|
u32 ciphertext[8];
|
|
|
|
ciphertext[0] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[0];
|
|
ciphertext[1] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[1];
|
|
ciphertext[2] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[2];
|
|
ciphertext[3] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[3];
|
|
ciphertext[4] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[4];
|
|
ciphertext[5] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[5];
|
|
ciphertext[6] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[6];
|
|
ciphertext[7] = esalt_bufs[DIGESTS_OFFSET_HOST].ciphertext[7];
|
|
|
|
u32 key[4];
|
|
|
|
key[0] = hc_swap32_S (ctx.opad.h[4]);
|
|
key[1] = hc_swap32_S (ctx.opad.h[5]);
|
|
key[2] = hc_swap32_S (ctx.opad.h[6]);
|
|
key[3] = hc_swap32_S (ctx.opad.h[7]);
|
|
|
|
u64 st[25];
|
|
|
|
st[ 0] = hl32_to_64_S (key[1], key[0]);
|
|
st[ 1] = hl32_to_64_S (key[3], key[2]);
|
|
st[ 2] = hl32_to_64_S (ciphertext[1], ciphertext[0]);
|
|
st[ 3] = hl32_to_64_S (ciphertext[3], ciphertext[2]);
|
|
st[ 4] = hl32_to_64_S (ciphertext[5], ciphertext[4]);
|
|
st[ 5] = hl32_to_64_S (ciphertext[7], ciphertext[6]);
|
|
st[ 6] = 0x01;
|
|
st[ 7] = 0;
|
|
st[ 8] = 0;
|
|
st[ 9] = 0;
|
|
st[10] = 0;
|
|
st[11] = 0;
|
|
st[12] = 0;
|
|
st[13] = 0;
|
|
st[14] = 0;
|
|
st[15] = 0;
|
|
st[16] = 0;
|
|
st[17] = 0;
|
|
st[18] = 0;
|
|
st[19] = 0;
|
|
st[20] = 0;
|
|
st[21] = 0;
|
|
st[22] = 0;
|
|
st[23] = 0;
|
|
st[24] = 0;
|
|
|
|
const u32 mdlen = 32;
|
|
|
|
const u32 rsiz = 200 - (2 * mdlen);
|
|
|
|
const u32 add80w = (rsiz - 1) / 8;
|
|
|
|
st[add80w] |= 0x8000000000000000UL;
|
|
|
|
keccak_transform_S (st);
|
|
|
|
const u32 r0 = l32_from_64_S (st[0]);
|
|
const u32 r1 = h32_from_64_S (st[0]);
|
|
const u32 r2 = l32_from_64_S (st[1]);
|
|
const u32 r3 = h32_from_64_S (st[1]);
|
|
|
|
#define il_pos 0
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include COMPARE_M
|
|
#endif
|
|
}
|