mirror of
https://github.com/hashcat/hashcat.git
synced 2025-07-04 05:42:35 +00:00
653 lines
17 KiB
C
653 lines
17 KiB
C
/*-
|
|
* Copyright 2005-2016 Colin Percival
|
|
* Copyright 2016-2018,2021 Alexander Peslyak
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "insecure_memzero.h"
|
|
#include "sysendian.h"
|
|
|
|
#include "sha256.h"
|
|
|
|
#ifdef __ICC
|
|
/* Miscompile with icc 14.0.0 (at least), so don't use restrict there */
|
|
#define restrict
|
|
#elif __STDC_VERSION__ >= 199901L
|
|
/* Have restrict */
|
|
#elif defined(__GNUC__)
|
|
#define restrict __restrict
|
|
#else
|
|
#define restrict
|
|
#endif
|
|
|
|
/*
|
|
* Encode a length len*2 vector of (uint32_t) into a length len*8 vector of
|
|
* (uint8_t) in big-endian form.
|
|
*/
|
|
static void
|
|
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
|
|
{
|
|
|
|
/* Encode vector, two words at a time. */
|
|
do {
|
|
be32enc(&dst[0], src[0]);
|
|
be32enc(&dst[4], src[1]);
|
|
src += 2;
|
|
dst += 8;
|
|
} while (--len);
|
|
}
|
|
|
|
/*
|
|
* Decode a big-endian length len*8 vector of (uint8_t) into a length
|
|
* len*2 vector of (uint32_t).
|
|
*/
|
|
static void
|
|
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
|
|
{
|
|
|
|
/* Decode vector, two words at a time. */
|
|
do {
|
|
dst[0] = be32dec(&src[0]);
|
|
dst[1] = be32dec(&src[4]);
|
|
src += 8;
|
|
dst += 2;
|
|
} while (--len);
|
|
}
|
|
|
|
/* SHA256 round constants. */
|
|
static const uint32_t Krnd[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
/* Elementary functions used by SHA256 */
|
|
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
|
#if 1 /* Explicit caching/reuse of common subexpression between rounds */
|
|
#define Maj(x, y, z) (y ^ ((x_xor_y = x ^ y) & y_xor_z))
|
|
#else /* Let the compiler cache/reuse or not */
|
|
#define Maj(x, y, z) (y ^ ((x ^ y) & (y ^ z)))
|
|
#endif
|
|
#define SHR(x, n) (x >> n)
|
|
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
|
|
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
/* SHA256 round function */
|
|
#define RND(a, b, c, d, e, f, g, h, k) \
|
|
h += S1(e) + Ch(e, f, g) + k; \
|
|
d += h; \
|
|
h += S0(a) + Maj(a, b, c); \
|
|
y_xor_z = x_xor_y;
|
|
|
|
/* Adjusted round function for rotating state */
|
|
#define RNDr(S, W, i, ii) \
|
|
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
|
|
S[(66 - i) % 8], S[(67 - i) % 8], \
|
|
S[(68 - i) % 8], S[(69 - i) % 8], \
|
|
S[(70 - i) % 8], S[(71 - i) % 8], \
|
|
W[i + ii] + Krnd[i + ii])
|
|
|
|
/* Message schedule computation */
|
|
#define MSCH(W, ii, i) \
|
|
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
|
|
|
|
/*
|
|
* SHA256 block compression function. The 256-bit state is transformed via
|
|
* the 512-bit input block to produce a new state.
