1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-17 12:18:24 +00:00
hashcat/src/autotune.c
2016-09-24 12:05:56 +02:00

311 lines
10 KiB
C

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "common.h"
#include "types.h"
#include "data.h"
#include "logging.h"
#include "opencl.h"
#include "status.h"
#include "autotune.h"
extern hc_global_data_t data;
static double try_run (opencl_ctx_t *opencl_ctx, hc_device_param_t *device_param, hashconfig_t *hashconfig, const user_options_t *user_options, const u32 kernel_accel, const u32 kernel_loops)
{
const u32 kernel_power_try = device_param->device_processors * device_param->kernel_threads * kernel_accel;
device_param->kernel_params_buf32[28] = 0;
device_param->kernel_params_buf32[29] = kernel_loops; // not a bug, both need to be set
device_param->kernel_params_buf32[30] = kernel_loops; // because there's two variables for inner iters for slow and fast hashes
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
run_kernel (KERN_RUN_1, opencl_ctx, device_param, kernel_power_try, true, 0, hashconfig, user_options);
}
else
{
run_kernel (KERN_RUN_2, opencl_ctx, device_param, kernel_power_try, true, 0, hashconfig, user_options);
}
const double exec_ms_prev = get_avg_exec_time (device_param, 1);
return exec_ms_prev;
}
int autotune (opencl_ctx_t *opencl_ctx, hc_device_param_t *device_param, hashconfig_t *hashconfig, const user_options_t *user_options, const user_options_extra_t *user_options_extra, const rules_ctx_t *rules_ctx)
{
const double target_ms = opencl_ctx->target_ms;
const u32 kernel_accel_min = device_param->kernel_accel_min;
const u32 kernel_accel_max = device_param->kernel_accel_max;
const u32 kernel_loops_min = device_param->kernel_loops_min;
const u32 kernel_loops_max = device_param->kernel_loops_max;
u32 kernel_accel = kernel_accel_min;
u32 kernel_loops = kernel_loops_min;
// in this case the user specified a fixed -u and -n on the commandline
// no way to tune anything
// but we need to run a few caching rounds
if ((kernel_loops_min == kernel_loops_max) && (kernel_accel_min == kernel_accel_max))
{
if (hashconfig->hash_mode != 2000)
{
try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
}
device_param->kernel_accel = kernel_accel;
device_param->kernel_loops = kernel_loops;
const u32 kernel_power = device_param->device_processors * device_param->kernel_threads * device_param->kernel_accel;
device_param->kernel_power = kernel_power;
return 0;
}
// from here it's clear we are allowed to autotune
// so let's init some fake words
const u32 kernel_power_max = device_param->device_processors * device_param->kernel_threads * kernel_accel_max;
if (user_options_extra->attack_kern == ATTACK_KERN_BF)
{
run_kernel_memset (opencl_ctx, device_param, device_param->d_pws_buf, 7, kernel_power_max * sizeof (pw_t));
}
else
{
for (u32 i = 0; i < kernel_power_max; i++)
{
device_param->pws_buf[i].i[0] = i;
device_param->pws_buf[i].i[1] = 0x01234567;
device_param->pws_buf[i].pw_len = 7 + (i & 7);
}
cl_int CL_err = hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (rules_ctx->kernel_rules_cnt > 1)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_rules, device_param->d_rules_c, 0, 0, MIN (kernel_loops_max, KERNEL_RULES) * sizeof (kernel_rule_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else
{
run_kernel_amp (opencl_ctx, device_param, kernel_power_max);
}
#define VERIFIER_CNT 1
// first find out highest kernel-loops that stays below target_ms
if (kernel_loops_min < kernel_loops_max)
{
for (kernel_loops = kernel_loops_max; kernel_loops > kernel_loops_min; kernel_loops >>= 1)
{
double exec_ms = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_min, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_min, kernel_loops);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms < target_ms) break;
}
}
// now the same for kernel-accel but with the new kernel-loops from previous loop set
#define STEPS_CNT 10
if (kernel_accel_min < kernel_accel_max)
{
for (int i = 0; i < STEPS_CNT; i++)
{
const u32 kernel_accel_try = 1u << i;
if (kernel_accel_try < kernel_accel_min) continue;
if (kernel_accel_try > kernel_accel_max) break;
