1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-25 16:08:18 +00:00
hashcat/OpenCL/m13400.cl
jsteube 33a043ec63 Refactored internal use of esalt from sync with number of salts to sync with number of digests
This enables a true N esalts per salt feature which is required for WPA/WPA2 handling
In case we need that for a future algorithm, just make sure to have a unique value in digest in hash parser.
Fixes https://github.com/hashcat/hashcat/issues/1158
2017-03-07 09:44:58 +01:00

1241 lines
38 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "inc_vendor.cl"
#include "inc_hash_constants.h"
#include "inc_hash_functions.cl"
#include "inc_types.cl"
#include "inc_common.cl"
#include "inc_cipher_aes.cl"
#include "inc_cipher_twofish.cl"
void AES256_ExpandKey (u32 *userkey, u32 *rek, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
rek[0] = userkey[0];
rek[1] = userkey[1];
rek[2] = userkey[2];
rek[3] = userkey[3];
rek[4] = userkey[4];
rek[5] = userkey[5];
rek[6] = userkey[6];
rek[7] = userkey[7];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 0, j = 0; i < 7; i += 1, j += 8)
{
const u32 temp1 = rek[j + 7];
rek[j + 8] = rek[j + 0]
^ (s_te2[(temp1 >> 16) & 0xff] & 0xff000000)
^ (s_te3[(temp1 >> 8) & 0xff] & 0x00ff0000)
^ (s_te0[(temp1 >> 0) & 0xff] & 0x0000ff00)
^ (s_te1[(temp1 >> 24) & 0xff] & 0x000000ff)
^ rcon[i];
rek[j + 9] = rek[j + 1] ^ rek[j + 8];
rek[j + 10] = rek[j + 2] ^ rek[j + 9];
rek[j + 11] = rek[j + 3] ^ rek[j + 10];
if (i == 6) continue;
const u32 temp2 = rek[j + 11];
rek[j + 12] = rek[j + 4]
^ (s_te2[(temp2 >> 24) & 0xff] & 0xff000000)
^ (s_te3[(temp2 >> 16) & 0xff] & 0x00ff0000)
^ (s_te0[(temp2 >> 8) & 0xff] & 0x0000ff00)
^ (s_te1[(temp2 >> 0) & 0xff] & 0x000000ff);
rek[j + 13] = rek[j + 5] ^ rek[j + 12];
rek[j + 14] = rek[j + 6] ^ rek[j + 13];
rek[j + 15] = rek[j + 7] ^ rek[j + 14];
}
}
void AES256_InvertKey (u32 *rdk, SHM_TYPE u32 *s_td0, SHM_TYPE u32 *s_td1, SHM_TYPE u32 *s_td2, SHM_TYPE u32 *s_td3, SHM_TYPE u32 *s_td4, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 0, j = 56; i < 28; i += 4, j -= 4)
{
u32 temp;
temp = rdk[i + 0]; rdk[i + 0] = rdk[j + 0]; rdk[j + 0] = temp;
temp = rdk[i + 1]; rdk[i + 1] = rdk[j + 1]; rdk[j + 1] = temp;
temp = rdk[i + 2]; rdk[i + 2] = rdk[j + 2]; rdk[j + 2] = temp;
temp = rdk[i + 3]; rdk[i + 3] = rdk[j + 3]; rdk[j + 3] = temp;
}
#ifdef _unroll
#pragma unroll
#endif
for (u32 i = 1, j = 4; i < 14; i += 1, j += 4)
{
rdk[j + 0] =
s_td0[s_te1[(rdk[j + 0] >> 24) & 0xff] & 0xff] ^
s_td1[s_te1[(rdk[j + 0] >> 16) & 0xff] & 0xff] ^
s_td2[s_te1[(rdk[j + 0] >> 8) & 0xff] & 0xff] ^
s_td3[s_te1[(rdk[j + 0] >> 0) & 0xff] & 0xff];
rdk[j + 1] =
s_td0[s_te1[(rdk[j + 1] >> 24) & 0xff] & 0xff] ^
s_td1[s_te1[(rdk[j + 1] >> 16) & 0xff] & 0xff] ^
s_td2[s_te1[(rdk[j + 1] >> 8) & 0xff] & 0xff] ^
s_td3[s_te1[(rdk[j + 1] >> 0) & 0xff] & 0xff];
rdk[j + 2] =
s_td0[s_te1[(rdk[j + 2] >> 24) & 0xff] & 0xff] ^
s_td1[s_te1[(rdk[j + 2] >> 16) & 0xff] & 0xff] ^
s_td2[s_te1[(rdk[j + 2] >> 8) & 0xff] & 0xff] ^
s_td3[s_te1[(rdk[j + 2] >> 0) & 0xff] & 0xff];
rdk[j + 3] =
s_td0[s_te1[(rdk[j + 3] >> 24) & 0xff] & 0xff] ^
s_td1[s_te1[(rdk[j + 3] >> 16) & 0xff] & 0xff] ^
s_td2[s_te1[(rdk[j + 3] >> 8) & 0xff] & 0xff] ^
s_td3[s_te1[(rdk[j + 3] >> 0) & 0xff] & 0xff];
}
}
void AES256_decrypt (const u32 *in, u32 *out, const u32 *rdk, SHM_TYPE u32 *s_td0, SHM_TYPE u32 *s_td1, SHM_TYPE u32 *s_td2, SHM_TYPE u32 *s_td3, SHM_TYPE u32 *s_td4)
