1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-21 21:20:57 +00:00
hashcat/deps/LZMA-SDK/C/LzFindMt.c

1183 lines
30 KiB
C

/* LzFindMt.c -- multithreaded Match finder for LZ algorithms
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "LzHash.h"
#include "LzFindMt.h"
// #define LOG_ITERS
#ifdef LOG_ITERS
#include <stdio.h>
static UInt64 g_NumIters_Tree;
static UInt64 g_NumIters_Loop;
#define LOG_ITER(x) x
#else
#define LOG_ITER(x)
#endif
#define kMtHashBlockSize (1 << 17)
#define kMtHashNumBlocks (1 << 1)
#define kMtHashNumBlocksMask (kMtHashNumBlocks - 1)
#define kMtBtBlockSize (1 << 16)
#define kMtBtNumBlocks (1 << 4)
#define kMtBtNumBlocksMask (kMtBtNumBlocks - 1)
/*
HASH functions:
We use raw 8/16 bits from a[1] and a[2],
xored with crc(a[0]) and crc(a[3]).
We check a[0], a[3] only. We don't need to compare a[1] and a[2] in matches.
our crc() function provides one-to-one correspondence for low 8-bit values:
(crc[0...0xFF] & 0xFF) <-> [0...0xFF]
*/
#define MT_HASH2_CALC \
h2 = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
#define MT_HASH3_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
/*
#define MT_HASH3_CALC__NO_2 { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
#define __MT_HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
h4 = (temp ^ (p->crc[cur[3]] << kLzHash_CrcShift_1)) & p->hash4Mask; }
// (kHash4Size - 1);
*/
static void MtSync_Construct(CMtSync *p)
{
p->wasCreated = False;
p->csWasInitialized = False;
p->csWasEntered = False;
Thread_Construct(&p->thread);
Event_Construct(&p->canStart);
Event_Construct(&p->wasStarted);
Event_Construct(&p->wasStopped);
Semaphore_Construct(&p->freeSemaphore);
Semaphore_Construct(&p->filledSemaphore);
p->affinity = 0;
}
MY_NO_INLINE
static void MtSync_GetNextBlock(CMtSync *p)
{
if (p->needStart)
{
p->numProcessedBlocks = 1;
p->needStart = False;
p->stopWriting = False;
p->exit = False;
Event_Reset(&p->wasStarted);
Event_Reset(&p->wasStopped);
Event_Set(&p->canStart);
Event_Wait(&p->wasStarted);
// if (mt) MatchFinder_Init_LowHash(mt->MatchFinder);
}
else
{
CriticalSection_Leave(&p->cs);
p->csWasEntered = False;
p->numProcessedBlocks++;
Semaphore_Release1(&p->freeSemaphore);
}
Semaphore_Wait(&p->filledSemaphore);
CriticalSection_Enter(&p->cs);
p->csWasEntered = True;
}
/* MtSync_StopWriting must be called if Writing was started */
static void MtSync_StopWriting(CMtSync *p)
{
UInt32 myNumBlocks = p->numProcessedBlocks;
if (!Thread_WasCreated(&p->thread) || p->needStart)
return;
p->stopWriting = True;
if (p->csWasEntered)
{
CriticalSection_Leave(&p->cs);
p->csWasEntered = False;
}
Semaphore_Release1(&p->freeSemaphore);
Event_Wait(&p->wasStopped);
while (myNumBlocks++ != p->numProcessedBlocks)
{
Semaphore_Wait(&p->filledSemaphore);
Semaphore_Release1(&p->freeSemaphore);
}
p->needStart = True;
}
static void MtSync_Destruct(CMtSync *p)
{
if (Thread_WasCreated(&p->thread))
{
MtSync_StopWriting(p);
p->exit = True;
if (p->needStart)
Event_Set(&p->canStart);
Thread_Wait_Close(&p->thread);
}
if (p->csWasInitialized)
{
CriticalSection_Delete(&p->cs);
p->csWasInitialized = False;
}
Event_Close(&p->canStart);
Event_Close(&p->wasStarted);
