mirror of
https://github.com/hashcat/hashcat.git
synced 2025-07-22 22:48:47 +00:00

Updated kernel declarations from "KERNEL_FQ void HC_ATTR_SEQ" to "KERNEL_FQ KERNEL_FA void". Please update your custom plugin kernels accordingly. Added spilling size as a factor in calculating usable memory per device. This is based on undocumented variables and may not be 100% accurate, but it works well in practice. Added a compiler hint to scrypt-based kernels indicating the guaranteed maximum thread count per kernel invocation. Removed redundant kernel code 29800, as it is identical to 27700, and updated the plugin.
542 lines
10 KiB
Common Lisp
542 lines
10 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
//#define NEW_SIMD_CODE
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include M2S(INCLUDE_PATH/inc_vendor.h)
|
|
#include M2S(INCLUDE_PATH/inc_types.h)
|
|
#include M2S(INCLUDE_PATH/inc_platform.cl)
|
|
#include M2S(INCLUDE_PATH/inc_common.cl)
|
|
#include M2S(INCLUDE_PATH/inc_simd.cl)
|
|
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
|
|
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
|
|
#endif
|
|
|
|
typedef struct securezip
|
|
{
|
|
u32 data[36];
|
|
u32 file[16];
|
|
u32 iv[4];
|
|
u32 iv_len;
|
|
|
|
} securezip_t;
|
|
|
|
KERNEL_FQ KERNEL_FA void m23003_mxx (KERN_ATTR_VECTOR_ESALT (securezip_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
LOCAL_VK u32 s_td0[256];
|
|
LOCAL_VK u32 s_td1[256];
|
|
LOCAL_VK u32 s_td2[256];
|
|
LOCAL_VK u32 s_td3[256];
|
|
LOCAL_VK u32 s_td4[256];
|
|
|
|
LOCAL_VK u32 s_te0[256];
|
|
LOCAL_VK u32 s_te1[256];
|
|
LOCAL_VK u32 s_te2[256];
|
|
LOCAL_VK u32 s_te3[256];
|
|
LOCAL_VK u32 s_te4[256];
|
|
|
|
for (u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
SYNC_THREADS ();
|
|
|
|
#else
|
|
|
|
CONSTANT_AS u32a *s_td0 = td0;
|
|
CONSTANT_AS u32a *s_td1 = td1;
|
|
CONSTANT_AS u32a *s_td2 = td2;
|
|
CONSTANT_AS u32a *s_td3 = td3;
|
|
CONSTANT_AS u32a *s_td4 = td4;
|
|
|
|
CONSTANT_AS u32a *s_te0 = te0;
|
|
CONSTANT_AS u32a *s_te1 = te1;
|
|
CONSTANT_AS u32a *s_te2 = te2;
|
|
CONSTANT_AS u32a *s_te3 = te3;
|
|
CONSTANT_AS u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u32 pw_len = pws[gid].pw_len;
|
|
|
|
u32x w[64] = { 0 };
|
|
|
|
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
|
|
{
|
|
w[idx] = pws[gid].i[idx];
|
|
}
|
|
|
|
/**
|
|
* loop
|
|
*/
|
|
|
|
u32x w0l = w[0];
|
|
|
|
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
|
|
{
|
|
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
|
|
|
|
const u32x w0 = w0l | w0r;
|
|
|
|
w[0] = w0;
|
|
|
|
sha1_ctx_vector_t ctx;
|
|
|
|
sha1_init_vector (&ctx);
|
|
|
|
sha1_update_vector (&ctx, w, pw_len);
|
|
|
|
sha1_final_vector (&ctx);
|
|
|
|
u32 t0[4];
|
|
|
|
t0[0] = 0x36363636 ^ ctx.h[0];
