1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-25 15:10:58 +00:00
hashcat/deps/LZMA-SDK/C/LzmaDec.c

1364 lines
39 KiB
C

/* LzmaDec.c -- LZMA Decoder
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #include "CpuArch.h" */
#include "LzmaDec.h"
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define RC_INIT_SIZE 5
#ifndef _LZMA_DEC_OPT
#define kNumMoveBits 5
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
{ UPDATE_0(p); i = (i + i); A0; } else \
{ UPDATE_1(p); i = (i + i) + 1; A1; }
#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
{ UPDATE_0(p + i); A0; } else \
{ UPDATE_1(p + i); A1; }
#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
#define TREE_DECODE(probs, limit, i) \
{ i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
/* #define _LZMA_SIZE_OPT */
#ifdef _LZMA_SIZE_OPT
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
#else
#define TREE_6_DECODE(probs, i) \
{ i = 1; \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
TREE_GET_BIT(probs, i); \
i -= 0x40; }
#endif
#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
#define MATCHED_LITER_DEC \
matchByte += matchByte; \
bit = offs; \
offs &= matchByte; \
probLit = prob + (offs + bit + symbol); \
GET_BIT2(probLit, symbol, offs ^= bit; , ;)
#endif // _LZMA_DEC_OPT
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
#define UPDATE_0_CHECK range = bound;
#define UPDATE_1_CHECK range -= bound; code -= bound;
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
{ UPDATE_0_CHECK; i = (i + i); A0; } else \
{ UPDATE_1_CHECK; i = (i + i) + 1; A1; }
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
#define TREE_DECODE_CHECK(probs, limit, i) \
{ i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
{ UPDATE_0_CHECK; i += m; m += m; } else \
{ UPDATE_1_CHECK; m += m; i += m; }
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenLow 0
#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define LenChoice LenLow
#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
#define kNumStates 12
#define kNumStates2 16
#define kNumLitStates 7
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
#define kMatchSpecLen_Error_Data (1 << 9)
#define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)
/* External ASM code needs same CLzmaProb array layout. So don't change it. */
/* (probs_1664) is faster and better for code size at some platforms */
/*
#ifdef MY_CPU_X86_OR_AMD64
*/
#define kStartOffset 1664
#define GET_PROBS p->probs_1664
/*
#define GET_PROBS p->probs + kStartOffset
#else
#define kStartOffset 0
#define GET_PROBS p->probs
#endif
*/
#define SpecPos (-kStartOffset)
#define IsRep0Long (SpecPos + kNumFullDistances)
#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
#define LenCoder (RepLenCoder + kNumLenProbs)
#define IsMatch (LenCoder + kNumLenProbs)
#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
#define IsRep (Align + kAlignTableSize)
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define PosSlot (IsRepG2 + kNumStates)
#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define NUM_BASE_PROBS (Literal + kStartOffset)
#if Align != 0 && kStartOffset != 0
#error Stop_Compiling_Bad_LZMA_kAlign
#endif
#if NUM_BASE_PROBS != 1984
#error Stop_Compiling_Bad_LZMA_PROBS
#endif
#define LZMA_LIT_SIZE 0x300
#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
#define COMBINED_PS_STATE (posState + state)
#define GET_LEN_STATE (posState)
#define LZMA_DIC_MIN (1 << 12)
/*
p->remainLen : shows status of LZMA decoder:
< kMatchSpecLenStart : the number of bytes to be copied with (p->rep0) offset
= kMatchSpecLenStart : the LZMA stream was finished with end mark
= kMatchSpecLenStart + 1 : need init range coder
= kMatchSpecLenStart + 2 : need init range coder and state
= kMatchSpecLen_Error_Fail : Internal Code Failure
= kMatchSpecLen_Error_Data + [0 ... 273] : LZMA Data Error
*/
/* ---------- LZMA_DECODE_REAL ---------- */
/*
LzmaDec_DecodeReal_3() can be implemented in external ASM file.
3 - is the code compatibility version of that function for check at link time.
*/
#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
/*
LZMA_DECODE_REAL()
In:
RangeCoder is normalized
if (p->dicPos == limit)
{
LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
}
Processing:
The first LZMA symbol will be decoded in any case.
