1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-23 00:28:11 +00:00
hashcat/OpenCL/m17020-pure.cl
2023-03-05 17:39:59 +00:00

543 lines
15 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha512.cl)
#endif
typedef struct gpg
{
u32 cipher_algo;
u32 iv[4];
u32 modulus_size;
u32 encrypted_data[384];
u32 encrypted_data_size;
} gpg_t;
typedef struct gpg_tmp
{
// buffer for a maximum of 256 + 8 octets, we extend it to 384 octets so it's always 128 byte aligned (1024 bits)
u32 salted_pw_block[96];
// actual number of bytes in 'salted_pwd' that are used since salt and password are copied multiple times into the buffer
u32 salted_pw_block_len;
u64 h[8];
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 w4[4];
u32 w5[4];
u32 w6[4];
u32 w7[4];
int len;
} gpg_tmp_t;
DECLSPEC u32 hc_bytealign_le_S (const u32 a, const u32 b, const int c)
{
const int c_mod_4 = c & 3;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
const u32 r = l32_from_64_S ((v64_from_v32ab_S (b, a) >> (c_mod_4 * 8)));
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> (c_mod_4 * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S (0x0706050403020100UL >> (c_mod_4 * 8));
#endif
const u32 r = hc_byte_perm (b, a, selector);
#endif
return r;
}
DECLSPEC void memcat_le_S (PRIVATE_AS u32 *block, const u32 offset, PRIVATE_AS const u32 *append, u32 len)
{
const u32 start_index = (offset - 1) >> 2;
const u32 count = ((offset + len + 3) >> 2) - start_index;
const int off_mod_4 = offset & 3;
const int off_minus_4 = 4 - off_mod_4;
block[start_index] |= hc_bytealign_le_S (append[0], 0, off_minus_4);
for (u32 idx = 1; idx < count; idx++)
{
block[start_index + idx] = hc_bytealign_le_S (append[idx], append[idx - 1], off_minus_4);
}
}
DECLSPEC void memzero_le_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff << ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void memzero_be_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff >> ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void aes128_decrypt_cfb (GLOBAL_AS const u32 *encrypted_data, int data_len, PRIVATE_AS const u32 *iv, PRIVATE_AS const u32 *key, PRIVATE_AS u32 *decrypted_data,
SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 ks[44];
u32 essiv[4];
// Copy the IV, since this will be modified
essiv[0] = iv[0];
essiv[1] = iv[1];
essiv[2] = iv[2];
essiv[3] = iv[3];
aes128_set_encrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3);
// Decrypt an AES-128 encrypted block
for (u32 i = 0; i < (data_len + 3) / 4; i += 4)
{
aes128_encrypt (ks, essiv, decrypted_data + i, s_te0, s_te1, s_te2, s_te3, s_te4);
decrypted_data[i + 0] ^= encrypted_data[i + 0];
decrypted_data[i + 1] ^= encrypted_data[i + 1];
decrypted_data[i + 2] ^= encrypted_data[i + 2];
decrypted_data[i + 3] ^= encrypted_data[i + 3];
// Note: Not necessary if you are only decrypting a single block!
essiv[0] = encrypted_data[i + 0];
essiv[1] = encrypted_data[i + 1];
essiv[2] = encrypted_data[i + 2];
essiv[3] = encrypted_data[i + 3];
}
}
DECLSPEC void aes256_decrypt_cfb (GLOBAL_AS const u32 *encrypted_data, int data_len, PRIVATE_AS const u32 *iv, PRIVATE_AS const u32 *key, PRIVATE_AS u32 *decrypted_data,
SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 ks[60];
u32 essiv[4];
// Copy the IV, since this will be modified
essiv[0] = iv[0];
essiv[1] = iv[1];
essiv[2] = iv[2];
essiv[3] = iv[3];
aes256_set_encrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3);
// Decrypt an AES-256 encrypted block
for (u32 i = 0; i < (data_len + 3) / 4; i += 4)
{
aes256_encrypt (ks, essiv, decrypted_data + i, s_te0, s_te1, s_te2, s_te3, s_te4);
decrypted_data[i + 0] ^= encrypted_data[i + 0];
decrypted_data[i + 1] ^= encrypted_data[i + 1];
decrypted_data[i + 2] ^= encrypted_data[i + 2];
decrypted_data[i + 3] ^= encrypted_data[i + 3];
// Note: Not necessary if you are only decrypting a single block!