{
u32 t0 = in[0] ^ rdk[0];
u32 t1 = in[1] ^ rdk[1];
u32 t2 = in[2] ^ rdk[2];
u32 t3 = in[3] ^ rdk[3];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 4; i < 56; i += 4)
{
const uchar4 x0 = as_uchar4 (t0);
const uchar4 x1 = as_uchar4 (t1);
const uchar4 x2 = as_uchar4 (t2);
const uchar4 x3 = as_uchar4 (t3);
t0 = s_td0[x0.s3] ^ s_td1[x3.s2] ^ s_td2[x2.s1] ^ s_td3[x1.s0] ^ rdk[i + 0];
t1 = s_td0[x1.s3] ^ s_td1[x0.s2] ^ s_td2[x3.s1] ^ s_td3[x2.s0] ^ rdk[i + 1];
t2 = s_td0[x2.s3] ^ s_td1[x1.s2] ^ s_td2[x0.s1] ^ s_td3[x3.s0] ^ rdk[i + 2];
t3 = s_td0[x3.s3] ^ s_td1[x2.s2] ^ s_td2[x1.s1] ^ s_td3[x0.s0] ^ rdk[i + 3];
}
out[0] = (s_td4[(t0 >> 24) & 0xff] & 0xff000000)
^ (s_td4[(t3 >> 16) & 0xff] & 0x00ff0000)
^ (s_td4[(t2 >> 8) & 0xff] & 0x0000ff00)
^ (s_td4[(t1 >> 0) & 0xff] & 0x000000ff)
^ rdk[56];
out[1] = (s_td4[(t1 >> 24) & 0xff] & 0xff000000)
^ (s_td4[(t0 >> 16) & 0xff] & 0x00ff0000)
^ (s_td4[(t3 >> 8) & 0xff] & 0x0000ff00)
^ (s_td4[(t2 >> 0) & 0xff] & 0x000000ff)
^ rdk[57];
out[2] = (s_td4[(t2 >> 24) & 0xff] & 0xff000000)
^ (s_td4[(t1 >> 16) & 0xff] & 0x00ff0000)
^ (s_td4[(t0 >> 8) & 0xff] & 0x0000ff00)
^ (s_td4[(t3 >> 0) & 0xff] & 0x000000ff)
^ rdk[58];
out[3] = (s_td4[(t3 >> 24) & 0xff] & 0xff000000)
^ (s_td4[(t2 >> 16) & 0xff] & 0x00ff0000)
^ (s_td4[(t1 >> 8) & 0xff] & 0x0000ff00)
^ (s_td4[(t0 >> 0) & 0xff] & 0x000000ff)
^ rdk[59];
}
void AES256_encrypt (const u32 *in, u32 *out, const u32 *rek, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 t0 = in[0] ^ rek[0];
u32 t1 = in[1] ^ rek[1];
u32 t2 = in[2] ^ rek[2];
u32 t3 = in[3] ^ rek[3];
#ifdef _unroll
#pragma unroll
#endif
for (int i = 4; i < 56; i += 4)
{
const uchar4 x0 = as_uchar4 (t0);
const uchar4 x1 = as_uchar4 (t1);
const uchar4 x2 = as_uchar4 (t2);
const uchar4 x3 = as_uchar4 (t3);
t0 = s_te0[x0.s3] ^ s_te1[x1.s2] ^ s_te2[x2.s1] ^ s_te3[x3.s0] ^ rek[i + 0];
t1 = s_te0[x1.s3] ^ s_te1[x2.s2] ^ s_te2[x3.s1] ^ s_te3[x0.s0] ^ rek[i + 1];
t2 = s_te0[x2.s3] ^ s_te1[x3.s2] ^ s_te2[x0.s1] ^ s_te3[x1.s0] ^ rek[i + 2];
t3 = s_te0[x3.s3] ^ s_te1[x0.s2] ^ s_te2[x1.s1] ^ s_te3[x2.s0] ^ rek[i + 3];
}
out[0] = (s_te4[(t0 >> 24) & 0xff] & 0xff000000)
^ (s_te4[(t1 >> 16) & 0xff] & 0x00ff0000)
^ (s_te4[(t2 >> 8) & 0xff] & 0x0000ff00)
^ (s_te4[(t3 >> 0) & 0xff] & 0x000000ff)
^ rek[56];
out[1] = (s_te4[(t1 >> 24) & 0xff] & 0xff000000)
^ (s_te4[(t2 >> 16) & 0xff] & 0x00ff0000)
^ (s_te4[(t3 >> 8) & 0xff] & 0x0000ff00)
^ (s_te4[(t0 >> 0) & 0xff] & 0x000000ff)
^ rek[57];
out[2] = (s_te4[(t2 >> 24) & 0xff] & 0xff000000)
^ (s_te4[(t3 >> 16) & 0xff] & 0x00ff0000)
^ (s_te4[(t0 >> 8) & 0xff] & 0x0000ff00)
^ (s_te4[(t1 >> 0) & 0xff] & 0x000000ff)
^ rek[58];
out[3] = (s_te4[(t3 >> 24) & 0xff] & 0xff000000)
^ (s_te4[(t0 >> 16) & 0xff] & 0x00ff0000)
^ (s_te4[(t1 >> 8) & 0xff] & 0x0000ff00)
^ (s_te4[(t2 >> 0) & 0xff] & 0x000000ff)
^ rek[59];
}
__constant u32a k_sha256[64] =
{
SHA256C00, SHA256C01, SHA256C02, SHA256C03,
SHA256C04, SHA256C05, SHA256C06, SHA256C07,
SHA256C08, SHA256C09, SHA256C0a, SHA256C0b,
SHA256C0c, SHA256C0d, SHA256C0e, SHA256C0f,
SHA256C10, SHA256C11, SHA256C12, SHA256C13,
SHA256C14, SHA256C15, SHA256C16, SHA256C17,
SHA256C18, SHA256C19, SHA256C1a, SHA256C1b,
SHA256C1c, SHA256C1d, SHA256C1e, SHA256C1f,
SHA256C20, SHA256C21, SHA256C22, SHA256C23,
SHA256C24, SHA256C25, SHA256C26, SHA256C27,