|
|
*/
|
|
static void
|
|
SHA256_Transform(uint32_t state[static restrict 8],
|
|
const uint8_t block[static restrict 64],
|
|
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
|
|
{
|
|
int i;
|
|
|
|
/* 1. Prepare the first part of the message schedule W. */
|
|
be32dec_vect(W, block, 8);
|
|
|
|
/* 2. Initialize working variables. */
|
|
memcpy(S, state, 32);
|
|
|
|
/* 3. Mix. */
|
|
for (i = 0; i < 64; i += 16) {
|
|
uint32_t x_xor_y, y_xor_z = S[(65 - i) % 8] ^ S[(66 - i) % 8];
|
|
RNDr(S, W, 0, i);
|
|
RNDr(S, W, 1, i);
|
|
RNDr(S, W, 2, i);
|
|
RNDr(S, W, 3, i);
|
|
RNDr(S, W, 4, i);
|
|
RNDr(S, W, 5, i);
|
|
RNDr(S, W, 6, i);
|
|
RNDr(S, W, 7, i);
|
|
RNDr(S, W, 8, i);
|
|
RNDr(S, W, 9, i);
|
|
RNDr(S, W, 10, i);
|
|
RNDr(S, W, 11, i);
|
|
RNDr(S, W, 12, i);
|
|
RNDr(S, W, 13, i);
|
|
RNDr(S, W, 14, i);
|
|
RNDr(S, W, 15, i);
|
|
|
|
if (i == 48)
|
|
break;
|
|
MSCH(W, 0, i);
|
|
MSCH(W, 1, i);
|
|
MSCH(W, 2, i);
|
|
MSCH(W, 3, i);
|
|
MSCH(W, 4, i);
|
|
MSCH(W, 5, i);
|
|
MSCH(W, 6, i);
|
|
MSCH(W, 7, i);
|
|
MSCH(W, 8, i);
|
|
MSCH(W, 9, i);
|
|
MSCH(W, 10, i);
|
|
MSCH(W, 11, i);
|
|
MSCH(W, 12, i);
|
|
MSCH(W, 13, i);
|
|
MSCH(W, 14, i);
|
|
MSCH(W, 15, i);
|
|
}
|
|
|
|
/* 4. Mix local working variables into global state. */
|
|
state[0] += S[0];
|
|
state[1] += S[1];
|
|
state[2] += S[2];
|
|
state[3] += S[3];
|
|
state[4] += S[4];
|
|
state[5] += S[5];
|
|
state[6] += S[6];
|
|
state[7] += S[7];
|
|
}
|
|
|
|
static const uint8_t PAD[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
/* Add padding and terminating bit-count. */
|
|
static void
|
|
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
|
|
{
|
|
size_t r;
|
|
|
|
/* Figure out how many bytes we have buffered. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Pad to 56 mod 64, transforming if we finish a block en route. */
|
|
if (r < 56) {
|
|
/* Pad to 56 mod 64. */
|
|
memcpy(&ctx->buf[r], PAD, 56 - r);
|
|
} else {
|
|
/* Finish the current block and mix. */
|
|
memcpy(&ctx->buf[r], PAD, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
|
|
|
|
/* The start of the final block is all zeroes. */
|
|
memset(&ctx->buf[0], 0, 56);
|
|
}
|
|
|
|
/* Add the terminating bit-count. */
|
|
be64enc(&ctx->buf[56], ctx->count);
|
|
|
|
/* Mix in the final block. */
|
|
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
|
|
}
|
|
|
|
/* Magic initialization constants. */
|
|
static const uint32_t initial_state[8] = {
|
|
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
|
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
|
};
|
|
|
|
/**
|
|
* SHA256_Init(ctx):
|
|
* Initialize the SHA256 context ${ctx}.
