1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-13 19:28:56 +00:00
hashcat/deps/LZMA-SDK/C/7zCrc.c
2023-05-17 19:03:13 +02:00

323 lines
7.8 KiB
C

/* 7zCrc.c -- CRC32 init
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#define kCrcPoly 0xEDB88320
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 8
#else
#define CRC_NUM_TABLES 9
#define CRC_UINT32_SWAP(v) ((v >> 24) | ((v >> 8) & 0xFF00) | ((v << 8) & 0xFF0000) | (v << 24))
UInt32 MY_FAST_CALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
#ifndef MY_CPU_BE
UInt32 MY_FAST_CALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
typedef UInt32 (MY_FAST_CALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
extern
CRC_FUNC g_CrcUpdateT4;
CRC_FUNC g_CrcUpdateT4;
extern
CRC_FUNC g_CrcUpdateT8;
CRC_FUNC g_CrcUpdateT8;
extern
CRC_FUNC g_CrcUpdateT0_32;
CRC_FUNC g_CrcUpdateT0_32;
extern
CRC_FUNC g_CrcUpdateT0_64;
CRC_FUNC g_CrcUpdateT0_64;
extern
CRC_FUNC g_CrcUpdate;
CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
UInt32 MY_FAST_CALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 MY_FAST_CALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 MY_FAST_CALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
const Byte *pEnd = p + size;
for (; p != pEnd; p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
/* ---------- hardware CRC ---------- */
#ifdef MY_CPU_LE
#if defined(MY_CPU_ARM_OR_ARM64)
// #pragma message("ARM*")
#if defined(_MSC_VER)
#if defined(MY_CPU_ARM64)
#if (_MSC_VER >= 1910)
#define USE_ARM64_CRC
#endif
#endif
#elif (defined(__clang__) && (__clang_major__ >= 3)) \
|| (defined(__GNUC__) && (__GNUC__ > 4))
#if !defined(__ARM_FEATURE_CRC32)
#define __ARM_FEATURE_CRC32 1
#if (!defined(__clang__) || (__clang_major__ > 3)) // fix these numbers
#define ATTRIB_CRC __attribute__((__target__("arch=armv8-a+crc")))
#endif
#endif
#if defined(__ARM_FEATURE_CRC32)
#define USE_ARM64_CRC
#include <arm_acle.h>
#endif
#endif
#else
// no hardware CRC
// #define USE_CRC_EMU
#ifdef USE_CRC_EMU
#pragma message("ARM64 CRC emulation")
MY_FORCE_INLINE
UInt32 __crc32b(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data);
return v;
}
MY_FORCE_INLINE
UInt32 __crc32w(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
MY_FORCE_INLINE
UInt32 __crc32d(UInt32 v, UInt64 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
#endif // USE_CRC_EMU
#endif // defined(MY_CPU_ARM64) && defined(MY_CPU_LE)
#if defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#define T0_32_UNROLL_BYTES (4 * 4)
#define T0_64_UNROLL_BYTES (4 * 8)
#ifndef ATTRIB_CRC
#define ATTRIB_CRC
#endif
// #pragma message("USE ARM HW CRC")
ATTRIB_CRC
UInt32 MY_FAST_CALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 MY_FAST_CALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_32_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_32_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_32_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
ATTRIB_CRC
UInt32 MY_FAST_CALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 MY_FAST_CALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_64_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_64_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_64_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
#endif // defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#endif // MY_CPU_LE
void MY_FAST_CALL CrcGenerateTable()
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ((UInt32)0 - (r & 1)));
g_CrcTable[i] = r;
}
for (i = 256; i < 256 * CRC_NUM_TABLES; i++)
{
UInt32 r = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#if CRC_NUM_TABLES < 4
g_CrcUpdate = CrcUpdateT1;
#else
#ifdef MY_CPU_LE
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
#endif
g_CrcUpdate = CrcUpdateT8;
#endif
#else
{
#ifndef MY_CPU_BE
UInt32 k = 0x01020304;
const Byte *p = (const Byte *)&k;
if (p[0] == 4 && p[1] == 3)
{
g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
g_CrcUpdate = CrcUpdateT8;
#endif
}
else if (p[0] != 1 || p[1] != 2)
g_CrcUpdate = CrcUpdateT1;
else
#endif
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
UInt32 x = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = CRC_UINT32_SWAP(x);
}
g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#if CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
g_CrcUpdate = CrcUpdateT1_BeT8;
#endif
}
}
#endif
#endif
#ifdef MY_CPU_LE
#ifdef USE_ARM64_CRC
if (CPU_IsSupported_CRC32())
{
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate =
#if defined(MY_CPU_ARM)
CrcUpdateT0_32;
#else
CrcUpdateT0_64;
#endif
}
#endif
#ifdef USE_CRC_EMU
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate = CrcUpdateT0_64;
#endif
#endif
}