1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-07-23 23:18:21 +00:00
hashcat/OpenCL/m28200-pure.cl
Jens Steube 15ada5124e Further simplified the use of inc_hash_scrypt.cl without any speed regression, and updated all affected plugin kernels. Use m08900-pure.cl as a template.
Updated kernel declarations from "KERNEL_FQ void HC_ATTR_SEQ" to "KERNEL_FQ KERNEL_FA void". Please update your custom plugin kernels accordingly.
Added spilling size as a factor in calculating usable memory per device. This is based on undocumented variables and may not be 100% accurate, but it works well in practice.
Added a compiler hint to scrypt-based kernels indicating the guaranteed maximum thread count per kernel invocation.
Removed redundant kernel code 29800, as it is identical to 27700, and updated the plugin.
2025-06-21 17:41:26 +02:00

188 lines
4.3 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_hash_scrypt.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes-gcm.cl)
#endif
#define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl)
#define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl)
typedef struct exodus
{
u32 iv[4];
u32 data[8];
u32 tag[4];
} exodus_t;
KERNEL_FQ KERNEL_FA void m28200_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
scrypt_pbkdf2_ggg (pws[gid].i, pws[gid].pw_len, salt_bufs[SALT_POS_HOST].salt_buf, salt_bufs[SALT_POS_HOST].salt_len, tmps[gid].in, SCRYPT_SZ);
scrypt_blockmix_in (tmps[gid].in, tmps[gid].out, SCRYPT_SZ);
}
KERNEL_FQ KERNEL_FA void m28200_loop_prepare (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
const u64 bid = get_group_id (0);
if (gid >= GID_CNT) return;
u32 X[STATE_CNT4];
GLOBAL_AS u32 *P = tmps[gid].out + (SALT_REPEAT * STATE_CNT4);
scrypt_smix_init (P, X, d_extra0_buf, d_extra1_buf, d_extra2_buf, d_extra3_buf, gid, lid, lsz, bid);
}
KERNEL_FQ KERNEL_FA void m28200_loop (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
const u64 bid = get_group_id (0);
if (gid >= GID_CNT) return;
u32 X[STATE_CNT4];
u32 T[STATE_CNT4];
GLOBAL_AS u32 *P = tmps[gid].out + (SALT_REPEAT * STATE_CNT4);
scrypt_smix_loop (P, X, T, d_extra0_buf, d_extra1_buf, d_extra2_buf, d_extra3_buf, gid, lid, lsz, bid);
}
KERNEL_FQ KERNEL_FA void m28200_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, exodus_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
scrypt_blockmix_out (tmps[gid].out, tmps[gid].in, SCRYPT_SZ);
u32 out[8];
scrypt_pbkdf2_ggp (pws[gid].i, pws[gid].pw_len, tmps[gid].in, SCRYPT_SZ, out, 32);
// GCM stuff
u32 ukey[8];
ukey[0] = hc_swap32_S (out[0]);
ukey[1] = hc_swap32_S (out[1]);
ukey[2] = hc_swap32_S (out[2]);
ukey[3] = hc_swap32_S (out[3]);
ukey[4] = hc_swap32_S (out[4]);
ukey[5] = hc_swap32_S (out[5]);
ukey[6] = hc_swap32_S (out[6]);
ukey[7] = hc_swap32_S (out[7]);
u32 key[60] = { 0 };
u32 subKey[4] = { 0 };
AES_GCM_Init (ukey, 256, key, subKey, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 iv[4];
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[2];
iv[3] = 0;
u32 J0[4] = { 0 };
AES_GCM_Prepare_J0 (iv, 12, subKey, J0);
u32 T[4] = { 0 };
u32 S[4] = { 0 };
u32 S_len = 16;
u32 aad_buf[4] = { 0 };
u32 aad_len = 0;
AES_GCM_GHASH_GLOBAL (subKey, aad_buf, aad_len, esalt_bufs[DIGESTS_OFFSET_HOST].data, 32, S);
AES_GCM_GCTR (key, J0, S, S_len, T, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = T[0];
const u32 r1 = T[1];
const u32 r2 = T[2];
const u32 r3 = T[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}