|
|
t0[1] = 0x36363636 ^ ctx.h[1];
|
|
t0[2] = 0x36363636 ^ ctx.h[2];
|
|
t0[3] = 0x36363636 ^ ctx.h[3];
|
|
|
|
u32 t1[4];
|
|
|
|
t1[0] = 0x36363636 ^ ctx.h[4];
|
|
t1[1] = 0x36363636;
|
|
t1[2] = 0x36363636;
|
|
t1[3] = 0x36363636;
|
|
|
|
u32 t2[4];
|
|
|
|
t2[0] = 0x36363636;
|
|
t2[1] = 0x36363636;
|
|
t2[2] = 0x36363636;
|
|
t2[3] = 0x36363636;
|
|
|
|
u32 t3[4];
|
|
|
|
t3[0] = 0x36363636;
|
|
t3[1] = 0x36363636;
|
|
t3[2] = 0x36363636;
|
|
t3[3] = 0x36363636;
|
|
|
|
u32 digest[5];
|
|
|
|
digest[0] = SHA1M_A;
|
|
digest[1] = SHA1M_B;
|
|
digest[2] = SHA1M_C;
|
|
digest[3] = SHA1M_D;
|
|
digest[4] = SHA1M_E;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
t0[0] = 0x80000000;
|
|
t0[1] = 0;
|
|
t0[2] = 0;
|
|
t0[3] = 0;
|
|
|
|
t1[0] = 0;
|
|
t1[1] = 0;
|
|
t1[2] = 0;
|
|
t1[3] = 0;
|
|
|
|
t2[0] = 0;
|
|
t2[1] = 0;
|
|
t2[2] = 0;
|
|
t2[3] = 0;
|
|
|
|
t3[0] = 0;
|
|
t3[1] = 0;
|
|
t3[2] = 0;
|
|
t3[3] = 64 * 8;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
u32 key[8]; // 5 + 3 = 8 (20 bytes + 12 bytes = 32 bytes for the key)
|
|
|
|
key[0] = digest[0];
|
|
key[1] = digest[1];
|
|
key[2] = digest[2];
|
|
key[3] = digest[3];
|
|
key[4] = digest[4];
|
|
|
|
t0[0] = 0x5c5c5c5c ^ ctx.h[0];
|
|
t0[1] = 0x5c5c5c5c ^ ctx.h[1];
|
|
t0[2] = 0x5c5c5c5c ^ ctx.h[2];
|
|
t0[3] = 0x5c5c5c5c ^ ctx.h[3];
|
|
|
|
t1[0] = 0x5c5c5c5c ^ ctx.h[4];
|
|
t1[1] = 0x5c5c5c5c;
|
|
t1[2] = 0x5c5c5c5c;
|
|
t1[3] = 0x5c5c5c5c;
|
|
|
|
t2[0] = 0x5c5c5c5c;
|
|
t2[1] = 0x5c5c5c5c;
|
|
t2[2] = 0x5c5c5c5c;
|
|
t2[3] = 0x5c5c5c5c;
|
|
|
|
t3[0] = 0x5c5c5c5c;
|
|
t3[1] = 0x5c5c5c5c;
|
|
t3[2] = 0x5c5c5c5c;
|
|
t3[3] = 0x5c5c5c5c;
|
|
|
|
digest[0] = SHA1M_A;
|
|
digest[1] = SHA1M_B;
|
|
digest[2] = SHA1M_C;
|
|
digest[3] = SHA1M_D;
|
|
digest[4] = SHA1M_E;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
t0[0] = 0x80000000;
|
|
t0[1] = 0;
|
|
t0[2] = 0;
|
|
t0[3] = 0;
|
|
|
|
t1[0] = 0;
|
|
t1[1] = 0;
|
|
t1[2] = 0;
|
|
t1[3] = 0;
|
|
|
|
t2[0] = 0;
|
|
t2[1] = 0;
|
|
t2[2] = 0;
|
|
t2[3] = 0;
|
|
|
|
t3[0] = 0;
|
|
t3[1] = 0;
|
|
t3[2] = 0;
|
|
t3[3] = 64 * 8;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
key[5] = digest[0];
|
|
key[6] = digest[1];
|
|
key[7] = digest[2];
|
|
|
|
u32 iv[4];
|
|
|
|
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[28];
|
|
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[29];
|
|
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[30];
|
|
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[31];
|
|
|
|
u32 data[4];
|
|
|
|
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[32];
|
|
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[33];
|
|
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[34];
|
|
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[35];
|
|
|
|
