1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-24 17:08:17 +00:00
hashcat/OpenCL/inc_hash_base58.cl
2022-12-17 10:41:50 +01:00

649 lines
13 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
/**
* Based on bitcoin/libbase58 implementation
* by Luke Dashjr
* adapted by b0lek to run on GPUs as part of hashcat
*/
#include "inc_vendor.h"
#include "inc_common.h"
#include "inc_types.h"
#include "inc_platform.h"
#include "inc_hash_sha256.h"
#include "inc_hash_base58.h"
// (sizeof (u32) * 8):
#define B58_BITS 32
// ((((u64) 1) << B58_BITS) - 1):
#define B58_MASK 0xffffffff
CONSTANT_VK u8 B58_DIGITS_ORDERED[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
CONSTANT_VK int B58_DIGITS_MAP[256] =
{
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1,
-1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1,
-1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
DECLSPEC bool is_valid_base58 (PRIVATE_AS const u32 *data, PRIVATE_AS const u32 offset, PRIVATE_AS const u32 len)
{
for (u32 i = offset; i < len; i++)
{
const u32 div = (i / 4);
const u32 shift = (i % 4) * 8;
const u32 b = (data[div] >> shift) & 0xff;
const int c = B58_DIGITS_MAP[b];
// Invalid base58 digit
if (c == -1) return false;
}
return true;
}
DECLSPEC bool b58dec (PRIVATE_AS u8 *bin, PRIVATE_AS u32 *binszp, PRIVATE_AS const u8 *b58, PRIVATE_AS const u32 b58sz)
{
u32 binsz = *binszp;
PRIVATE_AS const u8 *b58u = (PRIVATE_AS u8*) b58;
PRIVATE_AS u8 *binu = (PRIVATE_AS u8*) bin;
u32 outisz = (binsz + sizeof (u32) - 1) / sizeof (u32);
u32 outi[200];
u8 bytesleft = binsz % sizeof (u32);
u32 zero_mask = bytesleft ? (B58_MASK << (bytesleft * 8)) : 0;
unsigned zerocount = 0;
for (u32 i = 0; i < outisz; i++)
{
outi[i] = 0;
}
// Leading zeros, just count
u32 i = 0;
for (; i < b58sz && b58u[i] == '1'; i++)
{
++zerocount;
}
for (; i < b58sz; i++)
{
int c = B58_DIGITS_MAP[b58u[i]];
// Invalid base58 digit
if (c == -1) return false;
for (u32 j = outisz; j--; )
{
u64 t = ((u64) outi[j]) * 58 + c;
c = t >> B58_BITS;
outi[j] = t & B58_MASK;
}
// Output number too big (carry to the next int32)
if (c != 0) return false;
// Output number too big (last int32 filled too far)
if (outi[0] & zero_mask) return false;
}
u32 j = 0;
if (bytesleft)
{
for (u32 i = bytesleft; i > 0; i--)
{
*(binu++) = (outi[0] >> (8 * (i - 1))) & 0xff;
}
j++;
}
for (; j < outisz; j++)
{
for (u32 i = sizeof (*outi); i > 0; i--)
{
*(binu++) = (outi[j] >> (8 * (i - 1))) & 0xff;
}
}
// Count canonical base58 byte count
binu = (PRIVATE_AS u8*) bin;
for (u32 i = 0; i < binsz; i++)
{
if (binu[i]) break;
--*binszp;
}
*binszp += zerocount;
return true;
}
// special function to handle only input of 51 characters
// attention: we use BE (big endian) here as output
DECLSPEC bool b58dec_51 (PRIVATE_AS u32 *out, PRIVATE_AS const u32 *data)
{
