mirror of
https://github.com/hashcat/hashcat.git
synced 2025-01-12 16:51:00 +00:00
420 lines
13 KiB
C++
420 lines
13 KiB
C++
#include "rar.hpp"
|
||
|
||
// We used "Screaming Fast Galois Field Arithmetic Using Intel SIMD
|
||
// Instructions" paper by James S. Plank, Kevin M. Greenan
|
||
// and Ethan L. Miller for fast SSE based multiplication.
|
||
// Also we are grateful to Artem Drobanov and Bulat Ziganshin
|
||
// for samples and ideas allowed to make Reed-Solomon codec more efficient.
|
||
|
||
RSCoder16::RSCoder16()
|
||
{
|
||
Decoding=false;
|
||
ND=NR=NE=0;
|
||
ValidFlags=NULL;
|
||
MX=NULL;
|
||
DataLog=NULL;
|
||
DataLogSize=0;
|
||
|
||
gfInit();
|
||
}
|
||
|
||
|
||
RSCoder16::~RSCoder16()
|
||
{
|
||
delete[] gfExp;
|
||
delete[] gfLog;
|
||
delete[] DataLog;
|
||
delete[] MX;
|
||
delete[] ValidFlags;
|
||
}
|
||
|
||
|
||
// Initialize logarithms and exponents Galois field tables.
|
||
void RSCoder16::gfInit()
|
||
{
|
||
gfExp=new uint[4*gfSize+1];
|
||
gfLog=new uint[gfSize+1];
|
||
|
||
for (uint L=0,E=1;L<gfSize;L++)
|
||
{
|
||
gfLog[E]=L;
|
||
gfExp[L]=E;
|
||
gfExp[L+gfSize]=E; // Duplicate the table to avoid gfExp overflow check.
|
||
E<<=1;
|
||
if (E>gfSize)
|
||
E^=0x1100B; // Irreducible field-generator polynomial.
|
||
}
|
||
|
||
// log(0)+log(x) must be outside of usual log table, so we can set it
|
||
// to 0 and avoid check for 0 in multiplication parameters.
|
||
gfLog[0]= 2*gfSize;
|
||
for (uint I=2*gfSize;I<=4*gfSize;I++) // Results for log(0)+log(x).
|
||
gfExp[I]=0;
|
||
}
|
||
|
||
|
||
uint RSCoder16::gfAdd(uint a,uint b) // Addition in Galois field.
|
||
{
|
||
return a^b;
|
||
}
|
||
|
||
|
||
uint RSCoder16::gfMul(uint a,uint b) // Multiplication in Galois field.
|
||
{
|
||
return gfExp[gfLog[a]+gfLog[b]];
|
||
}
|
||
|
||
|
||
uint RSCoder16::gfInv(uint a) // Inverse element in Galois field.
|
||
{
|
||
return a==0 ? 0:gfExp[gfSize-gfLog[a]];
|
||
}
|
||
|
||
|
||
bool RSCoder16::Init(uint DataCount, uint RecCount, bool *ValidityFlags)
|
||
{
|
||
ND = DataCount;
|
||
NR = RecCount;
|
||
NE = 0;
|
||
|
||
Decoding=ValidityFlags!=NULL;
|
||
if (Decoding)
|
||
{
|
||
delete[] ValidFlags;
|
||
ValidFlags=new bool[ND + NR];
|
||
|
||
for (uint I = 0; I < ND + NR; I++)
|
||
ValidFlags[I]=ValidityFlags[I];
|
||
for (uint I = 0; I < ND; I++)
|
||
if (!ValidFlags[I])
|
||
NE++;
|
||
uint ValidECC=0;
|
||
for (uint I = ND; I < ND + NR; I++)
|
||
if (ValidFlags[I])
|
||
ValidECC++;
|
||
if (NE > ValidECC || NE == 0 || ValidECC == 0)
|
||
return false;
|
||
}
|
||
if (ND + NR > gfSize || NR > ND || ND == 0 || NR == 0)
|
||
return false;
|
||
|
||
delete[] MX;
|
||
if (Decoding)
|
||
{
|
||
MX=new uint[NE * ND];
|
||
MakeDecoderMatrix();
|
||
InvertDecoderMatrix();
|
||
}
|
||
else
|
||
{
|
||
MX=new uint[NR * ND];
|
||
MakeEncoderMatrix();
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
void RSCoder16::MakeEncoderMatrix()
|
||
{
|
||
// Create Cauchy encoder generator matrix. Skip trivial "1" diagonal rows,
|
||
// which would just copy source data to destination.