All main checks for limits are at the end of main loop,
It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
next iteration before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.
Out:
RangeCoder is normalized
Result:
SZ_OK - OK
p->remainLen:
< kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
= kMatchSpecLenStart : the LZMA stream was finished with end mark
SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
p->remainLen : undefined
p->reps[*] : undefined
*/
#ifdef _LZMA_DEC_OPT
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
#else
static
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
CLzmaProb *probs = GET_PROBS;
unsigned state = (unsigned)p->state;
UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
unsigned lc = p->prop.lc;
unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
Byte *dic = p->dic;
SizeT dicBufSize = p->dicBufSize;
SizeT dicPos = p->dicPos;
UInt32 processedPos = p->processedPos;
UInt32 checkDicSize = p->checkDicSize;
unsigned len = 0;
const Byte *buf = p->buf;
UInt32 range = p->range;
UInt32 code = p->code;
do
{
CLzmaProb *prob;
UInt32 bound;
unsigned ttt;
unsigned posState = CALC_POS_STATE(processedPos, pbMask);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
unsigned symbol;
UPDATE_0(prob);
prob = probs + Literal;
if (processedPos != 0 || checkDicSize != 0)
prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
processedPos++;
if (state < kNumLitStates)
{
state -= (state < 4) ? state : 3;
symbol = 1;
#ifdef _LZMA_SIZE_OPT
do { NORMAL_LITER_DEC } while (symbol < 0x100);
#else
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
NORMAL_LITER_DEC
#endif
}
else
{
unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
unsigned offs = 0x100;
state -= (state < 10) ? 3 : 6;
symbol = 1;
#ifdef _LZMA_SIZE_OPT
do
{
unsigned bit;
CLzmaProb *probLit;
MATCHED_LITER_DEC
}
while (symbol < 0x100);
#else
{
unsigned bit;
CLzmaProb *probLit;
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
MATCHED_LITER_DEC
}
#endif
}
dic[dicPos++] = (Byte)symbol;
continue;
}
{
UPDATE_1(prob);
prob = probs + IsRep + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
state += kNumStates;
prob = probs + LenCoder;
}
else
{
UPDATE_1(prob);
prob = probs + IsRepG0 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0(prob)
{
UPDATE_0(prob);
// that case was checked before with kBadRepCode
// if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
// The caller doesn't allow (dicPos == limit) case here
// so we don't need the following check:
// if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
dicPos++;
processedPos++;
state = state < kNumLitStates ? 9 : 11;
continue;
}
UPDATE_1(prob);
}
else
{
UInt32 distance;
UPDATE_1(prob);
prob = probs + IsRepG1 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep1;
}
else
{
UPDATE_1(prob);
prob = probs + IsRepG2 + state;
IF_BIT_0(prob)
{
UPDATE_0(prob);
distance = rep2;
}
else
{
UPDATE_1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = probs + RepLenCoder;
}
#ifdef _LZMA_SIZE_OPT
{
unsigned lim, offset;
CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE;
offset = 0;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenChoice2;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
lim = (1 << kLenNumLowBits);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
lim = (1 << kLenNumHighBits);
}
}
TREE_DECODE(probLen, lim, len);
len += offset;
}
#else
{
CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE;
len = 1;
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
len -= 8;
}
else
{
UPDATE_1(probLen);
probLen = prob + LenChoice2;
IF_BIT_0(probLen)
{
UPDATE_0(probLen);
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
len = 1;
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
TREE_GET_BIT(probLen, len);
}
else
{
UPDATE_1(probLen);
