1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-01 11:21:11 +00:00
hashcat/OpenCL/m14612-pure.cl

321 lines
7.5 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#include "inc_hash_sha256.cl"
#include "inc_hash_sha512.cl"
#include "inc_hash_ripemd160.cl"
#include "inc_cipher_serpent.cl"
#endif
#define LUKS_STRIPES 4000
typedef enum hc_luks_hash_type
{
HC_LUKS_HASH_TYPE_SHA1 = 1,
HC_LUKS_HASH_TYPE_SHA256 = 2,
HC_LUKS_HASH_TYPE_SHA512 = 3,
HC_LUKS_HASH_TYPE_RIPEMD160 = 4,
HC_LUKS_HASH_TYPE_WHIRLPOOL = 5,
} hc_luks_hash_type_t;
typedef enum hc_luks_key_size
{
HC_LUKS_KEY_SIZE_128 = 128,
HC_LUKS_KEY_SIZE_256 = 256,
HC_LUKS_KEY_SIZE_512 = 512,
} hc_luks_key_size_t;
typedef enum hc_luks_cipher_type
{
HC_LUKS_CIPHER_TYPE_AES = 1,
HC_LUKS_CIPHER_TYPE_SERPENT = 2,
HC_LUKS_CIPHER_TYPE_TWOFISH = 3,
} hc_luks_cipher_type_t;
typedef enum hc_luks_cipher_mode
{
HC_LUKS_CIPHER_MODE_CBC_ESSIV = 1,
HC_LUKS_CIPHER_MODE_CBC_PLAIN = 2,
HC_LUKS_CIPHER_MODE_XTS_PLAIN = 3,
} hc_luks_cipher_mode_t;
typedef struct luks
{
int hash_type; // hc_luks_hash_type_t
int key_size; // hc_luks_key_size_t
int cipher_type; // hc_luks_cipher_type_t
int cipher_mode; // hc_luks_cipher_mode_t
u32 ct_buf[128];
u32 af_src_buf[((HC_LUKS_KEY_SIZE_512 / 8) * LUKS_STRIPES) / 4];
} luks_t;
typedef struct luks_tmp
{
u32 ipad32[8];
u64 ipad64[8];
u32 opad32[8];
u64 opad64[8];
u32 dgst32[32];
u64 dgst64[16];
u32 out32[32];
u64 out64[16];
} luks_tmp_t;
#ifdef KERNEL_STATIC
#include "inc_luks_af.cl"
#include "inc_luks_essiv.cl"
#include "inc_luks_xts.cl"
#include "inc_luks_serpent.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
#define MAX_ENTROPY 7.0
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m14612_init (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad32[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad32[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad32[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad32[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad32[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad32[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad32[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad32[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad32[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad32[4] = sha1_hmac_ctx.opad.h[4];
sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len);
const u32 key_size = esalt_bufs[DIGESTS_OFFSET_HOST].key_size;
for (u32 i = 0, j = 1; i < ((key_size / 8) / 4); i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst32[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst32[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst32[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst32[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst32[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out32[i + 0] = tmps[gid].dgst32[i + 0];
tmps[gid].out32[i + 1] = tmps[gid].dgst32[i + 1];
tmps[gid].out32[i + 2] = tmps[gid].dgst32[i + 2];
tmps[gid].out32[i + 3] = tmps[gid].dgst32[i + 3];
tmps[gid].out32[i + 4] = tmps[gid].dgst32[i + 4];
}
}
KERNEL_FQ void m14612_loop (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= GID_CNT) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad32, gid, 0);
ipad[1] = packv (tmps, ipad32, gid, 1);
ipad[2] = packv (tmps, ipad32, gid, 2);
ipad[3] = packv (tmps, ipad32, gid, 3);
ipad[4] = packv (tmps, ipad32, gid, 4);
opad[0] = packv (tmps, opad32, gid, 0);
opad[1] = packv (tmps, opad32, gid, 1);
opad[2] = packv (tmps, opad32, gid, 2);
opad[3] = packv (tmps, opad32, gid, 3);
opad[4] = packv (tmps, opad32, gid, 4);
u32 key_size = esalt_bufs[DIGESTS_OFFSET_HOST].key_size;
for (u32 i = 0; i < ((key_size / 8) / 4); i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst32, gid, i + 0);
dgst[1] = packv (tmps, dgst32, gid, i + 1);
dgst[2] = packv (tmps, dgst32, gid, i + 2);
dgst[3] = packv (tmps, dgst32, gid, i + 3);
dgst[4] = packv (tmps, dgst32, gid, i + 4);
out[0] = packv (tmps, out32, gid, i + 0);
out[1] = packv (tmps, out32, gid, i + 1);
out[2] = packv (tmps, out32, gid, i + 2);
out[3] = packv (tmps, out32, gid, i + 3);
out[4] = packv (tmps, out32, gid, i + 4);
for (u32 j = 0; j < LOOP_CNT; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst32, gid, i + 0, dgst[0]);
unpackv (tmps, dgst32, gid, i + 1, dgst[1]);
unpackv (tmps, dgst32, gid, i + 2, dgst[2]);
unpackv (tmps, dgst32, gid, i + 3, dgst[3]);
unpackv (tmps, dgst32, gid, i + 4, dgst[4]);
unpackv (tmps, out32, gid, i + 0, out[0]);
unpackv (tmps, out32, gid, i + 1, out[1]);
unpackv (tmps, out32, gid, i + 2, out[2]);
unpackv (tmps, out32, gid, i + 3, out[3]);
unpackv (tmps, out32, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m14612_comp (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
// decrypt AF with first pbkdf2 result
// merge AF to masterkey
// decrypt first payload sector with masterkey
u32 pt_buf[128];
luks_af_sha1_then_serpent_decrypt (&esalt_bufs[DIGESTS_OFFSET_HOST], &tmps[gid], pt_buf);
// check entropy
const float entropy = hc_get_entropy (pt_buf, 128);
if (entropy < MAX_ENTROPY)
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, 0, gid, 0, 0, 0);
}
}
}