|
|
*/
|
|
void
|
|
SHA256_Init(SHA256_CTX * ctx)
|
|
{
|
|
|
|
/* Zero bits processed so far. */
|
|
ctx->count = 0;
|
|
|
|
/* Initialize state. */
|
|
memcpy(ctx->state, initial_state, sizeof(initial_state));
|
|
}
|
|
|
|
/**
|
|
* SHA256_Update(ctx, in, len):
|
|
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
|
|
*/
|
|
static void
|
|
_SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len,
|
|
uint32_t tmp32[static restrict 72])
|
|
{
|
|
uint32_t r;
|
|
const uint8_t * src = in;
|
|
|
|
/* Return immediately if we have nothing to do. */
|
|
if (len == 0)
|
|
return;
|
|
|
|
/* Number of bytes left in the buffer from previous updates. */
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
|
|
/* Update number of bits. */
|
|
ctx->count += (uint64_t)(len) << 3;
|
|
|
|
/* Handle the case where we don't need to perform any transforms. */
|
|
if (len < 64 - r) {
|
|
memcpy(&ctx->buf[r], src, len);
|
|
return;
|
|
}
|
|
|
|
/* Finish the current block. */
|
|
memcpy(&ctx->buf[r], src, 64 - r);
|
|
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
|
|
src += 64 - r;
|
|
len -= 64 - r;
|
|
|
|
/* Perform complete blocks. */
|
|
while (len >= 64) {
|
|
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
|
|
src += 64;
|
|
len -= 64;
|
|
}
|
|
|
|
/* Copy left over data into buffer. */
|
|
memcpy(ctx->buf, src, len);
|
|
}
|
|
|
|
/* Wrapper function for intermediate-values sanitization. */
|
|
void
|
|
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
|
|
{
|
|
uint32_t tmp32[72];
|
|
|
|
/* Call the real function. */
|
|
_SHA256_Update(ctx, in, len, tmp32);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(tmp32, 288);
|
|
}
|
|
|
|
/**
|
|
* SHA256_Final(digest, ctx):
|
|
* Output the SHA256 hash of the data input to the context ${ctx} into the
|
|
* buffer ${digest}.
|
|
*/
|
|
static void
|
|
_SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx,
|
|
uint32_t tmp32[static restrict 72])
|
|
{
|
|
|
|
/* Add padding. */
|
|
SHA256_Pad(ctx, tmp32);
|
|
|
|
/* Write the hash. */
|
|
be32enc_vect(digest, ctx->state, 4);
|
|
}
|
|
|
|
/* Wrapper function for intermediate-values sanitization. */
|
|
void
|
|
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
|
|
{
|
|
uint32_t tmp32[72];
|
|
|
|
/* Call the real function. */
|
|
_SHA256_Final(digest, ctx, tmp32);
|
|
|
|
/* Clear the context state. */
|
|
insecure_memzero(ctx, sizeof(SHA256_CTX));
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(tmp32, 288);
|
|
}
|
|
|
|
/**
|
|
* SHA256_Buf(in, len, digest):
|
|
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
|
|
*/
|
|
void
|
|
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
|
|
{
|
|
SHA256_CTX ctx;
|
|
uint32_t tmp32[72];
|
|
|
|
SHA256_Init(&ctx);
|
|
_SHA256_Update(&ctx, in, len, tmp32);
|
|
_SHA256_Final(digest, &ctx, tmp32);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(&ctx, sizeof(SHA256_CTX));
|
|
insecure_memzero(tmp32, 288);
|
|
}
|
|
|
|
/**
|
|
* HMAC_SHA256_Init(ctx, K, Klen):
|
|
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
|
|
* ${K}.
|
|
*/
|
|
static void
|
|
_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen,
|
|
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
|
|
uint8_t khash[static restrict 32])
|
|
{
|
|
const uint8_t * K = _K;
|
|
size_t i;
|
|
|
|
/* If Klen > 64, the key is really SHA256(K). */
|
|
if (Klen > 64) {
|
|
SHA256_Init(&ctx->ictx);
|
|
_SHA256_Update(&ctx->ictx, K, Klen, tmp32);
|
|
_SHA256_Final(khash, &ctx->ictx, tmp32);
|
|
K = khash;
|
|
Klen = 32;
|
|
}
|
|
|
|