SHA256C28, SHA256C29, SHA256C2a, SHA256C2b,
SHA256C2c, SHA256C2d, SHA256C2e, SHA256C2f,
SHA256C30, SHA256C31, SHA256C32, SHA256C33,
SHA256C34, SHA256C35, SHA256C36, SHA256C37,
SHA256C38, SHA256C39, SHA256C3a, SHA256C3b,
SHA256C3c, SHA256C3d, SHA256C3e, SHA256C3f,
};
void sha256_transform (const u32 w0[4], const u32 w1[4], const u32 w2[4], const u32 w3[4], u32 digest[8])
{
u32 a = digest[0];
u32 b = digest[1];
u32 c = digest[2];
u32 d = digest[3];
u32 e = digest[4];
u32 f = digest[5];
u32 g = digest[6];
u32 h = digest[7];
u32 w0_t = w0[0];
u32 w1_t = w0[1];
u32 w2_t = w0[2];
u32 w3_t = w0[3];
u32 w4_t = w1[0];
u32 w5_t = w1[1];
u32 w6_t = w1[2];
u32 w7_t = w1[3];
u32 w8_t = w2[0];
u32 w9_t = w2[1];
u32 wa_t = w2[2];
u32 wb_t = w2[3];
u32 wc_t = w3[0];
u32 wd_t = w3[1];
u32 we_t = w3[2];
u32 wf_t = w3[3];
#define ROUND_EXPAND() \
{ \
w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \
w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \
w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \
w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \
w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \
w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \
w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \
w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \
w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \
w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \
wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \
wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \
wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \
wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \
we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \
wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \
}
#define ROUND_STEP(i) \
{ \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \
}
ROUND_STEP (0);
#ifdef _unroll
#pragma unroll
#endif
for (int i = 16; i < 64; i += 16)
{
ROUND_EXPAND (); ROUND_STEP (i);
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
digest[5] += f;
digest[6] += g;
digest[7] += h;
}
__kernel void m13400_init (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const comb_t *combs_buf, __global const bf_t *bfs_buf, __global keepass_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global keepass_t *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
/**
* base
*/
const u32 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 w0[4];
w0[0] = pws[gid].i[ 0];
w0[1] = pws[gid].i[ 1];
w0[2] = pws[gid].i[ 2];
w0[3] = pws[gid].i[ 3];
u32 w1[4];
w1[0] = pws[gid].i[ 4];
w1[1] = pws[gid].i[ 5];
w1[2] = pws[gid].i[ 6];
w1[3] = pws[gid].i[ 7];
u32 w2[4];
w2[0] = pws[gid].i[ 8];
w2[1] = pws[gid].i[ 9];
w2[2] = pws[gid].i[10];
w2[3] = pws[gid].i[11];
u32 w3[4];
w3[0] = pws[gid].i[12];
w3[1] = pws[gid].i[13];
w3[2] = pws[gid].i[14];
w3[3] = pws[gid].i[15];
const u32 pw_len = pws[gid].pw_len;
append_0x80_4x4 (w0, w1, w2, w3, pw_len);
w0[0] = swap32 (w0[0]);
w0[1] = swap32 (w0[1]);
w0[2] = swap32 (w0[2]);
w0[3] = swap32 (w0[3]);
w1[0] = swap32 (w1[0]);
w1[1] = swap32 (w1[1]);
w1[2] = swap32 (w1[2]);
w1[3] = swap32 (w1[3]);
w2[0] = swap32 (w2[0]);
w2[1] = swap32 (w2[1]);
w2[2] = swap32 (w2[2]);
w2[3] = swap32 (w2[3]);
w3[0] = swap32 (w3[0]);
w3[1] = swap32 (w3[1]);
w3[2] = swap32 (w3[2]);
w3[3] = swap32 (w3[3]);
w3[3] = pw_len * 8;
/**
* main
*/
u32 digest[8];