double exec_ms = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_try, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_try, kernel_loops);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms > target_ms) break;
kernel_accel = kernel_accel_try;
}
}
// at this point we want to know the actual runtime for the following reason:
// we need a reference for the balancing loop following up, and this
// the balancing loop can have an effect that the creates a new opportunity, for example:
// if the target is 95 ms and the current runtime is 48ms the above loop
// stopped the execution because the previous exec_ms was > 95ms
// due to the rebalance it's possible that the runtime reduces from 48ms to 47ms
// and this creates the possibility to double the workload -> 47 * 2 = 95ms, which is < 96ms
double exec_ms_pre_final = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_pre_final_v = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel, kernel_loops);
exec_ms_pre_final = MIN (exec_ms_pre_final, exec_ms_pre_final_v);
}
u32 diff = kernel_loops - kernel_accel;
if ((kernel_loops_min < kernel_loops_max) && (kernel_accel_min < kernel_accel_max))
{
u32 kernel_accel_orig = kernel_accel;
u32 kernel_loops_orig = kernel_loops;
for (u32 f = 1; f < 1024; f++)
{
const u32 kernel_accel_try = kernel_accel_orig * f;
const u32 kernel_loops_try = kernel_loops_orig / f;
if (kernel_accel_try > kernel_accel_max) break;
if (kernel_loops_try < kernel_loops_min) break;
u32 diff_new = kernel_loops_try - kernel_accel_try;
if (diff_new > diff) break;
diff_new = diff;
double exec_ms = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_try, kernel_loops_try);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (opencl_ctx, device_param, hashconfig, user_options, kernel_accel_try, kernel_loops_try);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms < exec_ms_pre_final)
{
exec_ms_pre_final = exec_ms;
kernel_accel = kernel_accel_try;
kernel_loops = kernel_loops_try;
}
}
}
const double exec_left = target_ms / exec_ms_pre_final;
const double accel_left = kernel_accel_max / kernel_accel;
const double exec_accel_min = MIN (exec_left, accel_left); // we want that to be int
if (exec_accel_min >= 1.0)
{
// this is safe to not overflow kernel_accel_max because of accel_left
kernel_accel *= (u32) exec_accel_min;
}
// reset them fake words
/*
memset (device_param->pws_buf, 0, kernel_power_max * sizeof (pw_t));
hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
hc_clEnqueueWriteBuffer (opencl_ctx->ocl, device_param->command_queue, device_param->d_pws_amp_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
*/
run_kernel_memset (opencl_ctx, device_param, device_param->d_pws_buf, 0, kernel_power_max * sizeof (pw_t));
if (hashconfig->attack_exec == ATTACK_EXEC_OUTSIDE_KERNEL)
{
run_kernel_memset (opencl_ctx, device_param, device_param->d_pws_amp_buf, 0, kernel_power_max * sizeof (pw_t));
}
// reset timer
device_param->exec_pos = 0;
memset (device_param->exec_ms, 0, EXEC_CACHE * sizeof (double));
memset (device_param->exec_us_prev1, 0, EXPECTED_ITERATIONS * sizeof (double));
memset (device_param->exec_us_prev2, 0, EXPECTED_ITERATIONS * sizeof (double));
memset (device_param->exec_us_prev3, 0, EXPECTED_ITERATIONS * sizeof (double));
// store
device_param->kernel_accel = kernel_accel;
device_param->kernel_loops = kernel_loops;
const u32 kernel_power = device_param->device_processors * device_param->kernel_threads * device_param->kernel_accel;
device_param->kernel_power = kernel_power;
#if defined (DEBUG)
if (user_options->quiet == false)
{
clear_prompt ();
log_info ("- Device #%u: autotuned kernel-accel to %u\n"
"- Device #%u: autotuned kernel-loops to %u\n",
device_param->device_id + 1, kernel_accel,
device_param->device_id + 1, kernel_loops);
send_prompt ();
}
#endif
return 0;
}
void *thread_autotune (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
user_options_t *user_options = data.user_options;
user_options_extra_t *user_options_extra = data.user_options_extra;
hashconfig_t *hashconfig = data.hashconfig;
rules_ctx_t *rules_ctx = data.rules_ctx;
opencl_ctx_t *opencl_ctx = data.opencl_ctx;
autotune (opencl_ctx, device_param, hashconfig, user_options, user_options_extra, rules_ctx);
return NULL;
}