Event_Close(&p->wasStopped);
Semaphore_Close(&p->freeSemaphore);
Semaphore_Close(&p->filledSemaphore);
p->wasCreated = False;
}
#define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
static SRes MtSync_Create2(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj, UInt32 numBlocks)
{
WRes wres;
if (p->wasCreated)
return SZ_OK;
RINOK_THREAD(CriticalSection_Init(&p->cs));
p->csWasInitialized = True;
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canStart));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->wasStarted));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->wasStopped));
RINOK_THREAD(Semaphore_Create(&p->freeSemaphore, numBlocks, numBlocks));
RINOK_THREAD(Semaphore_Create(&p->filledSemaphore, 0, numBlocks));
p->needStart = True;
if (p->affinity != 0)
wres = Thread_Create_With_Affinity(&p->thread, startAddress, obj, (CAffinityMask)p->affinity);
else
wres = Thread_Create(&p->thread, startAddress, obj);
RINOK_THREAD(wres);
p->wasCreated = True;
return SZ_OK;
}
static SRes MtSync_Create(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj, UInt32 numBlocks)
{
SRes res = MtSync_Create2(p, startAddress, obj, numBlocks);
if (res != SZ_OK)
MtSync_Destruct(p);
return res;
}
// static void MtSync_Init(CMtSync *p) { p->needStart = True; }
#define kMtMaxValForNormalize 0xFFFFFFFF
// #define kMtMaxValForNormalize ((1 << 25) + (1 << 20))
#ifdef MY_CPU_LE_UNALIGN
#define GetUi24hi_from32(p) ((UInt32)GetUi32(p) >> 8)
#else
#define GetUi24hi_from32(p) ((p)[1] ^ ((UInt32)(p)[2] << 8) ^ ((UInt32)(p)[3] << 16))
#endif
#define GetHeads_DECL(name) \
static void GetHeads ## name(const Byte *p, UInt32 pos, \
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc)
#define GetHeads_LOOP(v) \
for (; numHeads != 0; numHeads--) { \
const UInt32 value = (v); \
p++; \
*heads++ = pos - hash[value]; \
hash[value] = pos++; }
#define DEF_GetHeads2(name, v, action) \
GetHeads_DECL(name) { action \
GetHeads_LOOP(v) }
#define DEF_GetHeads(name, v) DEF_GetHeads2(name, v, ;)
DEF_GetHeads2(2, GetUi16(p), UNUSED_VAR(hashMask); UNUSED_VAR(crc); )
DEF_GetHeads(3, (crc[p[0]] ^ GetUi16(p + 1)) & hashMask)
DEF_GetHeads2(3b, GetUi16(p) ^ ((UInt32)(p)[2] << 16), UNUSED_VAR(hashMask); UNUSED_VAR(crc); )
// BT3 is not good for crc collisions for big hashMask values.
/*
GetHeads_DECL(3b)
{
UNUSED_VAR(hashMask);
UNUSED_VAR(crc);
{
const Byte *pLim = p + numHeads;
if (numHeads == 0)
return;
pLim--;
while (p < pLim)
{
UInt32 v1 = GetUi32(p);
UInt32 v0 = v1 & 0xFFFFFF;
UInt32 h0, h1;
p += 2;
v1 >>= 8;
h0 = hash[v0]; hash[v0] = pos; heads[0] = pos - h0; pos++;
h1 = hash[v1]; hash[v1] = pos; heads[1] = pos - h1; pos++;
heads += 2;
}
if (p == pLim)
{
UInt32 v0 = GetUi16(p) ^ ((UInt32)(p)[2] << 16);
*heads = pos - hash[v0];
hash[v0] = pos;
}
}
}
*/
/*
GetHeads_DECL(4)
{
unsigned sh = 0;
UNUSED_VAR(crc)
while ((hashMask & 0x80000000) == 0)
{
hashMask <<= 1;
sh++;
}
GetHeads_LOOP((GetUi32(p) * 0xa54a1) >> sh)
}
#define GetHeads4b GetHeads4
*/
#define USE_GetHeads_LOCAL_CRC
#ifdef USE_GetHeads_LOCAL_CRC
GetHeads_DECL(4)
{
UInt32 crc0[256];
UInt32 crc1[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