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
if (esalt_bufs[digests_offset].version == 2 && esalt_bufs[digests_offset].keyfile_len == 0)
{
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 32 * 8;
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
}
if (esalt_bufs[digests_offset].keyfile_len != 0)
{
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = esalt_bufs[digests_offset].keyfile[0];
w2[1] = esalt_bufs[digests_offset].keyfile[1];
w2[2] = esalt_bufs[digests_offset].keyfile[2];
w2[3] = esalt_bufs[digests_offset].keyfile[3];
w3[0] = esalt_bufs[digests_offset].keyfile[4];
w3[1] = esalt_bufs[digests_offset].keyfile[5];
w3[3] = esalt_bufs[digests_offset].keyfile[7];
w3[2] = esalt_bufs[digests_offset].keyfile[6];
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
w0[0] = 0x80000000;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 64 * 8;
sha256_transform (w0, w1, w2, w3, digest);
}
tmps[gid].tmp_digest[0] = digest[0];
tmps[gid].tmp_digest[1] = digest[1];
tmps[gid].tmp_digest[2] = digest[2];
tmps[gid].tmp_digest[3] = digest[3];
tmps[gid].tmp_digest[4] = digest[4];
tmps[gid].tmp_digest[5] = digest[5];
tmps[gid].tmp_digest[6] = digest[6];
tmps[gid].tmp_digest[7] = digest[7];
}
__kernel void m13400_loop (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const comb_t *combs_buf, __global const bf_t *bfs_buf, __global keepass_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global keepass_t *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
const u32 gid = get_global_id (0);
const u32 lid = get_local_id (0);
const u32 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
__local u32 s_te0[256];
__local u32 s_te1[256];
__local u32 s_te2[256];
__local u32 s_te3[256];
__local u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
barrier (CLK_LOCAL_MEM_FENCE);
#else
__constant u32a *s_te0 = te0;
__constant u32a *s_te1 = te1;
__constant u32a *s_te2 = te2;
__constant u32a *s_te3 = te3;
__constant u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/* Construct AES key */
u32 key[8];
key[0] = esalt_bufs[digests_offset].transf_random_seed[0];
key[1] = esalt_bufs[digests_offset].transf_random_seed[1];
key[2] = esalt_bufs[digests_offset].transf_random_seed[2];
key[3] = esalt_bufs[digests_offset].transf_random_seed[3];
key[4] = esalt_bufs[digests_offset].transf_random_seed[4];
key[5] = esalt_bufs[digests_offset].transf_random_seed[5];
key[6] = esalt_bufs[digests_offset].transf_random_seed[6];
key[7] = esalt_bufs[digests_offset].transf_random_seed[7];
#define KEYLEN 60
u32 rk[KEYLEN];
AES256_ExpandKey (key, rk, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 data0[4];
u32 data1[4];
data0[0] = tmps[gid].tmp_digest[0];
data0[1] = tmps[gid].tmp_digest[1];
data0[2] = tmps[gid].tmp_digest[2];
data0[3] = tmps[gid].tmp_digest[3];
data1[0] = tmps[gid].tmp_digest[4];
data1[1] = tmps[gid].tmp_digest[5];
data1[2] = tmps[gid].tmp_digest[6];
data1[3] = tmps[gid].tmp_digest[7];
for (u32 i = 0; i < loop_cnt; i++)
{
AES256_encrypt (data0, data0, rk, s_te0, s_te1, s_te2, s_te3, s_te4);
AES256_encrypt (data1, data1, rk, s_te0, s_te1, s_te2, s_te3, s_te4);
}
tmps[gid].tmp_digest[0] = data0[0];
tmps[gid].tmp_digest[1] = data0[1];
tmps[gid].tmp_digest[2] = data0[2];
tmps[gid].tmp_digest[3] = data0[3];
tmps[gid].tmp_digest[4] = data1[0];
tmps[gid].tmp_digest[5] = data1[1];
tmps[gid].tmp_digest[6] = data1[2];