|
||
for (uint I = 0; I < NR; I++)
|
||
for (uint J = 0; J < ND; J++)
|
||
MX[I * ND + J] = gfInv( gfAdd( (I+ND), J) );
|
||
}
|
||
|
||
|
||
void RSCoder16::MakeDecoderMatrix()
|
||
{
|
||
// Create Cauchy decoder matrix. Skip trivial rows matching valid data
|
||
// units and containing "1" on main diagonal. Such rows would just copy
|
||
// source data to destination and they have no real value for us.
|
||
// Include rows only for broken data units and replace them by first
|
||
// available valid recovery code rows.
|
||
for (uint Flag=0, R=ND, Dest=0; Flag < ND; Flag++)
|
||
if (!ValidFlags[Flag]) // For every broken data unit.
|
||
{
|
||
while (!ValidFlags[R]) // Find a valid recovery unit.
|
||
R++;
|
||
for (uint J = 0; J < ND; J++) // And place its row to matrix.
|
||
MX[Dest*ND + J] = gfInv( gfAdd(R,J) );
|
||
Dest++;
|
||
R++;
|
||
}
|
||
}
|
||
|
||
|
||
// Apply Gauss<73>Jordan elimination to find inverse of decoder matrix.
|
||
// We have the square NDxND matrix, but we do not store its trivial
|
||
// diagonal "1" rows matching valid data, so we work with NExND matrix.
|
||
// Our original Cauchy matrix does not contain 0, so we skip search
|
||
// for non-zero pivot.
|
||
void RSCoder16::InvertDecoderMatrix()
|
||
{
|
||
uint *MI=new uint[NE * ND]; // We'll create inverse matrix here.
|
||
memset(MI, 0, ND * NE * sizeof(*MI)); // Initialize to identity matrix.
|
||
for (uint Kr = 0, Kf = 0; Kr < NE; Kr++, Kf++)
|
||
{
|
||
while (ValidFlags[Kf]) // Skip trivial rows.
|
||
Kf++;
|
||
MI[Kr * ND + Kf] = 1; // Set diagonal 1.
|
||
}
|
||
|
||
// Kr is the number of row in our actual reduced NE x ND matrix,
|
||
// which does not contain trivial diagonal 1 rows.
|
||
// Kf is the number of row in full ND x ND matrix with all trivial rows
|
||
// included.
|
||
for (uint Kr = 0, Kf = 0; Kf < ND; Kr++, Kf++) // Select pivot row.
|
||
{
|
||
while (ValidFlags[Kf] && Kf < ND)
|
||
{
|
||
// Here we process trivial diagonal 1 rows matching valid data units.
|
||
// Their processing can be simplified comparing to usual rows.
|
||
// In full version of elimination we would set MX[I * ND + Kf] to zero
|
||
// after MI[..]^=, but we do not need it for matrix inversion.
|
||
for (uint I = 0; I < NE; I++)
|
||
MI[I * ND + Kf] ^= MX[I * ND + Kf];
|
||
Kf++;
|
||
}
|
||
|
||
if (Kf == ND)
|
||
break;
|
||
|
||
uint *MXk = MX + Kr * ND; // k-th row of main matrix.
|
||
uint *MIk = MI + Kr * ND; // k-th row of inversion matrix.
|
||
|
||
uint PInv = gfInv( MXk[Kf] ); // Pivot inverse.
|
||
// Divide the pivot row by pivot, so pivot cell contains 1.