// crc1[i] = rotlFixed(v, 8) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[3]] ^ (UInt32)GetUi16(p+1))
}
GetHeads_DECL(4b)
{
UInt32 crc0[256];
{
unsigned i;
for (i = 0; i < 256; i++)
crc0[i] = crc[i] & hashMask;
}
GetHeads_LOOP(crc0[p[0]] ^ GetUi24hi_from32(p))
}
GetHeads_DECL(5)
{
UInt32 crc0[256];
UInt32 crc1[256];
UInt32 crc2[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
crc2[i] = (v << kLzHash_CrcShift_2) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[3]] ^ crc2[p[4]] ^ (UInt32)GetUi16(p+1))
}
GetHeads_DECL(5b)
{
UInt32 crc0[256];
UInt32 crc1[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[4]] ^ GetUi24hi_from32(p))
}
#else
DEF_GetHeads(4, (crc[p[0]] ^ (crc[p[3]] << kLzHash_CrcShift_1) ^ (UInt32)GetUi16(p+1)) & hashMask)
DEF_GetHeads(4b, (crc[p[0]] ^ GetUi24hi_from32(p)) & hashMask)
DEF_GetHeads(5, (crc[p[0]] ^ (crc[p[3]] << kLzHash_CrcShift_1) ^ (crc[p[4]] << kLzHash_CrcShift_2) ^ (UInt32)GetUi16(p + 1)) & hashMask)
DEF_GetHeads(5b, (crc[p[0]] ^ (crc[p[4]] << kLzHash_CrcShift_1) ^ GetUi24hi_from32(p)) & hashMask)
#endif
static void HashThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->hashSync;
for (;;)
{
UInt32 numProcessedBlocks = 0;
Event_Wait(&p->canStart);
Event_Set(&p->wasStarted);
MatchFinder_Init_HighHash(mt->MatchFinder);
for (;;)
{
if (p->exit)
return;
if (p->stopWriting)
{
p->numProcessedBlocks = numProcessedBlocks;
Event_Set(&p->wasStopped);
break;
}
{
CMatchFinder *mf = mt->MatchFinder;
if (MatchFinder_NeedMove(mf))
{
CriticalSection_Enter(&mt->btSync.cs);
CriticalSection_Enter(&mt->hashSync.cs);
{
const Byte *beforePtr = Inline_MatchFinder_GetPointerToCurrentPos(mf);
ptrdiff_t offset;
MatchFinder_MoveBlock(mf);
offset = beforePtr - Inline_MatchFinder_GetPointerToCurrentPos(mf);
mt->pointerToCurPos -= offset;
mt->buffer -= offset;
}
CriticalSection_Leave(&mt->btSync.cs);
CriticalSection_Leave(&mt->hashSync.cs);
continue;
}
Semaphore_Wait(&p->freeSemaphore);
MatchFinder_ReadIfRequired(mf);
if (mf->pos > (kMtMaxValForNormalize - kMtHashBlockSize))
{
UInt32 subValue = (mf->pos - mf->historySize - 1);
MatchFinder_ReduceOffsets(mf, subValue);
MatchFinder_Normalize3(subValue, mf->hash + mf->fixedHashSize, (size_t)mf->hashMask + 1);
}
{
UInt32 *heads = mt->hashBuf + ((numProcessedBlocks++) & kMtHashNumBlocksMask) * kMtHashBlockSize;
UInt32 num = mf->streamPos - mf->pos;
heads[0] = 2;
heads[1] = num;
if (num >= mf->numHashBytes)
{
num = num - mf->numHashBytes + 1;
if (num > kMtHashBlockSize - 2)
num = kMtHashBlockSize - 2;
mt->GetHeadsFunc(mf->buffer, mf->pos, mf->hash + mf->fixedHashSize, mf->hashMask, heads + 2, num, mf->crc);
heads[0] = 2 + num;
}
mf->pos += num;
mf->buffer += num;
}
}
Semaphore_Release1(&p->filledSemaphore);
}
}
}
static void MatchFinderMt_GetNextBlock_Hash(CMatchFinderMt *p)
{
MtSync_GetNextBlock(&p->hashSync);
p->hashBufPosLimit = p->hashBufPos = ((p->hashSync.numProcessedBlocks - 1) & kMtHashNumBlocksMask) * kMtHashBlockSize;
p->hashBufPosLimit += p->hashBuf[p->hashBufPos++];
p->hashNumAvail = p->hashBuf[p->hashBufPos++];
}
#define kEmptyHashValue 0
#define MFMT_GM_INLINE
#ifdef MFMT_GM_INLINE
/*
we use size_t for _cyclicBufferPos instead of UInt32
to eliminate "movsx" BUG in old MSVC x64 compiler.