probLen = prob + LenHigh;
TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
len += kLenNumLowSymbols * 2;
}
}
}
#endif
if (state >= kNumStates)
{
UInt32 distance;
prob = probs + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
TREE_6_DECODE(prob, distance);
if (distance >= kStartPosModelIndex)
{
unsigned posSlot = (unsigned)distance;
unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
distance = (2 | (distance & 1));
if (posSlot < kEndPosModelIndex)
{
distance <<= numDirectBits;
prob = probs + SpecPos;
{
UInt32 m = 1;
distance++;
do
{
REV_BIT_VAR(prob, distance, m);
}
while (--numDirectBits);
distance -= m;
}
}
else
{
numDirectBits -= kNumAlignBits;
do
{
NORMALIZE
range >>= 1;
{
UInt32 t;
code -= range;
t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
distance = (distance << 1) + (t + 1);
code += range & t;
}
/*
distance <<= 1;
if (code >= range)
{
code -= range;
distance |= 1;
}
*/
}
while (--numDirectBits);
prob = probs + Align;
distance <<= kNumAlignBits;
{
unsigned i = 1;
REV_BIT_CONST(prob, i, 1);
REV_BIT_CONST(prob, i, 2);
REV_BIT_CONST(prob, i, 4);
REV_BIT_LAST (prob, i, 8);
distance |= i;
}
if (distance == (UInt32)0xFFFFFFFF)
{
len = kMatchSpecLenStart;
state -= kNumStates;
break;
}
}
}
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
rep0 = distance + 1;
state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
{
len += kMatchSpecLen_Error_Data + kMatchMinLen;
// len = kMatchSpecLen_Error_Data;
// len += kMatchMinLen;
break;
}
}
len += kMatchMinLen;
{
SizeT rem;
unsigned curLen;
SizeT pos;
if ((rem = limit - dicPos) == 0)
{
/*
We stop decoding and return SZ_OK, and we can resume decoding later.
Any error conditions can be tested later in caller code.
For more strict mode we can stop decoding with error
// len += kMatchSpecLen_Error_Data;
*/
break;
}
curLen = ((rem < len) ? (unsigned)rem : len);
pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
processedPos += (UInt32)curLen;
len -= curLen;
if (curLen <= dicBufSize - pos)
{
Byte *dest = dic + dicPos;
ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
const Byte *lim = dest + curLen;
dicPos += (SizeT)curLen;
do
*(dest) = (Byte)*(dest + src);
while (++dest != lim);
}
else
{
do
{
dic[dicPos++] = dic[pos];
if (++pos == dicBufSize)
pos = 0;
}
while (--curLen != 0);
}
}
}
}
while (dicPos < limit && buf < bufLimit);
NORMALIZE;
p->buf = buf;
p->range = range;
p->code = code;
p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
p->dicPos = dicPos;
p->processedPos = processedPos;
p->reps[0] = rep0;
p->reps[1] = rep1;
p->reps[2] = rep2;
p->reps[3] = rep3;
p->state = (UInt32)state;
if (len >= kMatchSpecLen_Error_Data)
return SZ_ERROR_DATA;
return SZ_OK;
}
#endif
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
{
unsigned len = (unsigned)p->remainLen;
if (len == 0 /* || len >= kMatchSpecLenStart */)
return;
{
SizeT dicPos = p->dicPos;
Byte *dic;
SizeT dicBufSize;
SizeT rep0; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
{
SizeT rem = limit - dicPos;
if (rem < len)
{
len = (unsigned)(rem);
if (len == 0)
return;
}
}
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)len;
p->remainLen -= (UInt32)len;
dic = p->dic;
rep0 = p->reps[0];
dicBufSize = p->dicBufSize;
do
{
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
dicPos++;
}
while (--len);
p->dicPos = dicPos;
}
}
/*
At staring of new stream we have one of the following symbols:
- Literal - is allowed
- Non-Rep-Match - is allowed only if it's end marker symbol
- Rep-Match - is not allowed
We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
*/
#define kRange0 0xFFFFFFFF
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
#if kBadRepCode != (0xC0000000 - 0x400)
#error Stop_Compiling_Bad_LZMA_Check
#endif
/*
LzmaDec_DecodeReal2():
It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).