essiv[0] = encrypted_data[i + 0];
essiv[1] = encrypted_data[i + 1];
essiv[2] = encrypted_data[i + 2];
essiv[3] = encrypted_data[i + 3];
}
}
DECLSPEC int check_decoded_data (PRIVATE_AS u32 *decoded_data, const u32 decoded_data_size)
{
// Check the SHA-1 of the decrypted data which is stored at the end of the decrypted data
const u32 sha1_byte_off = (decoded_data_size - 20);
const u32 sha1_u32_off = sha1_byte_off / 4;
u32 expected_sha1[5];
expected_sha1[0] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 1], decoded_data[sha1_u32_off + 0], sha1_byte_off);
expected_sha1[1] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 2], decoded_data[sha1_u32_off + 1], sha1_byte_off);
expected_sha1[2] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 3], decoded_data[sha1_u32_off + 2], sha1_byte_off);
expected_sha1[3] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 4], decoded_data[sha1_u32_off + 3], sha1_byte_off);
expected_sha1[4] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 5], decoded_data[sha1_u32_off + 4], sha1_byte_off);
memzero_le_S (decoded_data, sha1_byte_off, 384 * sizeof(u32));
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_swap (&ctx, decoded_data, sha1_byte_off);
sha1_final (&ctx);
return (expected_sha1[0] == hc_swap32_S (ctx.h[0]))
&& (expected_sha1[1] == hc_swap32_S (ctx.h[1]))
&& (expected_sha1[2] == hc_swap32_S (ctx.h[2]))
&& (expected_sha1[3] == hc_swap32_S (ctx.h[3]))
&& (expected_sha1[4] == hc_swap32_S (ctx.h[4]));
}
KERNEL_FQ void m17020_init (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
const u32 pw_len = pws[gid].pw_len;
const u32 salted_pw_len = (salt_bufs[SALT_POS_HOST].salt_len + pw_len);
u32 salted_pw_block[96];
// concatenate salt and password -- the salt is always 8 bytes (2 * u32)
salted_pw_block[0] = salt_bufs[SALT_POS_HOST].salt_buf[0];
salted_pw_block[1] = salt_bufs[SALT_POS_HOST].salt_buf[1];
for (u32 idx = 0; idx < 64; idx++) salted_pw_block[idx + 2] = pws[gid].i[idx];
// zero remainder of buffer, the buffer will now be 96 words (3072 bits) containing:
// 0 - 1: salt
// 2 - 65: zero-padded password (max pwd len: 64 words = 256 bytes)
// 66 - 95: zeros
for (u32 idx = 66; idx < 96; idx++) salted_pw_block[idx] = 0;
// create a number of copies for efficiency
const u32 copies = 96 * sizeof(u32) / salted_pw_len;
for (u32 idx = 1; idx < copies; idx++)
{
memcat_le_S (salted_pw_block, idx * salted_pw_len, salted_pw_block, salted_pw_len);
}
for (u32 idx = 0; idx < 96; idx++)
{
tmps[gid].salted_pw_block[idx] = hc_swap32_S (salted_pw_block[idx]);
}
tmps[gid].salted_pw_block_len = (copies * salted_pw_len);
tmps[gid].h[ 0] = SHA512M_A;
tmps[gid].h[ 1] = SHA512M_B;
tmps[gid].h[ 2] = SHA512M_C;
tmps[gid].h[ 3] = SHA512M_D;
tmps[gid].h[ 4] = SHA512M_E;
tmps[gid].h[ 5] = SHA512M_F;
tmps[gid].h[ 6] = SHA512M_G;
tmps[gid].h[ 7] = SHA512M_H;
tmps[gid].len = 0;
}
KERNEL_FQ void m17020_loop_prepare (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
tmps[gid].w0[0] = 0;
tmps[gid].w0[1] = 0;
tmps[gid].w0[2] = 0;
tmps[gid].w0[3] = 0;
tmps[gid].w1[0] = 0;
tmps[gid].w1[1] = 0;
tmps[gid].w1[2] = 0;
tmps[gid].w1[3] = 0;
tmps[gid].w2[0] = 0;
tmps[gid].w2[1] = 0;
tmps[gid].w2[2] = 0;
tmps[gid].w2[3] = 0;
tmps[gid].w3[0] = 0;
tmps[gid].w3[1] = 0;
tmps[gid].w3[2] = 0;
tmps[gid].w3[3] = 0;
tmps[gid].w4[0] = 0;
tmps[gid].w4[1] = 0;
tmps[gid].w4[2] = 0;
tmps[gid].w4[3] = 0;
tmps[gid].w5[0] = 0;
tmps[gid].w5[1] = 0;
tmps[gid].w5[2] = 0;
tmps[gid].w5[3] = 0;
tmps[gid].w6[0] = 0;
tmps[gid].w6[1] = 0;
tmps[gid].w6[2] = 0;
tmps[gid].w6[3] = 0;
tmps[gid].w7[0] = 0;
tmps[gid].w7[1] = 0;
tmps[gid].w7[2] = 0;
tmps[gid].w7[3] = 0;
tmps[gid].len = 0;
}
KERNEL_FQ void m17020_loop (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
// get the prepared buffer from the gpg_tmp_t struct into a local buffer
u32 salted_pw_block[96];
for (int i = 0; i < 96; i++) salted_pw_block[i] = tmps[gid].salted_pw_block[i];
const u32 salted_pw_block_len = tmps[gid].salted_pw_block_len;
// do we really need this, since the salt is always length 8?