tmps[gid].tmp_digest[7] = data1[3];
}
__kernel void m13400_comp (__global pw_t *pws, __global const kernel_rule_t *rules_buf, __global const comb_t *combs_buf, __global const bf_t *bfs_buf, __global keepass_tmp_t *tmps, __global void *hooks, __global const u32 *bitmaps_buf_s1_a, __global const u32 *bitmaps_buf_s1_b, __global const u32 *bitmaps_buf_s1_c, __global const u32 *bitmaps_buf_s1_d, __global const u32 *bitmaps_buf_s2_a, __global const u32 *bitmaps_buf_s2_b, __global const u32 *bitmaps_buf_s2_c, __global const u32 *bitmaps_buf_s2_d, __global plain_t *plains_buf, __global const digest_t *digests_buf, __global u32 *hashes_shown, __global const salt_t *salt_bufs, __global keepass_t *esalt_bufs, __global u32 *d_return_buf, __global u32 *d_scryptV0_buf, __global u32 *d_scryptV1_buf, __global u32 *d_scryptV2_buf, __global u32 *d_scryptV3_buf, const u32 bitmap_mask, const u32 bitmap_shift1, const u32 bitmap_shift2, const u32 salt_pos, const u32 loop_pos, const u32 loop_cnt, const u32 rules_cnt, const u32 digests_cnt, const u32 digests_offset, const u32 combs_mode, const u32 gid_max)
{
const u32 gid = get_global_id (0);
const u32 lid = get_local_id (0);
const u32 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
__local u32 s_td0[256];
__local u32 s_td1[256];
__local u32 s_td2[256];
__local u32 s_td3[256];
__local u32 s_td4[256];
__local u32 s_te0[256];
__local u32 s_te1[256];
__local u32 s_te2[256];
__local u32 s_te3[256];
__local u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
barrier (CLK_LOCAL_MEM_FENCE);
#else
__constant u32a *s_td0 = td0;
__constant u32a *s_td1 = td1;
__constant u32a *s_td2 = td2;
__constant u32a *s_td3 = td3;
__constant u32a *s_td4 = td4;
__constant u32a *s_te0 = te0;
__constant u32a *s_te1 = te1;
__constant u32a *s_te2 = te2;
__constant u32a *s_te3 = te3;
__constant u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/* hash output... */
u32 w0[4];
w0[0] = tmps[gid].tmp_digest[0];
w0[1] = tmps[gid].tmp_digest[1];
w0[2] = tmps[gid].tmp_digest[2];
w0[3] = tmps[gid].tmp_digest[3];
u32 w1[4];
w1[0] = tmps[gid].tmp_digest[4];
w1[1] = tmps[gid].tmp_digest[5];
w1[2] = tmps[gid].tmp_digest[6];
w1[3] = tmps[gid].tmp_digest[7];
u32 w2[4];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
u32 w3[4];
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 32 * 8;
u32 digest[8];
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
/* ...then hash final_random_seed | output */
if (esalt_bufs[digests_offset].version == 1)
{
u32 final_random_seed[4];
final_random_seed[0] = esalt_bufs[digests_offset].final_random_seed[0];
final_random_seed[1] = esalt_bufs[digests_offset].final_random_seed[1];
final_random_seed[2] = esalt_bufs[digests_offset].final_random_seed[2];
final_random_seed[3] = esalt_bufs[digests_offset].final_random_seed[3];
w0[0] = final_random_seed[0];
w0[1] = final_random_seed[1];
w0[2] = final_random_seed[2];
w0[3] = final_random_seed[3];
w1[0] = digest[0];
w1[1] = digest[1];
w1[2] = digest[2];
w1[3] = digest[3];
w2[0] = digest[4];
w2[1] = digest[5];
w2[2] = digest[6];
w2[3] = digest[7];
w3[0] = 0x80000000;
w3[1] = 0;
w3[2] = 0;
w3[3] = 48 * 8;
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
}
else
{
/* merkle-damgard implementation */
u32 final_random_seed[8];
final_random_seed[0] = esalt_bufs[digests_offset].final_random_seed[0];
final_random_seed[1] = esalt_bufs[digests_offset].final_random_seed[1];