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
|
|
SHA256_Init(&ctx->ictx);
|
|
memset(pad, 0x36, 64);
|
|
for (i = 0; i < Klen; i++)
|
|
pad[i] ^= K[i];
|
|
_SHA256_Update(&ctx->ictx, pad, 64, tmp32);
|
|
|
|
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
|
|
SHA256_Init(&ctx->octx);
|
|
memset(pad, 0x5c, 64);
|
|
for (i = 0; i < Klen; i++)
|
|
pad[i] ^= K[i];
|
|
_SHA256_Update(&ctx->octx, pad, 64, tmp32);
|
|
}
|
|
|
|
/* Wrapper function for intermediate-values sanitization. */
|
|
void
|
|
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
|
|
{
|
|
uint32_t tmp32[72];
|
|
uint8_t pad[64];
|
|
uint8_t khash[32];
|
|
|
|
/* Call the real function. */
|
|
_HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(tmp32, 288);
|
|
insecure_memzero(khash, 32);
|
|
insecure_memzero(pad, 64);
|
|
}
|
|
|
|
/**
|
|
* HMAC_SHA256_Update(ctx, in, len):
|
|
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
|
|
*/
|
|
static void
|
|
_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
|
|
uint32_t tmp32[static restrict 72])
|
|
{
|
|
|
|
/* Feed data to the inner SHA256 operation. */
|
|
_SHA256_Update(&ctx->ictx, in, len, tmp32);
|
|
}
|
|
|
|
/* Wrapper function for intermediate-values sanitization. */
|
|
void
|
|
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
|
|
{
|
|
uint32_t tmp32[72];
|
|
|
|
/* Call the real function. */
|
|
_HMAC_SHA256_Update(ctx, in, len, tmp32);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(tmp32, 288);
|
|
}
|
|
|
|
/**
|
|
* HMAC_SHA256_Final(digest, ctx):
|
|
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
|
|
* buffer ${digest}.
|
|
*/
|
|
static void
|
|
_HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
|
|
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
|
|
{
|
|
|
|
/* Finish the inner SHA256 operation. */
|
|
_SHA256_Final(ihash, &ctx->ictx, tmp32);
|
|
|
|
/* Feed the inner hash to the outer SHA256 operation. */
|
|
_SHA256_Update(&ctx->octx, ihash, 32, tmp32);
|
|
|
|
/* Finish the outer SHA256 operation. */
|
|
_SHA256_Final(digest, &ctx->octx, tmp32);
|
|
}
|
|
|
|
/* Wrapper function for intermediate-values sanitization. */
|
|
void
|
|
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
|
|
{
|
|
uint32_t tmp32[72];
|
|
uint8_t ihash[32];
|
|
|
|
/* Call the real function. */
|
|
_HMAC_SHA256_Final(digest, ctx, tmp32, ihash);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(tmp32, 288);
|
|
insecure_memzero(ihash, 32);
|
|
}
|
|
|
|
/**
|
|
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
|
|
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
|
|
* length ${Klen}, and write the result to ${digest}.
|
|
*/
|
|
void
|
|
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
|
|
uint8_t digest[32])
|
|
{
|
|
HMAC_SHA256_CTX ctx;
|
|
uint32_t tmp32[72];
|
|
uint8_t tmp8[96];
|
|
|
|
_HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
|
|
_HMAC_SHA256_Update(&ctx, in, len, tmp32);
|
|
_HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]);
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
|
|
insecure_memzero(tmp32, 288);
|
|
insecure_memzero(tmp8, 96);
|
|
}
|
|
|
|
/* Add padding and terminating bit-count, but don't invoke Transform yet. */
|
|
static int
|
|
SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8],
|
|
uint32_t tmp32[static restrict 72])
|
|
{
|
|
uint32_t r;
|
|
|
|
r = (ctx->count >> 3) & 0x3f;
|
|
if (r >= 56)
|
|
return -1;
|
|
|
|
/*
|
|
* Convert length to a vector of bytes -- we do this now rather
|
|
* than later because the length will change after we pad.