// data length must be 51 and must be checked before calling the function
for (u32 i = 0; i < 51; i++)
{
const u32 div = (i / 4);
const u32 shift = (i % 4) * 8;
const u32 b = (data[div] >> shift) & 0xff;
int c = B58_DIGITS_MAP[b];
// checked with is_valid_base58 ():
// if (c == (u32) -1) return false;
// test speed with (manual or automatic) #pragma unroll
for (u32 j = 0; j < 10; j++)
{
const u32 pos = 9 - j;
const u64 t = ((u64) out[pos]) * 58 + c;
c = t >> 32; // upper u32
out[pos] = t; // lower u32 (& 0xffffffff)
}
}
// fix byte alignment:
// #pragma unroll
for (u32 i = 0; i < 10; i++) // offset of: 3 bytes
{
out[i] = (out[i + 0] << 24) | (out[i + 1] >> 8);
}
return true;
}
// special function to handle only input of 52 characters
// attention: we use BE (big endian) here as output
DECLSPEC bool b58dec_52 (PRIVATE_AS u32 *out, PRIVATE_AS const u32 *data)
{
// data length must be 52 and must be checked before calling the function
for (u32 i = 0; i < 52; i++)
{
const u32 div = (i / 4);
const u32 shift = (i % 4) * 8;
const u32 b = (data[div] >> shift) & 0xff;
int c = B58_DIGITS_MAP[b];
// checked with is_valid_base58 ():
// if (c == (u32) -1) return false;
// test speed with (manual or automatic) #pragma unroll
for (u32 j = 0; j < 10; j++)
{
const u32 pos = 9 - j;
const u64 t = ((u64) out[pos]) * 58 + c;
c = t >> 32; // upper u32
out[pos] = t; // lower u32 (& 0xffffffff)
}
}
// fix byte alignment:
// #pragma unroll
for (u32 i = 0; i < 10; i++) // offset of: 2 bytes
{
out[i] = (out[i + 0] << 16) | (out[i + 1] >> 16);
}
return true;
}
// maximum 256 bytes as input, mininum 4 bytes (checksum)
DECLSPEC bool b58check (PRIVATE_AS const u8 *bin, PRIVATE_AS const u32 binsz)
{
u32 data[64] = { 0 }; // 64 * 4 = 256 bytes (should be enough)
PRIVATE_AS u8 *datac = (PRIVATE_AS u8*) data;
PRIVATE_AS u8 *binc = (PRIVATE_AS u8*) bin;
if (binsz < 4) return false;
if (binsz > 256) return false;
for (u32 i = 0; i < binsz - 4; i++)
{
datac[i] = binc[i];
}
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, data, binsz-4);
sha256_final (&ctx);
for (u32 i = 0; i < 8; i++) // 32 / 4
{
data[i] = ctx.h[i];
}
for (u32 i = 8; i < 16; i++) // clear bytes: needed for sha256_update ()
{
data[i] = 0;
}
sha256_init (&ctx);
sha256_update (&ctx, data, 32);
sha256_final (&ctx);
ctx.h[0] = hc_swap32_S (ctx.h[0]);
PRIVATE_AS u8 *ph4 = (PRIVATE_AS u8*) ctx.h;
PRIVATE_AS u8 *sum = (PRIVATE_AS u8*) (binc + (binsz - 4)); // offset: binsz - 4, last 4 bytes
if (ph4[0] != sum[0]) return false;
if (ph4[1] != sum[1]) return false;
if (ph4[2] != sum[2]) return false;
if (ph4[3] != sum[3]) return false;
return true;
}
// ATTENTION: this function expects a 64 byte data buffer, containing the checksum after the data
DECLSPEC bool b58check64 (PRIVATE_AS const u32 *bin, PRIVATE_AS const u32 binsz)
{
if (binsz < 4) return false;
// if (binsz > 63) return false;