final_random_seed[2] = esalt_bufs[digests_offset].final_random_seed[2];
final_random_seed[3] = esalt_bufs[digests_offset].final_random_seed[3];
final_random_seed[4] = esalt_bufs[digests_offset].final_random_seed[4];
final_random_seed[5] = esalt_bufs[digests_offset].final_random_seed[5];
final_random_seed[6] = esalt_bufs[digests_offset].final_random_seed[6];
final_random_seed[7] = esalt_bufs[digests_offset].final_random_seed[7];
w0[0] = final_random_seed[0];
w0[1] = final_random_seed[1];
w0[2] = final_random_seed[2];
w0[3] = final_random_seed[3];
w1[0] = final_random_seed[4];
w1[1] = final_random_seed[5];
w1[2] = final_random_seed[6];
w1[3] = final_random_seed[7];
w2[0] = digest[0];
w2[1] = digest[1];
w2[2] = digest[2];
w2[3] = digest[3];
w3[0] = digest[4];
w3[1] = digest[5];
w3[2] = digest[6];
w3[3] = digest[7];
digest[0] = SHA256M_A;
digest[1] = SHA256M_B;
digest[2] = SHA256M_C;
digest[3] = SHA256M_D;
digest[4] = SHA256M_E;
digest[5] = SHA256M_F;
digest[6] = SHA256M_G;
digest[7] = SHA256M_H;
sha256_transform (w0, w1, w2, w3, digest);
w0[0] = 0x80000000;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 64 * 8;
sha256_transform (w0, w1, w2, w3, digest);
}
// at this point we have to distinguish between the different keypass versions
u32 iv[4];
iv[0] = esalt_bufs[digests_offset].enc_iv[0];
iv[1] = esalt_bufs[digests_offset].enc_iv[1];
iv[2] = esalt_bufs[digests_offset].enc_iv[2];
iv[3] = esalt_bufs[digests_offset].enc_iv[3];
u32 out[8];
if (esalt_bufs[digests_offset].version == 1)
{
if (esalt_bufs[digests_offset].algorithm == 1)
{
/* Construct final Twofish key */
u32 sk[4];
u32 lk[40];
digest[0] = swap32 (digest[0]);
digest[1] = swap32 (digest[1]);
digest[2] = swap32 (digest[2]);
digest[3] = swap32 (digest[3]);
digest[4] = swap32 (digest[4]);
digest[5] = swap32 (digest[5]);
digest[6] = swap32 (digest[6]);
digest[7] = swap32 (digest[7]);
twofish256_set_key (sk, lk, digest);
iv[0] = swap32 (iv[0]);
iv[1] = swap32 (iv[1]);
iv[2] = swap32 (iv[2]);
iv[3] = swap32 (iv[3]);
u32 wx[16];
u32 final_digest[8];
final_digest[0] = SHA256M_A;
final_digest[1] = SHA256M_B;
final_digest[2] = SHA256M_C;
final_digest[3] = SHA256M_D;
final_digest[4] = SHA256M_E;
final_digest[5] = SHA256M_F;
final_digest[6] = SHA256M_G;
final_digest[7] = SHA256M_H;
u32 contents_len = esalt_bufs[digests_offset].contents_len;
u32 contents_pos;
u32 contents_off;
// process (decrypt and hash) the buffer with the biggest steps possible.
for (contents_pos = 0, contents_off = 0; contents_pos < contents_len - 64; contents_pos += 64, contents_off += 16)
{
for (u32 se = 0; se < 16; se += 4)
{
u32 data[4];
data[0] = swap32 (esalt_bufs[digests_offset].contents[contents_off + se + 0]);
data[1] = swap32 (esalt_bufs[digests_offset].contents[contents_off + se + 1]);
data[2] = swap32 (esalt_bufs[digests_offset].contents[contents_off + se + 2]);
data[3] = swap32 (esalt_bufs[digests_offset].contents[contents_off + se + 3]);
u32 out[4];
twofish256_decrypt (sk, lk, data, out);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
wx[se + 0] = swap32 (out[0]);
wx[se + 1] = swap32 (out[1]);
wx[se + 2] = swap32 (out[2]);
wx[se + 3] = swap32 (out[3]);
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
}
// we've reached the final (or prefinal) block for hashing. this depends on the final length which we don't know at this point.