if (salted_pw_block_len == 0) return;
/**
* context load
*/
sha512_ctx_t ctx;
for (int i = 0; i < 8; i++) ctx.h[i] = tmps[gid].h[i];
for (int i = 0; i < 4; i++) ctx.w0[i] = tmps[gid].w0[i];
for (int i = 0; i < 4; i++) ctx.w1[i] = tmps[gid].w1[i];
for (int i = 0; i < 4; i++) ctx.w2[i] = tmps[gid].w2[i];
for (int i = 0; i < 4; i++) ctx.w3[i] = tmps[gid].w3[i];
for (int i = 0; i < 4; i++) ctx.w4[i] = tmps[gid].w4[i];
for (int i = 0; i < 4; i++) ctx.w5[i] = tmps[gid].w5[i];
for (int i = 0; i < 4; i++) ctx.w6[i] = tmps[gid].w6[i];
for (int i = 0; i < 4; i++) ctx.w7[i] = tmps[gid].w7[i];
ctx.len = tmps[gid].len;
// sha-512 of salt and password, up to 'salt_iter' bytes
const u32 salt_iter = salt_bufs[SALT_POS_HOST].salt_iter;
const u32 salted_pw_block_pos = LOOP_POS % salted_pw_block_len;
const u32 rounds = (LOOP_CNT + salted_pw_block_pos) / salted_pw_block_len;
for (u32 i = 0; i < rounds; i++)
{
sha512_update (&ctx, salted_pw_block, salted_pw_block_len);
}
if ((LOOP_POS + LOOP_CNT) == salt_iter)
{
const u32 remaining_bytes = salt_iter % salted_pw_block_len;
if (remaining_bytes)
{
memzero_be_S (salted_pw_block, remaining_bytes, salted_pw_block_len);
sha512_update (&ctx, salted_pw_block, remaining_bytes);
}
sha512_final (&ctx);
}
/**
* context save
*/
for (int i = 0; i < 8; i++) tmps[gid].h[i] = ctx.h[i];
for (int i = 0; i < 4; i++) tmps[gid].w0[i] = ctx.w0[i];
for (int i = 0; i < 4; i++) tmps[gid].w1[i] = ctx.w1[i];
for (int i = 0; i < 4; i++) tmps[gid].w2[i] = ctx.w2[i];
for (int i = 0; i < 4; i++) tmps[gid].w3[i] = ctx.w3[i];
for (int i = 0; i < 4; i++) tmps[gid].w4[i] = ctx.w4[i];
for (int i = 0; i < 4; i++) tmps[gid].w5[i] = ctx.w5[i];
for (int i = 0; i < 4; i++) tmps[gid].w6[i] = ctx.w6[i];
for (int i = 0; i < 4; i++) tmps[gid].w7[i] = ctx.w7[i];
tmps[gid].len = ctx.len;
}
KERNEL_FQ void m17020_comp (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
// not in use here, special case...
}
KERNEL_FQ void m17020_aux1 (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
// retrieve and use the SHA-512 as the key for AES
u32 aes_key[4];
aes_key[0] = hc_swap32_S (h32_from_64 (tmps[gid].h[0]));
aes_key[1] = hc_swap32_S (l32_from_64 (tmps[gid].h[0]));
aes_key[2] = hc_swap32_S (h32_from_64 (tmps[gid].h[1]));
aes_key[3] = hc_swap32_S (l32_from_64 (tmps[gid].h[1]));
u32 iv[4] = {0};
for (int idx = 0; idx < 4; idx++) iv[idx] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[idx];
u32 decoded_data[384];
const u32 enc_data_size = esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data_size;
aes128_decrypt_cfb (esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data, enc_data_size, iv, aes_key, decoded_data, s_te0, s_te1, s_te2, s_te3, s_te4);
if (check_decoded_data (decoded_data, enc_data_size))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
}
}
KERNEL_FQ void m17020_aux2 (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
// retrieve and use the SHA-512 as the key for AES
u32 aes_key[8];
aes_key[0] = hc_swap32_S (h32_from_64 (tmps[gid].h[0]));
aes_key[1] = hc_swap32_S (l32_from_64 (tmps[gid].h[0]));
aes_key[2] = hc_swap32_S (h32_from_64 (tmps[gid].h[1]));
aes_key[3] = hc_swap32_S (l32_from_64 (tmps[gid].h[1]));
aes_key[4] = hc_swap32_S (h32_from_64 (tmps[gid].h[2]));
aes_key[5] = hc_swap32_S (l32_from_64 (tmps[gid].h[2]));
aes_key[6] = hc_swap32_S (h32_from_64 (tmps[gid].h[3]));
aes_key[7] = hc_swap32_S (l32_from_64 (tmps[gid].h[3]));
u32 iv[4] = {0};
for (int idx = 0; idx < 4; idx++) iv[idx] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[idx];
u32 decoded_data[384];
const u32 enc_data_size = esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data_size;
aes256_decrypt_cfb (esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data, enc_data_size, iv, aes_key, decoded_data, s_te0, s_te1, s_te2, s_te3, s_te4);
if (check_decoded_data (decoded_data, enc_data_size))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
}
}