#define KEYLEN 60
|
|
|
|
u32 ks[KEYLEN];
|
|
|
|
AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
|
|
|
|
u32 out[4];
|
|
|
|
aes256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
out[0] ^= iv[0];
|
|
out[1] ^= iv[1];
|
|
out[2] ^= iv[2];
|
|
out[3] ^= iv[3];
|
|
|
|
if ((out[0] == 0x10101010) &&
|
|
(out[1] == 0x10101010) &&
|
|
(out[2] == 0x10101010) &&
|
|
(out[3] == 0x10101010))
|
|
{
|
|
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
|
|
{
|
|
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, il_pos, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ KERNEL_FA void m23003_sxx (KERN_ATTR_VECTOR_ESALT (securezip_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
LOCAL_VK u32 s_td0[256];
|
|
LOCAL_VK u32 s_td1[256];
|
|
LOCAL_VK u32 s_td2[256];
|
|
LOCAL_VK u32 s_td3[256];
|
|
LOCAL_VK u32 s_td4[256];
|
|
|
|
LOCAL_VK u32 s_te0[256];
|
|
LOCAL_VK u32 s_te1[256];
|
|
LOCAL_VK u32 s_te2[256];
|
|
LOCAL_VK u32 s_te3[256];
|
|
LOCAL_VK u32 s_te4[256];
|
|
|
|
for (u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
SYNC_THREADS ();
|
|
|
|
#else
|
|
|
|
CONSTANT_AS u32a *s_td0 = td0;
|
|
CONSTANT_AS u32a *s_td1 = td1;
|
|
CONSTANT_AS u32a *s_td2 = td2;
|
|
CONSTANT_AS u32a *s_td3 = td3;
|
|
CONSTANT_AS u32a *s_td4 = td4;
|
|
|
|
CONSTANT_AS u32a *s_te0 = te0;
|
|
CONSTANT_AS u32a *s_te1 = te1;
|
|
CONSTANT_AS u32a *s_te2 = te2;
|
|
CONSTANT_AS u32a *s_te3 = te3;
|
|
CONSTANT_AS u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= GID_CNT) return;
|
|
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u32 pw_len = pws[gid].pw_len;
|
|
|
|
u32x w[64] = { 0 };
|
|
|
|
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
|
|
{
|
|
w[idx] = pws[gid].i[idx];
|
|
}
|
|
|
|
/**
|
|
* loop
|
|
*/
|
|
|
|
u32x w0l = w[0];
|
|
|
|
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
|
|
{
|
|
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
|
|
|
|
const u32x w0 = w0l | w0r;
|
|
|
|
w[0] = w0;
|
|
|
|
sha1_ctx_vector_t ctx;
|
|
|
|
sha1_init_vector (&ctx);
|
|
|
|
sha1_update_vector (&ctx, w, pw_len);
|
|
|
|
sha1_final_vector (&ctx);
|
|
|
|
u32 t0[4];
|
|
|
|
t0[0] = 0x36363636 ^ ctx.h[0];
|
|
t0[1] = 0x36363636 ^ ctx.h[1];
|
|
t0[2] = 0x36363636 ^ ctx.h[2];
|
|
t0[3] = 0x36363636 ^ ctx.h[3];
|
|
|
|
u32 t1[4];
|
|
|
|
t1[0] = 0x36363636 ^ ctx.h[4];
|
|
t1[1] = 0x36363636;
|
|
t1[2] = 0x36363636;
|
|
t1[3] = 0x36363636;
|
|
|
|
u32 t2[4];
|
|
|
|
t2[0] = 0x36363636;
|
|
t2[1] = 0x36363636;
|
|
t2[2] = 0x36363636;
|
|
t2[3] = 0x36363636;
|
|
|
|
u32 t3[4];
|
|
|
|
t3[0] = 0x36363636;
|
|
t3[1] = 0x36363636;
|
|
t3[2] = 0x36363636;
|
|
t3[3] = 0x36363636;
|
|
|
|
u32 digest[5];
|
|
|
|
digest[0] = SHA1M_A;
|
|
digest[1] = SHA1M_B;
|
|
digest[2] = SHA1M_C;
|
|
digest[3] = SHA1M_D;
|
|