*/
MY_NO_INLINE
static UInt32 *GetMatchesSpecN(UInt32 lenLimit, UInt32 pos, const Byte *cur, CLzRef *son,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *d, UInt32 _maxLen, const UInt32 *hash, const UInt32 *limit, UInt32 size, UInt32 *posRes)
{
do
{
UInt32 *_distances = ++d;
UInt32 delta = *hash++;
CLzRef *ptr0 = son + ((size_t)_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
unsigned len0 = 0, len1 = 0;
UInt32 cutValue = _cutValue;
unsigned maxLen = (unsigned)_maxLen;
/*
#define PREF_STEP 1
if (size > PREF_STEP)
{
UInt32 delta = hash[PREF_STEP - 1];
if (delta < _cyclicBufferSize)
{
size_t cyc1 = _cyclicBufferPos + PREF_STEP;
CLzRef *pair = son + ((size_t)(cyc1 - delta + ((delta > cyc1) ? _cyclicBufferSize : 0)) << 1);
Byte b = *(cur + PREF_STEP - delta);
_distances[0] = pair[0];
_distances[1] = b;
}
}
*/
if (cutValue == 0 || delta >= _cyclicBufferSize)
{
*ptr0 = *ptr1 = kEmptyHashValue;
}
else
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
CLzRef *pair = son + ((size_t)(_cyclicBufferPos - delta + ((_cyclicBufferPos < delta) ? _cyclicBufferSize : 0)) << 1);
const Byte *pb = cur - delta;
unsigned len = (len0 < len1 ? len0 : len1);
UInt32 pair0 = *pair;
if (pb[len] == cur[len])
{
if (++len != lenLimit && pb[len] == cur[len])
while (++len != lenLimit)
if (pb[len] != cur[len])
break;
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)len;
*d++ = delta - 1;
if (len == lenLimit)
{
UInt32 pair1 = pair[1];
*ptr1 = pair0;
*ptr0 = pair1;
break;
}
}
}
{
UInt32 curMatch = pos - delta;
// delta = pos - *pair;
// delta = pos - pair[((UInt32)pb[len] - (UInt32)cur[len]) >> 31];
if (pb[len] < cur[len])
{
delta = pos - pair[1];
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
}
else
{
delta = pos - *pair;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
}
}
}
if (--cutValue == 0 || delta >= _cyclicBufferSize)
{
*ptr0 = *ptr1 = kEmptyHashValue;
break;
}
}
pos++;
_cyclicBufferPos++;
cur++;
{
UInt32 num = (UInt32)(d - _distances);
_distances[-1] = num;
}
}
while (d < limit && --size != 0);
*posRes = pos;
return d;
}
#endif
static void BtGetMatches(CMatchFinderMt *p, UInt32 *d)
{
UInt32 numProcessed = 0;
UInt32 curPos = 2;
UInt32 limit = kMtBtBlockSize - (p->matchMaxLen * 2); // * 2
d[1] = p->hashNumAvail;
while (curPos < limit)
{
if (p->hashBufPos == p->hashBufPosLimit)
{
MatchFinderMt_GetNextBlock_Hash(p);
d[1] = numProcessed + p->hashNumAvail;
if (p->hashNumAvail >= p->numHashBytes)
continue;
d[0] = curPos + p->hashNumAvail;
d += curPos;
for (; p->hashNumAvail != 0; p->hashNumAvail--)
*d++ = 0;
return;
}
{
UInt32 size = p->hashBufPosLimit - p->hashBufPos;
UInt32 lenLimit = p->matchMaxLen;
UInt32 pos = p->pos;
UInt32 cyclicBufferPos = p->cyclicBufferPos;
if (lenLimit >= p->hashNumAvail)
lenLimit = p->hashNumAvail;
{
UInt32 size2 = p->hashNumAvail - lenLimit + 1;
if (size2 < size)
size = size2;
size2 = p->cyclicBufferSize - cyclicBufferPos;
if (size2 < size)
size = size2;
}
#ifndef MFMT_GM_INLINE
while (curPos < limit && size-- != 0)
{
UInt32 *startDistances = d + curPos;