u32 data[16] = { 0 };
for (u32 i = 0; i < 15; i++) data[i] = bin[i];
const u32 div = binsz / 4;
const u32 mod = binsz % 4;
data[div] = 0;
switch (mod)
{
case 0:
data[div - 1] &= 0x00000000;
break;
case 1:
data[div - 1] &= 0x000000ff;
break;
case 2:
data[div - 1] &= 0x0000ffff;
break;
case 3:
data[div - 1] &= 0x00ffffff;
break;
}
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, data, binsz - 4);
sha256_final (&ctx);
data[ 0] = ctx.h[0];
data[ 1] = ctx.h[1];
data[ 2] = ctx.h[2];
data[ 3] = ctx.h[3];
data[ 4] = ctx.h[4];
data[ 5] = ctx.h[5];
data[ 6] = ctx.h[6];
data[ 7] = ctx.h[7];
data[ 8] = 0;
data[ 9] = 0;
data[10] = 0;
data[11] = 0;
data[12] = 0;
data[13] = 0;
data[14] = 0;
data[15] = 0;
sha256_init (&ctx);
sha256_update (&ctx, data, 32);
sha256_final (&ctx);
const u32 ph4 = hc_swap32_S (ctx.h[0]);
u32 checksum = 0;
switch (mod)
{
case 0:
checksum = (bin[div - 1] >> 0);
break;
case 1:
checksum = (bin[div] << 24) | (bin[div - 1] >> 8);
break;
case 2:
checksum = (bin[div] << 16) | (bin[div - 1] >> 16);
break;
case 3:
checksum = (bin[div] << 8) | (bin[div - 1] >> 24);
break;
}
return (ph4 == checksum);
}
// optimized for 21 + 4 input bytes in buffer "bin"
DECLSPEC bool b58check_25 (PRIVATE_AS const u32 *bin)
{
u32 data[16] = { 0 };
// for (u32 i = 0; i < 6; i++) data[i] = bin[i];
data[0] = bin[0];
data[1] = bin[1];
data[2] = bin[2];
data[3] = bin[3];
data[4] = bin[4];
data[5] = bin[5];
data[5] &= 0x000000ff;
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, data, 21);
sha256_final (&ctx);
data[ 0] = ctx.h[0];
data[ 1] = ctx.h[1];
data[ 2] = ctx.h[2];
data[ 3] = ctx.h[3];
data[ 4] = ctx.h[4];
data[ 5] = ctx.h[5];
data[ 6] = ctx.h[6];
data[ 7] = ctx.h[7];
data[ 8] = 0;
data[ 9] = 0;
data[10] = 0;
data[11] = 0;
data[12] = 0;
data[13] = 0;
data[14] = 0;
data[15] = 0;
sha256_init (&ctx);
sha256_update (&ctx, data, 32);
sha256_final (&ctx);
const u32 ph4 = hc_swap32_S (ctx.h[0]);
const u32 checksum = (bin[6] << 24) | (bin[5] >> 8);
return (ph4 == checksum);
}
// optimized for 33 + 4 input bytes in buffer "bin"
// attention: we use BE (big endian) here as input
DECLSPEC bool b58check_37 (PRIVATE_AS const u32 *bin)
{
u32 data[16] = { 0 };
// for (u32 i = 0; i < 9; i++) data[i] = bin[i];
data[0] = bin[0];
data[1] = bin[1];
data[2] = bin[2];
data[3] = bin[3];
data[4] = bin[4];
data[5] = bin[5];
data[6] = bin[6];
data[7] = bin[7];
data[8] = bin[8];
data[8] &= 0xff000000;
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, data, 33);
sha256_final (&ctx);
data[ 0] = ctx.h[0];
data[ 1] = ctx.h[1];
data[ 2] = ctx.h[2];
data[ 3] = ctx.h[3];
data[ 4] = ctx.h[4];
data[ 5] = ctx.h[5];
data[ 6] = ctx.h[6];
data[ 7] = ctx.h[7];
data[ 8] = 0;
data[ 9] = 0;
data[10] = 0;
data[11] = 0;
data[12] = 0;
data[13] = 0;
data[14] = 0;
data[15] = 0;
sha256_init (&ctx);