We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
and we support the following state of (p->checkDicSize):
if (total_processed < p->prop.dicSize) then
{
(total_processed == p->processedPos)
(p->checkDicSize == 0)
}
else
(p->checkDicSize == p->prop.dicSize)
*/
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
{
if (p->checkDicSize == 0)
{
UInt32 rem = p->prop.dicSize - p->processedPos;
if (limit - p->dicPos > rem)
limit = p->dicPos + rem;
}
{
int res = LZMA_DECODE_REAL(p, limit, bufLimit);
if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
p->checkDicSize = p->prop.dicSize;
return res;
}
}
typedef enum
{
DUMMY_INPUT_EOF, /* need more input data */
DUMMY_LIT,
DUMMY_MATCH,
DUMMY_REP
} ELzmaDummy;
#define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)
static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
{
UInt32 range = p->range;
UInt32 code = p->code;
const Byte *bufLimit = *bufOut;
const CLzmaProb *probs = GET_PROBS;
unsigned state = (unsigned)p->state;
ELzmaDummy res;
for (;;)
{
const CLzmaProb *prob;
UInt32 bound;
unsigned ttt;
unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);
prob = probs + IsMatch + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK
prob = probs + Literal;
if (p->checkDicSize != 0 || p->processedPos != 0)
prob += ((UInt32)LZMA_LIT_SIZE *
((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
if (state < kNumLitStates)
{
unsigned symbol = 1;
do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
}
else
{
unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
(p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
unsigned offs = 0x100;
unsigned symbol = 1;
do
{
unsigned bit;
const CLzmaProb *probLit;
matchByte += matchByte;
bit = offs;
offs &= matchByte;
probLit = prob + (offs + bit + symbol);
GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
}
while (symbol < 0x100);
}
res = DUMMY_LIT;
}
else
{
unsigned len;
UPDATE_1_CHECK;
prob = probs + IsRep + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
state = 0;
prob = probs + LenCoder;
res = DUMMY_MATCH;
}
else
{
UPDATE_1_CHECK;
res = DUMMY_REP;
prob = probs + IsRepG0 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
prob = probs + IsRep0Long + COMBINED_PS_STATE;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
break;
}
else
{
UPDATE_1_CHECK;
}
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG1 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
prob = probs + IsRepG2 + state;
IF_BIT_0_CHECK(prob)
{
UPDATE_0_CHECK;
}
else
{
UPDATE_1_CHECK;
}
}
}
state = kNumStates;
prob = probs + RepLenCoder;
}
{
unsigned limit, offset;
const CLzmaProb *probLen = prob + LenChoice;
IF_BIT_0_CHECK(probLen)
{
UPDATE_0_CHECK;
probLen = prob + LenLow + GET_LEN_STATE;
offset = 0;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
probLen = prob + LenChoice2;
IF_BIT_0_CHECK(probLen)
{
UPDATE_0_CHECK;
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
offset = kLenNumLowSymbols;
limit = 1 << kLenNumLowBits;
}
else
{
UPDATE_1_CHECK;
probLen = prob + LenHigh;
offset = kLenNumLowSymbols * 2;
limit = 1 << kLenNumHighBits;
}
}
TREE_DECODE_CHECK(probLen, limit, len);
len += offset;
}
if (state < 4)
{
unsigned posSlot;
prob = probs + PosSlot +
((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
unsigned numDirectBits = ((posSlot >> 1) - 1);
if (posSlot < kEndPosModelIndex)
{
prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
}
else
{
numDirectBits -= kNumAlignBits;
do
{
NORMALIZE_CHECK
range >>= 1;
code -= range & (((code - range) >> 31) - 1);
/* if (code >= range) code -= range; */
}
while (--numDirectBits);
prob = probs + Align;
numDirectBits = kNumAlignBits;
}
{
unsigned i = 1;
unsigned m = 1;
do
{
REV_BIT_CHECK(prob, i, m);
}
while (--numDirectBits);
}
}
}
}
break;
}
NORMALIZE_CHECK;
*bufOut = buf;
return res;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
{
p->remainLen = kMatchSpecLenStart + 1;
p->tempBufSize = 0;
if (initDic)
{
p->processedPos = 0;
p->checkDicSize = 0;
p->remainLen = kMatchSpecLenStart + 2;
}
if (initState)
p->remainLen = kMatchSpecLenStart + 2;
}
void LzmaDec_Init(CLzmaDec *p)
{
p->dicPos = 0;
LzmaDec_InitDicAndState(p, True, True);
}
/*
LZMA supports optional end_marker.