|
||
for (uint I = 0; I < ND; I++)
|
||
{
|
||
MXk[I] = gfMul( MXk[I], PInv );
|
||
MIk[I] = gfMul( MIk[I], PInv );
|
||
}
|
||
|
||
for (uint I = 0; I < NE; I++)
|
||
if (I != Kr) // For all rows except containing the pivot cell.
|
||
{
|
||
// Apply Gaussian elimination Mij -= Mkj * Mik / pivot.
|
||
// Since pivot is already 1, it is reduced to Mij -= Mkj * Mik.
|
||
uint *MXi = MX + I * ND; // i-th row of main matrix.
|
||
uint *MIi = MI + I * ND; // i-th row of inversion matrix.
|
||
uint Mik = MXi[Kf]; // Cell in pivot position.
|
||
for (uint J = 0; J < ND; J++)
|
||
{
|
||
MXi[J] ^= gfMul(MXk[J] , Mik);
|
||
MIi[J] ^= gfMul(MIk[J] , Mik);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Copy data to main matrix.
|
||
for (uint I = 0; I < NE * ND; I++)
|
||
MX[I] = MI[I];
|
||
|
||
delete[] MI;
|
||
}
|
||
|
||
|
||
#if 0
|
||
// Multiply matrix to data vector. When encoding, it contains data in Data
|
||
// and stores error correction codes in Out. When decoding it contains
|
||
// broken data followed by ECC in Data and stores recovered data to Out.
|
||
// We do not use this function now, everything is moved to UpdateECC.
|
||
void RSCoder16::Process(const uint *Data, uint *Out)
|
||
{
|
||
uint ProcData[gfSize];
|
||
|
||
for (uint I = 0; I < ND; I++)
|
||
ProcData[I]=Data[I];
|
||
|
||
if (Decoding)
|
||
{
|
||
// Replace broken data units with first available valid recovery codes.
|
||
// 'Data' array must contain recovery codes after data.
|
||
for (uint I=0, R=ND, Dest=0; I < ND; I++)
|
||
if (!ValidFlags[I]) // For every broken data unit.
|
||
{
|
||
while (!ValidFlags[R]) // Find a valid recovery unit.
|
||
R++;
|
||
ProcData[I]=Data[R];
|
||
R++;
|
||
}
|
||
}
|
||
|
||
uint H=Decoding ? NE : NR;
|
||
for (uint I = 0; I < H; I++)
|
||
{
|
||
uint R = 0; // Result of matrix row multiplication to data.
|
||
|
||
uint *MXi=MX + I * ND;
|
||
for (uint J = 0; J < ND; J++)
|
||
R ^= gfMul(MXi[J], ProcData[J]);
|
||
|
||
Out[I] = R;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
// We update ECC in blocks by applying every data block to all ECC blocks.
|
||
// This function applies one data block to one ECC block.
|
||
void RSCoder16::UpdateECC(uint DataNum, uint ECCNum, const byte *Data, byte *ECC, size_t BlockSize)
|
||
{
|
||
if (DataNum==0) // Init ECC data.
|
||
memset(ECC, 0, BlockSize);
|
||
|
||
bool DirectAccess;
|
||
#ifdef LITTLE_ENDIAN
|
||
// We can access data and ECC directly if we have little endian 16 bit uint.