|
|
*/
|
|
be64enc(len, ctx->count);
|
|
|
|
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
|
|
_SHA256_Update(ctx, PAD, 56 - r, tmp32);
|
|
|
|
/* Add the terminating bit-count. */
|
|
ctx->buf[63] = len[7];
|
|
_SHA256_Update(ctx, len, 7, tmp32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
|
|
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
|
|
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
|
|
*/
|
|
void
|
|
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
|
|
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
|
|
{
|
|
HMAC_SHA256_CTX Phctx, PShctx, hctx;
|
|
uint32_t tmp32[72];
|
|
union {
|
|
uint8_t tmp8[96];
|
|
uint32_t state[8];
|
|
} u;
|
|
size_t i;
|
|
uint8_t ivec[4];
|
|
uint8_t U[32];
|
|
uint8_t T[32];
|
|
uint64_t j;
|
|
int k;
|
|
size_t clen;
|
|
|
|
/* Sanity-check. */
|
|
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
|
|
|
|
if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) {
|
|
uint32_t oldcount;
|
|
uint8_t * ivecp;
|
|
|
|
/* Compute HMAC state after processing P and S. */
|
|
_HMAC_SHA256_Init(&hctx, passwd, passwdlen,
|
|
tmp32, &u.tmp8[0], &u.tmp8[64]);
|
|
_HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32);
|
|
|
|
/* Prepare ictx padding. */
|
|
oldcount = hctx.ictx.count & (0x3f << 3);
|
|
_HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32);
|
|
if ((hctx.ictx.count & (0x3f << 3)) < oldcount ||
|
|
SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32))
|
|
goto generic; /* Can't happen due to saltlen check */
|
|
ivecp = hctx.ictx.buf + (oldcount >> 3);
|
|
|
|
/* Prepare octx padding. */
|
|
hctx.octx.count += 32 << 3;
|
|
SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32);
|
|
|
|
/* Iterate through the blocks. */
|
|
for (i = 0; i * 32 < dkLen; i++) {
|
|
/* Generate INT(i + 1). */
|
|
be32enc(ivecp, (uint32_t)(i + 1));
|
|
|
|
/* Compute U_1 = PRF(P, S || INT(i)). */
|
|
memcpy(u.state, hctx.ictx.state, sizeof(u.state));
|
|
SHA256_Transform(u.state, hctx.ictx.buf,
|
|
&tmp32[0], &tmp32[64]);
|
|
be32enc_vect(hctx.octx.buf, u.state, 4);
|
|
memcpy(u.state, hctx.octx.state, sizeof(u.state));
|
|
SHA256_Transform(u.state, hctx.octx.buf,
|
|
&tmp32[0], &tmp32[64]);
|
|
be32enc_vect(&buf[i * 32], u.state, 4);
|
|
}
|
|
|
|
goto cleanup;
|
|
}
|
|
|
|
generic:
|
|
/* Compute HMAC state after processing P. */
|
|
_HMAC_SHA256_Init(&Phctx, passwd, passwdlen,
|
|
tmp32, &u.tmp8[0], &u.tmp8[64]);
|
|
|
|
/* Compute HMAC state after processing P and S. */
|
|
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
|
|
_HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32);
|
|
|
|
/* Iterate through the blocks. */
|
|
for (i = 0; i * 32 < dkLen; i++) {
|
|
/* Generate INT(i + 1). */
|
|
be32enc(ivec, (uint32_t)(i + 1));
|
|
|
|
/* Compute U_1 = PRF(P, S || INT(i)). */
|
|
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
|
|
_HMAC_SHA256_Update(&hctx, ivec, 4, tmp32);
|
|
_HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8);
|
|
|
|
if (c > 1) {
|
|
/* T_i = U_1 ... */
|
|
memcpy(U, T, 32);
|
|
|
|
for (j = 2; j <= c; j++) {
|
|
/* Compute U_j. */
|
|
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
|
|
_HMAC_SHA256_Update(&hctx, U, 32, tmp32);
|
|
_HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8);
|
|
|
|
/* ... xor U_j ... */
|
|
for (k = 0; k < 32; k++)
|
|
T[k] ^= U[k];
|
|
}
|
|
}
|
|
|
|
/* Copy as many bytes as necessary into buf. */
|
|
clen = dkLen - i * 32;
|
|
if (clen > 32)
|
|
clen = 32;
|
|
memcpy(&buf[i * 32], T, clen);
|
|
}
|
|
|
|
/* Clean the stack. */
|
|
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
|
|
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
|
|
insecure_memzero(U, 32);
|
|
insecure_memzero(T, 32);
|
|
|
|
cleanup:
|
|
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
|
|
insecure_memzero(tmp32, 288);
|
|
insecure_memzero(&u, sizeof(u));
|
|
}
|