So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
When the decoder reaches dicLimit, it looks (finishMode) parameter:
if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position
When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
must check (status) value. The caller can show the error,
if the end of stream is expected, and the (status) is noit
LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
*/
#define RETURN__NOT_FINISHED__FOR_FINISH \
*status = LZMA_STATUS_NOT_FINISHED; \
return SZ_ERROR_DATA; // for strict mode
// return SZ_OK; // for relaxed mode
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
(*srcLen) = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
if (p->remainLen > kMatchSpecLenStart)
{
if (p->remainLen > kMatchSpecLenStart + 2)
return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;
for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
p->tempBuf[p->tempBufSize++] = *src++;
if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
return SZ_ERROR_DATA;
if (p->tempBufSize < RC_INIT_SIZE)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
p->code =
((UInt32)p->tempBuf[1] << 24)
| ((UInt32)p->tempBuf[2] << 16)
| ((UInt32)p->tempBuf[3] << 8)
| ((UInt32)p->tempBuf[4]);
if (p->checkDicSize == 0
&& p->processedPos == 0
&& p->code >= kBadRepCode)
return SZ_ERROR_DATA;
p->range = 0xFFFFFFFF;
p->tempBufSize = 0;
if (p->remainLen > kMatchSpecLenStart + 1)
{
SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
SizeT i;
CLzmaProb *probs = p->probs;
for (i = 0; i < numProbs; i++)
probs[i] = kBitModelTotal >> 1;
p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
p->state = 0;
}
p->remainLen = 0;
}
for (;;)
{
if (p->remainLen == kMatchSpecLenStart)
{
if (p->code != 0)
return SZ_ERROR_DATA;
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
LzmaDec_WriteRem(p, dicLimit);
{
// (p->remainLen == 0 || p->dicPos == dicLimit)
int checkEndMarkNow = 0;
if (p->dicPos >= dicLimit)
{
if (p->remainLen == 0 && p->code == 0)
{
*status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
return SZ_OK;
}
if (finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->remainLen != 0)
{
RETURN__NOT_FINISHED__FOR_FINISH;
}
checkEndMarkNow = 1;
}
// (p->remainLen == 0)
if (p->tempBufSize == 0)
{
const Byte *bufLimit;
int dummyProcessed = -1;
if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
{
const Byte *bufOut = src + inSize;
ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
if (dummyRes == DUMMY_INPUT_EOF)
{
size_t i;
if (inSize >= LZMA_REQUIRED_INPUT_MAX)
break;
(*srcLen) += inSize;
p->tempBufSize = (unsigned)inSize;
for (i = 0; i < inSize; i++)
p->tempBuf[i] = src[i];
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
dummyProcessed = (int)(bufOut - src);
if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
break;
if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
{
unsigned i;
(*srcLen) += (unsigned)dummyProcessed;
p->tempBufSize = (unsigned)dummyProcessed;
for (i = 0; i < (unsigned)dummyProcessed; i++)
p->tempBuf[i] = src[i];
// p->remainLen = kMatchSpecLen_Error_Data;
RETURN__NOT_FINISHED__FOR_FINISH;
}
bufLimit = src;
// we will decode only one iteration
}
else
bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
p->buf = src;
{
int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
SizeT processed = (SizeT)(p->buf - src);
if (dummyProcessed < 0)
{
if (processed > inSize)
break;
}
else if ((unsigned)dummyProcessed != processed)
break;
src += processed;
inSize -= processed;
(*srcLen) += processed;
if (res != SZ_OK)
{
p->remainLen = kMatchSpecLen_Error_Data;
return SZ_ERROR_DATA;
}
}
continue;
}
{
// we have some data in (p->tempBuf)
// in strict mode: tempBufSize is not enough for one Symbol decoding.