// attention, this is not the final block for decrypt
// since we don't know the final length, we simply set the entire block to zero, this will make the processing easier
wx[ 0] = 0;
wx[ 1] = 0;
wx[ 2] = 0;
wx[ 3] = 0;
wx[ 4] = 0;
wx[ 5] = 0;
wx[ 6] = 0;
wx[ 7] = 0;
wx[ 8] = 0;
wx[ 9] = 0;
wx[10] = 0;
wx[11] = 0;
wx[12] = 0;
wx[13] = 0;
wx[14] = 0;
wx[15] = 0;
u32 wx_off;
for (wx_off = 0; contents_pos < contents_len - 16; wx_off += 4, contents_pos += 16, contents_off += 4)
{
u32 data[4];
data[0] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 0]);
data[1] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 1]);
data[2] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 2]);
data[3] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 3]);
u32 out[4];
twofish256_decrypt (sk, lk, data, out);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
wx[wx_off + 0] = swap32 (out[0]);
wx[wx_off + 1] = swap32 (out[1]);
wx[wx_off + 2] = swap32 (out[2]);
wx[wx_off + 3] = swap32 (out[3]);
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
// we've reached the final block for decrypt, it will contain the padding bytes we're looking for
u32 data[4];
data[0] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 0]);
data[1] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 1]);
data[2] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 2]);
data[3] = swap32 (esalt_bufs[digests_offset].contents[contents_off + 3]);
u32 out[4];
twofish256_decrypt (sk, lk, data, out);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
// now we can access the pad byte
const u32 pad_byte = out[3] >> 24;
const u32 real_len = esalt_bufs[digests_offset].contents_len - pad_byte;
// we need to clear the buffer of the padding data
truncate_block (out, 16 - pad_byte);
// it's also a good point to push our 0x80
append_0x80_1x4 (out, 16 - pad_byte);
// now we can save it
wx[wx_off + 0] = swap32 (out[0]);
wx[wx_off + 1] = swap32 (out[1]);
wx[wx_off + 2] = swap32 (out[2]);
wx[wx_off + 3] = swap32 (out[3]);
// since we were informed about real length so late we have
// to check a final branch for hashing
if ((real_len & 0x3f) >= 56)
{
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
wx[ 0] = 0;
wx[ 1] = 0;
wx[ 2] = 0;
wx[ 3] = 0;
wx[ 4] = 0;
wx[ 5] = 0;
wx[ 6] = 0;
wx[ 7] = 0;
wx[ 8] = 0;
wx[ 9] = 0;
wx[10] = 0;
wx[11] = 0;
wx[12] = 0;
wx[13] = 0;
wx[14] = 0;
wx[15] = 0;
}
wx[15] = real_len * 8;
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
#define il_pos 0
if ( esalt_bufs[digests_offset].contents_hash[0] == final_digest[0]
&& esalt_bufs[digests_offset].contents_hash[1] == final_digest[1]
&& esalt_bufs[digests_offset].contents_hash[2] == final_digest[2]
&& esalt_bufs[digests_offset].contents_hash[3] == final_digest[3]
&& esalt_bufs[digests_offset].contents_hash[4] == final_digest[4]
&& esalt_bufs[digests_offset].contents_hash[5] == final_digest[5]
&& esalt_bufs[digests_offset].contents_hash[6] == final_digest[6]
&& esalt_bufs[digests_offset].contents_hash[7] == final_digest[7])
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, il_pos);
}
}
else
{
/* Construct final AES key */
#define KEYLEN 60
u32 final_rk[KEYLEN];
AES256_ExpandKey (digest, final_rk, s_te0, s_te1, s_te2, s_te3, s_te4);
AES256_InvertKey (final_rk, s_td0, s_td1, s_td2, s_td3, s_td4, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 wx[16];
u32 final_digest[8];
final_digest[0] = SHA256M_A;
final_digest[1] = SHA256M_B;
final_digest[2] = SHA256M_C;
final_digest[3] = SHA256M_D;
final_digest[4] = SHA256M_E;
final_digest[5] = SHA256M_F;
final_digest[6] = SHA256M_G;
final_digest[7] = SHA256M_H;
u32 contents_len = esalt_bufs[digests_offset].contents_len;
u32 contents_pos;
u32 contents_off;
// process (decrypt and hash) the buffer with the biggest steps possible.
for (contents_pos = 0, contents_off = 0; contents_pos < contents_len - 64; contents_pos += 64, contents_off += 16)
{
for (u32 se = 0; se < 16; se += 4)
{
u32 data[4];
data[0] = esalt_bufs[digests_offset].contents[contents_off + se + 0];
data[1] = esalt_bufs[digests_offset].contents[contents_off + se + 1];
data[2] = esalt_bufs[digests_offset].contents[contents_off + se + 2];
data[3] = esalt_bufs[digests_offset].contents[contents_off + se + 3];
u32 out[4];
AES256_decrypt (data, out, final_rk, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
wx[se + 0] = out[0];
wx[se + 1] = out[1];
wx[se + 2] = out[2];
wx[se + 3] = out[3];
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
}
// we've reached the final (or prefinal) block for hashing. this depends on the final length which we don't know at this point.