digest[4] = SHA1M_E;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
t0[0] = 0x80000000;
|
|
t0[1] = 0;
|
|
t0[2] = 0;
|
|
t0[3] = 0;
|
|
|
|
t1[0] = 0;
|
|
t1[1] = 0;
|
|
t1[2] = 0;
|
|
t1[3] = 0;
|
|
|
|
t2[0] = 0;
|
|
t2[1] = 0;
|
|
t2[2] = 0;
|
|
t2[3] = 0;
|
|
|
|
t3[0] = 0;
|
|
t3[1] = 0;
|
|
t3[2] = 0;
|
|
t3[3] = 64 * 8;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
u32 key[8]; // 5 + 3 = 8 (20 bytes + 12 bytes = 32 bytes for the key)
|
|
|
|
key[0] = digest[0];
|
|
key[1] = digest[1];
|
|
key[2] = digest[2];
|
|
key[3] = digest[3];
|
|
key[4] = digest[4];
|
|
|
|
t0[0] = 0x5c5c5c5c ^ ctx.h[0];
|
|
t0[1] = 0x5c5c5c5c ^ ctx.h[1];
|
|
t0[2] = 0x5c5c5c5c ^ ctx.h[2];
|
|
t0[3] = 0x5c5c5c5c ^ ctx.h[3];
|
|
|
|
t1[0] = 0x5c5c5c5c ^ ctx.h[4];
|
|
t1[1] = 0x5c5c5c5c;
|
|
t1[2] = 0x5c5c5c5c;
|
|
t1[3] = 0x5c5c5c5c;
|
|
|
|
t2[0] = 0x5c5c5c5c;
|
|
t2[1] = 0x5c5c5c5c;
|
|
t2[2] = 0x5c5c5c5c;
|
|
t2[3] = 0x5c5c5c5c;
|
|
|
|
t3[0] = 0x5c5c5c5c;
|
|
t3[1] = 0x5c5c5c5c;
|
|
t3[2] = 0x5c5c5c5c;
|
|
t3[3] = 0x5c5c5c5c;
|
|
|
|
digest[0] = SHA1M_A;
|
|
digest[1] = SHA1M_B;
|
|
digest[2] = SHA1M_C;
|
|
digest[3] = SHA1M_D;
|
|
digest[4] = SHA1M_E;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
t0[0] = 0x80000000;
|
|
t0[1] = 0;
|
|
t0[2] = 0;
|
|
t0[3] = 0;
|
|
|
|
t1[0] = 0;
|
|
t1[1] = 0;
|
|
t1[2] = 0;
|
|
t1[3] = 0;
|
|
|
|
t2[0] = 0;
|
|
t2[1] = 0;
|
|
t2[2] = 0;
|
|
t2[3] = 0;
|
|
|
|
t3[0] = 0;
|
|
t3[1] = 0;
|
|
t3[2] = 0;
|
|
t3[3] = 64 * 8;
|
|
|
|
sha1_transform (t0, t1, t2, t3, digest);
|
|
|
|
key[5] = digest[0];
|
|
key[6] = digest[1];
|
|
key[7] = digest[2];
|
|
|
|
u32 iv[4];
|
|
|
|
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[28];
|
|
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[29];
|
|
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[30];
|
|
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[31];
|
|
|
|
u32 data[4];
|
|
|
|
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].data[32];
|
|
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].data[33];
|
|
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].data[34];
|
|
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].data[35];
|
|
|
|
#define KEYLEN 60
|
|
|
|
u32 ks[KEYLEN];
|
|
|
|
AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
|
|
|
|
u32 out[4];
|
|
|
|
aes256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
out[0] ^= iv[0];
|
|
out[1] ^= iv[1];
|
|
out[2] ^= iv[2];
|
|
out[3] ^= iv[3];
|
|
|
|
if ((out[0] == 0x10101010) &&
|
|
(out[1] == 0x10101010) &&
|
|
(out[2] == 0x10101010) &&
|
|
(out[3] == 0x10101010))
|
|
{
|
|
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
|
|
{
|
|
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, il_pos, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|