// in relaxed mode: tempBufSize not larger than required for one Symbol decoding.
unsigned rem = p->tempBufSize;
unsigned ahead = 0;
int dummyProcessed = -1;
while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
p->tempBuf[rem++] = src[ahead++];
// ahead - the size of new data copied from (src) to (p->tempBuf)
// rem - the size of temp buffer including new data from (src)
if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
{
const Byte *bufOut = p->tempBuf + rem;
ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
if (dummyRes == DUMMY_INPUT_EOF)
{
if (rem >= LZMA_REQUIRED_INPUT_MAX)
break;
p->tempBufSize = rem;
(*srcLen) += (SizeT)ahead;
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
dummyProcessed = (int)(bufOut - p->tempBuf);
if ((unsigned)dummyProcessed < p->tempBufSize)
break;
if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
{
(*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
p->tempBufSize = (unsigned)dummyProcessed;
// p->remainLen = kMatchSpecLen_Error_Data;
RETURN__NOT_FINISHED__FOR_FINISH;
}
}
p->buf = p->tempBuf;
{
// we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);
SizeT processed = (SizeT)(p->buf - p->tempBuf);
rem = p->tempBufSize;
if (dummyProcessed < 0)
{
if (processed > LZMA_REQUIRED_INPUT_MAX)
break;
if (processed < rem)
break;
}
else if ((unsigned)dummyProcessed != processed)
break;
processed -= rem;
src += processed;
inSize -= processed;
(*srcLen) += processed;
p->tempBufSize = 0;
if (res != SZ_OK)
{
p->remainLen = kMatchSpecLen_Error_Data;
return SZ_ERROR_DATA;
}
}
}
}
}
/* Some unexpected error: internal error of code, memory corruption or hardware failure */
p->remainLen = kMatchSpecLen_Error_Fail;
return SZ_ERROR_FAIL;
}
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen;
SizeT inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT inSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->dicPos == p->dicBufSize)
p->dicPos = 0;
dicPos = p->dicPos;
if (outSize > p->dicBufSize - dicPos)
{
outSizeCur = p->dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
}
else
{
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
src += inSizeCur;
inSize -= inSizeCur;
*srcLen += inSizeCur;
outSizeCur = p->dicPos - dicPos;
memcpy(dest, p->dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
}
}
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->probs);
p->probs = NULL;
}
static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->dic);
p->dic = NULL;
}
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
{
LzmaDec_FreeProbs(p, alloc);
LzmaDec_FreeDict(p, alloc);
}
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
{
UInt32 dicSize;
Byte d;
if (size < LZMA_PROPS_SIZE)
return SZ_ERROR_UNSUPPORTED;
else
dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
if (dicSize < LZMA_DIC_MIN)
dicSize = LZMA_DIC_MIN;
p->dicSize = dicSize;
d = data[0];
if (d >= (9 * 5 * 5))
return SZ_ERROR_UNSUPPORTED;
p->lc = (Byte)(d % 9);
d /= 9;
p->pb = (Byte)(d / 5);
p->lp = (Byte)(d % 5);
return SZ_OK;
}
static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
{
UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
if (!p->probs || numProbs != p->numProbs)
{
LzmaDec_FreeProbs(p, alloc);
p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
if (!p->probs)
return SZ_ERROR_MEM;
p->probs_1664 = p->probs + 1664;
p->numProbs = numProbs;
}
return SZ_OK;
}
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
CLzmaProps propNew;
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
p->prop = propNew;
return SZ_OK;
}
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
{
CLzmaProps propNew;
SizeT dicBufSize;
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
{
UInt32 dictSize = propNew.dicSize;
SizeT mask = ((UInt32)1 << 12) - 1;
if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
dicBufSize = ((SizeT)dictSize + mask) & ~mask;
if (dicBufSize < dictSize)
dicBufSize = dictSize;
}
if (!p->dic || dicBufSize != p->dicBufSize)
{
LzmaDec_FreeDict(p, alloc);
p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
if (!p->dic)
{
LzmaDec_FreeProbs(p, alloc);
return SZ_ERROR_MEM;
}
}
p->dicBufSize = dicBufSize;
p->prop = propNew;
return SZ_OK;
}
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc)
{
CLzmaDec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
if (inSize < RC_INIT_SIZE)
return SZ_ERROR_INPUT_EOF;
LzmaDec_Construct(&p);
RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
p.dic = dest;
p.dicBufSize = outSize;
LzmaDec_Init(&p);
*srcLen = inSize;
res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
LzmaDec_FreeProbs(&p, alloc);
return res;
}