// attention, this is not the final block for decrypt
// since we don't know the final length, we simply set the entire block to zero, this will make the processing easier
wx[ 0] = 0;
wx[ 1] = 0;
wx[ 2] = 0;
wx[ 3] = 0;
wx[ 4] = 0;
wx[ 5] = 0;
wx[ 6] = 0;
wx[ 7] = 0;
wx[ 8] = 0;
wx[ 9] = 0;
wx[10] = 0;
wx[11] = 0;
wx[12] = 0;
wx[13] = 0;
wx[14] = 0;
wx[15] = 0;
u32 wx_off;
for (wx_off = 0; contents_pos < contents_len - 16; wx_off += 4, contents_pos += 16, contents_off += 4)
{
u32 data[4];
data[0] = esalt_bufs[digests_offset].contents[contents_off + 0];
data[1] = esalt_bufs[digests_offset].contents[contents_off + 1];
data[2] = esalt_bufs[digests_offset].contents[contents_off + 2];
data[3] = esalt_bufs[digests_offset].contents[contents_off + 3];
u32 out[4];
AES256_decrypt (data, out, final_rk, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
wx[wx_off + 0] = out[0];
wx[wx_off + 1] = out[1];
wx[wx_off + 2] = out[2];
wx[wx_off + 3] = out[3];
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
// we've reached the final block for decrypt, it will contain the padding bytes we're looking for
u32 data[4];
data[0] = esalt_bufs[digests_offset].contents[contents_off + 0];
data[1] = esalt_bufs[digests_offset].contents[contents_off + 1];
data[2] = esalt_bufs[digests_offset].contents[contents_off + 2];
data[3] = esalt_bufs[digests_offset].contents[contents_off + 3];
u32 out[4];
AES256_decrypt (data, out, final_rk, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
// now we can access the pad byte
out[0] = swap32 (out[0]);
out[1] = swap32 (out[1]);
out[2] = swap32 (out[2]);
out[3] = swap32 (out[3]);
const u32 pad_byte = out[3] >> 24;
const u32 real_len = esalt_bufs[digests_offset].contents_len - pad_byte;
// we need to clear the buffer of the padding data
truncate_block (out, 16 - pad_byte);
// it's also a good point to push our 0x80
append_0x80_1x4 (out, 16 - pad_byte);
// now we can save it
wx[wx_off + 0] = swap32 (out[0]);
wx[wx_off + 1] = swap32 (out[1]);
wx[wx_off + 2] = swap32 (out[2]);
wx[wx_off + 3] = swap32 (out[3]);
// since we were informed about real length so late we have
// to check a final branch for hashing
if ((real_len & 0x3f) >= 56)
{
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
wx[ 0] = 0;
wx[ 1] = 0;
wx[ 2] = 0;
wx[ 3] = 0;
wx[ 4] = 0;
wx[ 5] = 0;
wx[ 6] = 0;
wx[ 7] = 0;
wx[ 8] = 0;
wx[ 9] = 0;
wx[10] = 0;
wx[11] = 0;
wx[12] = 0;
wx[13] = 0;
wx[14] = 0;
wx[15] = 0;
}
wx[15] = real_len * 8;
sha256_transform (&wx[0], &wx[4], &wx[8], &wx[12], final_digest);
#define il_pos 0
if ( esalt_bufs[digests_offset].contents_hash[0] == final_digest[0]
&& esalt_bufs[digests_offset].contents_hash[1] == final_digest[1]
&& esalt_bufs[digests_offset].contents_hash[2] == final_digest[2]
&& esalt_bufs[digests_offset].contents_hash[3] == final_digest[3]
&& esalt_bufs[digests_offset].contents_hash[4] == final_digest[4]
&& esalt_bufs[digests_offset].contents_hash[5] == final_digest[5]
&& esalt_bufs[digests_offset].contents_hash[6] == final_digest[6]
&& esalt_bufs[digests_offset].contents_hash[7] == final_digest[7])
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, il_pos);
}
}
}
else
{
/* Construct final AES key */
#define KEYLEN 60
u32 final_rk[KEYLEN];
AES256_ExpandKey (digest, final_rk, s_te0, s_te1, s_te2, s_te3, s_te4);
AES256_InvertKey (final_rk, s_td0, s_td1, s_td2, s_td3, s_td4, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 contents_hash[4];
contents_hash[0] = esalt_bufs[digests_offset].contents_hash[0];
contents_hash[1] = esalt_bufs[digests_offset].contents_hash[1];
contents_hash[2] = esalt_bufs[digests_offset].contents_hash[2];
contents_hash[3] = esalt_bufs[digests_offset].contents_hash[3];
AES256_decrypt (contents_hash, out, final_rk, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
/* We get rid of last 16 bytes */
#define il_pos 0
if ( esalt_bufs[digests_offset].expected_bytes[0] == out[0]
&& esalt_bufs[digests_offset].expected_bytes[1] == out[1]
&& esalt_bufs[digests_offset].expected_bytes[2] == out[2]
&& esalt_bufs[digests_offset].expected_bytes[3] == out[3])
{
mark_hash (plains_buf, d_return_buf, salt_pos, digests_cnt, 0, digests_offset + 0, gid, il_pos);
}
}
}