UInt32 num = (UInt32)(GetMatchesSpec1(lenLimit, pos - p->hashBuf[p->hashBufPos++],
pos, p->buffer, p->son, cyclicBufferPos, p->cyclicBufferSize, p->cutValue,
startDistances + 1, p->numHashBytes - 1) - startDistances);
*startDistances = num - 1;
curPos += num;
cyclicBufferPos++;
pos++;
p->buffer++;
}
#else
{
UInt32 posRes;
curPos = (UInt32)(GetMatchesSpecN(lenLimit, pos, p->buffer, p->son, cyclicBufferPos, p->cyclicBufferSize, p->cutValue,
d + curPos, p->numHashBytes - 1, p->hashBuf + p->hashBufPos,
d + limit,
size, &posRes) - d);
p->hashBufPos += posRes - pos;
cyclicBufferPos += posRes - pos;
p->buffer += posRes - pos;
pos = posRes;
}
#endif
numProcessed += pos - p->pos;
p->hashNumAvail -= pos - p->pos;
p->pos = pos;
if (cyclicBufferPos == p->cyclicBufferSize)
cyclicBufferPos = 0;
p->cyclicBufferPos = cyclicBufferPos;
}
}
d[0] = curPos;
}
static void BtFillBlock(CMatchFinderMt *p, UInt32 globalBlockIndex)
{
CMtSync *sync = &p->hashSync;
if (!sync->needStart)
{
CriticalSection_Enter(&sync->cs);
sync->csWasEntered = True;
}
BtGetMatches(p, p->btBuf + (globalBlockIndex & kMtBtNumBlocksMask) * kMtBtBlockSize);
if (p->pos > kMtMaxValForNormalize - kMtBtBlockSize)
{
UInt32 subValue = p->pos - p->cyclicBufferSize;
MatchFinder_Normalize3(subValue, p->son, (size_t)p->cyclicBufferSize * 2);
p->pos -= subValue;
}
if (!sync->needStart)
{
CriticalSection_Leave(&sync->cs);
sync->csWasEntered = False;
}
}
static void BtThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->btSync;
for (;;)
{
UInt32 blockIndex = 0;
Event_Wait(&p->canStart);
Event_Set(&p->wasStarted);
for (;;)
{
if (p->exit)
return;
if (p->stopWriting)
{
p->numProcessedBlocks = blockIndex;
MtSync_StopWriting(&mt->hashSync);
Event_Set(&p->wasStopped);
break;
}
Semaphore_Wait(&p->freeSemaphore);
BtFillBlock(mt, blockIndex++);
Semaphore_Release1(&p->filledSemaphore);
}
}
}
void MatchFinderMt_Construct(CMatchFinderMt *p)
{
p->hashBuf = NULL;
MtSync_Construct(&p->hashSync);
MtSync_Construct(&p->btSync);
}
static void MatchFinderMt_FreeMem(CMatchFinderMt *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->hashBuf);
p->hashBuf = NULL;
}
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAllocPtr alloc)
{
MtSync_Destruct(&p->hashSync);
MtSync_Destruct(&p->btSync);
LOG_ITER(
printf("\nTree %9d * %7d iter = %9d sum \n",
(UInt32)(g_NumIters_Tree / 1000),
(UInt32)(((UInt64)g_NumIters_Loop * 1000) / (g_NumIters_Tree + 1)),
(UInt32)(g_NumIters_Loop / 1000)
));
MatchFinderMt_FreeMem(p, alloc);
}
#define kHashBufferSize (kMtHashBlockSize * kMtHashNumBlocks)
#define kBtBufferSize (kMtBtBlockSize * kMtBtNumBlocks)
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE HashThreadFunc2(void *p) { HashThreadFunc((CMatchFinderMt *)p); return 0; }
static THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE BtThreadFunc2(void *p)
{
Byte allocaDummy[0x180];
unsigned i = 0;
for (i = 0; i < 16; i++)
allocaDummy[i] = (Byte)0;
if (allocaDummy[0] == 0)
BtThreadFunc((CMatchFinderMt *)p);
return 0;
}
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAllocPtr alloc)
{
CMatchFinder *mf = p->MatchFinder;
p->historySize = historySize;