sha256_update (&ctx, data, 32);
sha256_final (&ctx);
const u32 ph4 = ctx.h[0];
const u32 checksum = (bin[8] << 8) | (bin[9] >> 24);
return (ph4 == checksum);
}
// optimized for 34 + 4 input bytes in buffer "bin"
// attention: we use BE (big endian) here as input
DECLSPEC bool b58check_38 (PRIVATE_AS const u32 *bin)
{
u32 data[16] = { 0 };
// for (u32 i = 0; i < 9; i++) data[i] = bin[i];
data[0] = bin[0];
data[1] = bin[1];
data[2] = bin[2];
data[3] = bin[3];
data[4] = bin[4];
data[5] = bin[5];
data[6] = bin[6];
data[7] = bin[7];
data[8] = bin[8];
data[8] &= 0xffff0000;
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update (&ctx, data, 34);
sha256_final (&ctx);
data[ 0] = ctx.h[0];
data[ 1] = ctx.h[1];
data[ 2] = ctx.h[2];
data[ 3] = ctx.h[3];
data[ 4] = ctx.h[4];
data[ 5] = ctx.h[5];
data[ 6] = ctx.h[6];
data[ 7] = ctx.h[7];
data[ 8] = 0;
data[ 9] = 0;
data[10] = 0;
data[11] = 0;
data[12] = 0;
data[13] = 0;
data[14] = 0;
data[15] = 0;
sha256_init (&ctx);
sha256_update (&ctx, data, 32);
sha256_final (&ctx);
const u32 ph4 = ctx.h[0];
const u32 checksum = (bin[8] << 16) | (bin[9] >> 16);
return (ph4 == checksum);
}
DECLSPEC bool b58enc (PRIVATE_AS u8 *b58, PRIVATE_AS u32 *b58sz, PRIVATE_AS const u8 *data, PRIVATE_AS const u32 binsz)
{
PRIVATE_AS const u8 *bin = (PRIVATE_AS u8 *) data;
int carry;
u32 j = 0;
u32 zcount = 0;
while (zcount < binsz && !bin[zcount]) ++zcount;
u32 size = (binsz - zcount) * 138 / 100 + 1;
u8 buf[200] = { 0 };
u32 i = zcount;
u32 high = size - 1;
for (; i < binsz; i++, high = j)
{
for (carry = bin[i], j = size - 1; (j > high) || carry; j--)
{
carry += 256 * buf[j];
buf[j] = carry % 58;
carry /= 58;
if (! j) break;
}
}
j = 0;
for (; j < (size && !buf[j]); j++) {}
if (*b58sz <= zcount + size - j)
{
*b58sz = zcount + size - j + 1;
return false;
}
for (u32 i = 0; i < zcount; i++)
{
b58[i] = '1';
}
for (i = zcount; j < size; i++, j++)
{
b58[i] = B58_DIGITS_ORDERED[buf[j]];
}
b58[i] = '\0';
*b58sz = i + 1;
return true;
}
DECLSPEC bool b58check_enc (PRIVATE_AS u8 *b58c, PRIVATE_AS u32 *b58c_sz, PRIVATE_AS const u8 ver, PRIVATE_AS const u8 *data, PRIVATE_AS const u32 datasz)
{
u8 buf[128] = { 0 };
PRIVATE_AS u32 *buf32 = (PRIVATE_AS u32*) buf;
PRIVATE_AS u8 *data8 = (PRIVATE_AS u8 *) data;
PRIVATE_AS u8 *hash = &buf[1 + datasz];
buf[0] = ver;
for (u32 i = 0; i < datasz; i++)
{
buf[i + 1] = data8[i];
}
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_swap (&ctx, buf32, datasz + 1);
sha256_final (&ctx);
u32 data1[128] = { 0 };
for (u32 i = 0; i < 0x20; i++)
{
((PRIVATE_AS u8*) data1)[i] = ((PRIVATE_AS u8*) ctx.h)[i];
}
sha256_init (&ctx);
sha256_update (&ctx, data1, 0x20);
sha256_final (&ctx);
ctx.h[0] = hc_swap32_S (ctx.h[0]);
for (u32 i = 0; i < 4; i++)
{
((PRIVATE_AS u8 *) hash)[i] = ((PRIVATE_AS u8 *) ctx.h)[i];
}
return b58enc (b58c, b58c_sz, buf, 1 + datasz + 4);
}