|
||
DirectAccess=sizeof(ushort)==2;
|
||
#else
|
||
DirectAccess=false;
|
||
#endif
|
||
|
||
#ifdef USE_SSE
|
||
if (DirectAccess && SSE_UpdateECC(DataNum,ECCNum,Data,ECC,BlockSize))
|
||
return;
|
||
#endif
|
||
|
||
if (ECCNum==0)
|
||
{
|
||
if (DataLogSize!=BlockSize)
|
||
{
|
||
delete[] DataLog;
|
||
DataLog=new uint[BlockSize];
|
||
DataLogSize=BlockSize;
|
||
|
||
}
|
||
if (DirectAccess)
|
||
for (size_t I=0; I<BlockSize; I+=2)
|
||
DataLog[I] = gfLog[ *(ushort*)(Data+I) ];
|
||
else
|
||
for (size_t I=0; I<BlockSize; I+=2)
|
||
{
|
||
uint D=Data[I]+Data[I+1]*256;
|
||
DataLog[I] = gfLog[ D ];
|
||
}
|
||
}
|
||
|
||
uint ML = gfLog[ MX[ECCNum * ND + DataNum] ];
|
||
|
||
if (DirectAccess)
|
||
for (size_t I=0; I<BlockSize; I+=2)
|
||
*(ushort*)(ECC+I) ^= gfExp[ ML + DataLog[I] ];
|
||
else
|
||
for (size_t I=0; I<BlockSize; I+=2)
|
||
{
|
||
uint R=gfExp[ ML + DataLog[I] ];
|
||
ECC[I]^=byte(R);
|
||
ECC[I+1]^=byte(R/256);
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef USE_SSE
|
||
// Data and ECC addresses must be properly aligned for SSE.
|
||
// AVX2 did not provide a noticeable speed gain on i7-6700K here.
|
||
bool RSCoder16::SSE_UpdateECC(uint DataNum, uint ECCNum, const byte *Data, byte *ECC, size_t BlockSize)
|
||
{
|
||
// Check data alignment and SSSE3 support.
|
||
if ((size_t(Data) & (SSE_ALIGNMENT-1))!=0 || (size_t(ECC) & (SSE_ALIGNMENT-1))!=0 ||
|
||
_SSE_Version<SSE_SSSE3)
|
||
return false;
|
||
|
||
uint M=MX[ECCNum * ND + DataNum];
|
||
|
||
// Prepare tables containing products of M and 4, 8, 12, 16 bit length
|
||
// numbers, which have 4 high bits in 0..15 range and other bits set to 0.
|
||
// Store high and low bytes of resulting 16 bit product in separate tables.
|
||
__m128i T0L,T1L,T2L,T3L; // Low byte tables.
|
||
__m128i T0H,T1H,T2H,T3H; // High byte tables.
|
||
|
||
for (uint I=0;I<16;I++)
|
||
{
|
||
((byte *)&T0L)[I]=gfMul(I,M);
|
||
((byte *)&T0H)[I]=gfMul(I,M)>>8;
|
||
((byte *)&T1L)[I]=gfMul(I<<4,M);
|
||
((byte *)&T1H)[I]=gfMul(I<<4,M)>>8;
|
||
((byte *)&T2L)[I]=gfMul(I<<8,M);
|
||
((byte *)&T2H)[I]=gfMul(I<<8,M)>>8;
|
||
((byte *)&T3L)[I]=gfMul(I<<12,M);
|
||
((byte *)&T3H)[I]=gfMul(I<<12,M)>>8;
|
||
}
|
||
|
||
size_t Pos=0;
|
||
|
||
__m128i LowByteMask=_mm_set1_epi16(0xff); // 00ff00ff...00ff
|
||
__m128i Low4Mask=_mm_set1_epi8(0xf); // 0f0f0f0f...0f0f
|
||
__m128i High4Mask=_mm_slli_epi16(Low4Mask,4); // f0f0f0f0...f0f0
|
||
|
||
for (; Pos+2*sizeof(__m128i)<=BlockSize; Pos+=2*sizeof(__m128i))
|
||
{
|
||
// We process two 128 bit chunks of source data at once.
|
||
__m128i *D=(__m128i *)(Data+Pos);
|
||
|
||
// Place high bytes of both chunks to one variable and low bytes to
|
||
// another, so we can use the table lookup multiplication for 16 values
|
||
// 4 bit length each at once.
|
||
__m128i HighBytes0=_mm_srli_epi16(D[0],8);
|
||
__m128i LowBytes0=_mm_and_si128(D[0],LowByteMask);
|
||
__m128i HighBytes1=_mm_srli_epi16(D[1],8);
|
||
__m128i LowBytes1=_mm_and_si128(D[1],LowByteMask);
|
||
__m128i HighBytes=_mm_packus_epi16(HighBytes0,HighBytes1);
|
||
__m128i LowBytes=_mm_packus_epi16(LowBytes0,LowBytes1);
|
||
|
||
// Multiply bits 0..3 of low bytes. Store low and high product bytes
|
||
// separately in cumulative sum variables.