if (kMtBtBlockSize <= matchMaxLen * 4)
return SZ_ERROR_PARAM;
if (!p->hashBuf)
{
p->hashBuf = (UInt32 *)ISzAlloc_Alloc(alloc, (kHashBufferSize + kBtBufferSize) * sizeof(UInt32));
if (!p->hashBuf)
return SZ_ERROR_MEM;
p->btBuf = p->hashBuf + kHashBufferSize;
}
keepAddBufferBefore += (kHashBufferSize + kBtBufferSize);
keepAddBufferAfter += kMtHashBlockSize;
if (!MatchFinder_Create(mf, historySize, keepAddBufferBefore, matchMaxLen, keepAddBufferAfter, alloc))
return SZ_ERROR_MEM;
RINOK(MtSync_Create(&p->hashSync, HashThreadFunc2, p, kMtHashNumBlocks));
RINOK(MtSync_Create(&p->btSync, BtThreadFunc2, p, kMtBtNumBlocks));
return SZ_OK;
}
/* Call it after ReleaseStream / SetStream */
static void MatchFinderMt_Init(CMatchFinderMt *p)
{
CMatchFinder *mf = p->MatchFinder;
p->btBufPos =
p->btBufPosLimit = 0;
p->hashBufPos =
p->hashBufPosLimit = 0;
/* Init without data reading. We don't want to read data in this thread */
MatchFinder_Init_3(mf, False);
MatchFinder_Init_LowHash(mf);
p->pointerToCurPos = Inline_MatchFinder_GetPointerToCurrentPos(mf);
p->btNumAvailBytes = 0;
p->lzPos = p->historySize + 1;
p->hash = mf->hash;
p->fixedHashSize = mf->fixedHashSize;
// p->hash4Mask = mf->hash4Mask;
p->crc = mf->crc;
p->son = mf->son;
p->matchMaxLen = mf->matchMaxLen;
p->numHashBytes = mf->numHashBytes;
p->pos = mf->pos;
p->buffer = mf->buffer;
p->cyclicBufferPos = mf->cyclicBufferPos;
p->cyclicBufferSize = mf->cyclicBufferSize;
p->cutValue = mf->cutValue;
}
/* ReleaseStream is required to finish multithreading */
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p)
{
MtSync_StopWriting(&p->btSync);
/* p->MatchFinder->ReleaseStream(); */
}
MY_NO_INLINE
static void MatchFinderMt_GetNextBlock_Bt(CMatchFinderMt *p)
{
UInt32 blockIndex, k;
MtSync_GetNextBlock(&p->btSync);
blockIndex = ((p->btSync.numProcessedBlocks - 1) & kMtBtNumBlocksMask);
k = blockIndex * kMtBtBlockSize;
p->btBufPosLimit = k + p->btBuf[k];
p->btNumAvailBytes = p->btBuf[k + 1];
p->btBufPos = k + 2;
if (p->lzPos >= kMtMaxValForNormalize - kMtBtBlockSize)
{
MatchFinder_Normalize3(p->lzPos - p->historySize - 1, p->hash, p->fixedHashSize);
p->lzPos = p->historySize + 1;
}
}
static const Byte * MatchFinderMt_GetPointerToCurrentPos(CMatchFinderMt *p)
{
return p->pointerToCurPos;
}
#define GET_NEXT_BLOCK_IF_REQUIRED if (p->btBufPos == p->btBufPosLimit) MatchFinderMt_GetNextBlock_Bt(p);
static UInt32 MatchFinderMt_GetNumAvailableBytes(CMatchFinderMt *p)
{
GET_NEXT_BLOCK_IF_REQUIRED;
return p->btNumAvailBytes;
}
static UInt32 * MixMatches2(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, c2;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 m = p->lzPos;
MT_HASH2_CALC
c2 = hash[h2];
hash[h2] = m;
if (c2 >= matchMinPos)
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
*d++ = 2;
*d++ = m - c2 - 1;
}
return d;
}
static UInt32 * MixMatches3(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, h3, c2, c3;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 m = p->lzPos;
MT_HASH3_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
if (c2 >= matchMinPos && cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
d[0] = 3;
return d + 2;
}
d[0] = 2;
d += 2;
}
if (c3 >= matchMinPos && cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
*d++ = 3;
*d++ = m - c3 - 1;
}
return d;
}
#define INCREASE_LZ_POS p->lzPos++; p->pointerToCurPos++;
/*
static
UInt32 MatchFinderMt_GetMatches_Bt4(CMatchFinderMt *p, UInt32 *d)
{
UInt32 pos = p->btBufPos;
const UInt32 *bt = p->btBuf + pos;
UInt32 len = *bt++;
UInt32 matchMinPos;
const UInt32 *d_base = d;
UInt32 avail = p->btNumAvailBytes - 1;
p->btBufPos = pos + 1 + len;
{
UInt32 temp1 = p->historySize;
p->btNumAvailBytes = avail;
#define BT_HASH_BYTES_MAX 5
if (len != 0)
temp1 = bt[1];
else if (avail < (BT_HASH_BYTES_MAX - 2))
{
INCREASE_LZ_POS
return 0;
}
matchMinPos = p->lzPos - temp1;
}
for (;;)
{
UInt32 h2, h3, c2, c3;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 m = p->lzPos;
MT_HASH3_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
if (c2 >= matchMinPos && cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
d[0] = 3;
d += 2;
break;
}
// else
{
d[0] = 2;
d += 2;
}
}
if (c3 >= matchMinPos && cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
*d++ = 3;
*d++ = m - c3 - 1;
}
break;
}
if (len != 0)
{
do
{
UInt32 v0 = bt[0];
UInt32 v1 = bt[1];
bt += 2;
d[0] = v0;
d[1] = v1;
d += 2;
}
while ((len -= 2) != 0);
}
INCREASE_LZ_POS
return (UInt32)(d - d_base);
}
*/
static UInt32 *MixMatches4(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, h3, /* h4, */ c2, c3 /* , c4 */;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 m = p->lzPos;
MT_HASH3_CALC
// MT_HASH4_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
// c4 = (hash + kFix4HashSize)[h4];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
// (hash + kFix4HashSize)[h4] = m;
#define _USE_H2
#ifdef _USE_H2
if (c2 >= matchMinPos && cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
// d[0] = (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 3] == cur[3]) ? 4 : 3;
// return d + 2;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 3] == cur[3])
{
d[0] = 4;
return d + 2;
}
d[0] = 3;
d += 2;
#ifdef _USE_H4
if (c4 >= matchMinPos)
if (
cur[(ptrdiff_t)c4 - (ptrdiff_t)m] == cur[0] &&
cur[(ptrdiff_t)c4 - (ptrdiff_t)m + 3] == cur[3]
)
{
*d++ = 4;
*d++ = m - c4 - 1;
}
#endif
return d;
}
d[0] = 2;
d += 2;
}
#endif
if (c3 >= matchMinPos && cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c3 - 1;
if (cur[(ptrdiff_t)c3 - (ptrdiff_t)m + 3] == cur[3])
{
d[0] = 4;
return d + 2;
}
d[0] = 3;
d += 2;
}
#ifdef _USE_H4
if (c4 >= matchMinPos)
if (
cur[(ptrdiff_t)c4 - (ptrdiff_t)m] == cur[0] &&
cur[(ptrdiff_t)c4 - (ptrdiff_t)m + 3] == cur[3]
)
{
*d++ = 4;
*d++ = m - c4 - 1;
}
#endif
return d;
}
static UInt32 MatchFinderMt2_GetMatches(CMatchFinderMt *p, UInt32 *d)
{
const UInt32 *bt = p->btBuf + p->btBufPos;
UInt32 len = *bt++;
p->btBufPos += 1 + len;
p->btNumAvailBytes--;
{
UInt32 i;
for (i = 0; i < len; i += 2)
{
UInt32 v0 = bt[0];
UInt32 v1 = bt[1];
bt += 2;
d[0] = v0;
d[1] = v1;
d += 2;
}
}
INCREASE_LZ_POS
return len;
}
static UInt32 MatchFinderMt_GetMatches(CMatchFinderMt *p, UInt32 *d)