|
||
__m128i LowBytesLow4=_mm_and_si128(LowBytes,Low4Mask);
|
||
__m128i LowBytesMultSum=_mm_shuffle_epi8(T0L,LowBytesLow4);
|
||
__m128i HighBytesMultSum=_mm_shuffle_epi8(T0H,LowBytesLow4);
|
||
|
||
// Multiply bits 4..7 of low bytes. Store low and high product bytes separately.
|
||
__m128i LowBytesHigh4=_mm_and_si128(LowBytes,High4Mask);
|
||
LowBytesHigh4=_mm_srli_epi16(LowBytesHigh4,4);
|
||
__m128i LowBytesHigh4MultLow=_mm_shuffle_epi8(T1L,LowBytesHigh4);
|
||
__m128i LowBytesHigh4MultHigh=_mm_shuffle_epi8(T1H,LowBytesHigh4);
|
||
|
||
// Add new product to existing sum, low and high bytes separately.
|
||
LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,LowBytesHigh4MultLow);
|
||
HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,LowBytesHigh4MultHigh);
|
||
|
||
// Multiply bits 0..3 of high bytes. Store low and high product bytes separately.
|
||
__m128i HighBytesLow4=_mm_and_si128(HighBytes,Low4Mask);
|
||
__m128i HighBytesLow4MultLow=_mm_shuffle_epi8(T2L,HighBytesLow4);
|
||
__m128i HighBytesLow4MultHigh=_mm_shuffle_epi8(T2H,HighBytesLow4);
|
||
|
||
// Add new product to existing sum, low and high bytes separately.
|
||
LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,HighBytesLow4MultLow);
|
||
HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,HighBytesLow4MultHigh);
|
||
|
||
// Multiply bits 4..7 of high bytes. Store low and high product bytes separately.
|
||
__m128i HighBytesHigh4=_mm_and_si128(HighBytes,High4Mask);
|
||
HighBytesHigh4=_mm_srli_epi16(HighBytesHigh4,4);
|
||
__m128i HighBytesHigh4MultLow=_mm_shuffle_epi8(T3L,HighBytesHigh4);
|
||
__m128i HighBytesHigh4MultHigh=_mm_shuffle_epi8(T3H,HighBytesHigh4);
|
||
|
||
// Add new product to existing sum, low and high bytes separately.
|
||
LowBytesMultSum=_mm_xor_si128(LowBytesMultSum,HighBytesHigh4MultLow);
|
||
HighBytesMultSum=_mm_xor_si128(HighBytesMultSum,HighBytesHigh4MultHigh);
|
||
|
||
// Combine separate low and high cumulative sum bytes to 16-bit words.
|
||
__m128i HighBytesHigh4Mult0=_mm_unpacklo_epi8(LowBytesMultSum,HighBytesMultSum);
|
||
__m128i HighBytesHigh4Mult1=_mm_unpackhi_epi8(LowBytesMultSum,HighBytesMultSum);
|
||
|
||
// Add result to ECC.
|
||
__m128i *StoreECC=(__m128i *)(ECC+Pos);
|
||
|
||
StoreECC[0]=_mm_xor_si128(StoreECC[0],HighBytesHigh4Mult0);
|
||
StoreECC[1]=_mm_xor_si128(StoreECC[1],HighBytesHigh4Mult1);
|
||
}
|
||
|
||
// If we have non 128 bit aligned data in the end of block, process them
|
||
// in a usual way. We cannot do the same in the beginning of block,
|
||
// because Data and ECC can have different alignment offsets.
|
||
for (; Pos<BlockSize; Pos+=2)
|
||
*(ushort*)(ECC+Pos) ^= gfMul( M, *(ushort*)(Data+Pos) );
|
||
|
||
return true;
|
||
}
|
||
#endif
|