{
UInt32 pos = p->btBufPos;
const UInt32 *bt = p->btBuf + pos;
UInt32 len = *bt++;
UInt32 avail = p->btNumAvailBytes - 1;
p->btNumAvailBytes = avail;
p->btBufPos = pos + 1 + len;
if (len == 0)
{
#define BT_HASH_BYTES_MAX 5
if (avail >= (BT_HASH_BYTES_MAX - 1) - 1)
len = (UInt32)(p->MixMatchesFunc(p, p->lzPos - p->historySize, d) - d);
}
else
{
/*
first match pair from BinTree: (match_len, match_dist),
(match_len >= numHashBytes).
MixMatchesFunc() inserts only hash matches that are nearer than (match_dist)
*/
UInt32 *d2;
d2 = p->MixMatchesFunc(p, p->lzPos - bt[1], d);
do
{
UInt32 v0 = bt[0];
UInt32 v1 = bt[1];
bt += 2;
d2[0] = v0;
d2[1] = v1;
d2 += 2;
}
while ((len -= 2) != 0);
len = (UInt32)(d2 - d);
}
INCREASE_LZ_POS
return len;
}
#define SKIP_HEADER2_MT do { GET_NEXT_BLOCK_IF_REQUIRED
#define SKIP_HEADER_MT(n) SKIP_HEADER2_MT if (p->btNumAvailBytes-- >= (n)) { const Byte *cur = p->pointerToCurPos; UInt32 *hash = p->hash;
#define SKIP_FOOTER_MT } INCREASE_LZ_POS p->btBufPos += p->btBuf[p->btBufPos] + 1; } while (--num != 0);
static void MatchFinderMt0_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER2_MT { p->btNumAvailBytes--;
SKIP_FOOTER_MT
}
static void MatchFinderMt2_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(2)
UInt32 h2;
MT_HASH2_CALC
hash[h2] = p->lzPos;
SKIP_FOOTER_MT
}
static void MatchFinderMt3_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(3)
UInt32 h2, h3;
MT_HASH3_CALC
(hash + kFix3HashSize)[h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
static void MatchFinderMt4_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(4)
UInt32 h2, h3 /*, h4 */;
MT_HASH3_CALC
// MT_HASH4_CALC
// (hash + kFix4HashSize)[h4] =
(hash + kFix3HashSize)[h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder *vTable)
{
vTable->Init = (Mf_Init_Func)MatchFinderMt_Init;
vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinderMt_GetNumAvailableBytes;
vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinderMt_GetPointerToCurrentPos;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt_GetMatches;
switch (p->MatchFinder->numHashBytes)
{
case 2:
p->GetHeadsFunc = GetHeads2;
p->MixMatchesFunc = (Mf_Mix_Matches)NULL;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt0_Skip;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt2_GetMatches;
break;
case 3:
p->GetHeadsFunc = p->MatchFinder->bigHash ? GetHeads3b : GetHeads3;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches2;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt2_Skip;
break;
case 4:
p->GetHeadsFunc = p->MatchFinder->bigHash ? GetHeads4b : GetHeads4;
// it's fast inline version of GetMatches()
// vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt_GetMatches_Bt4;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches3;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt3_Skip;
break;
default:
p->GetHeadsFunc = p->MatchFinder->bigHash ? GetHeads5b : GetHeads5;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches4;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt4_Skip;
break;
}
}