1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-24 17:08:17 +00:00
hashcat/src/hashcat.c

14044 lines
420 KiB
C

/**
* Authors.....: Jens Steube <jens.steube@gmail.com>
* Gabriele Gristina <matrix@hashcat.net>
* magnum <john.magnum@hushmail.com>
*
* License.....: MIT
*/
#if defined (__APPLE__)
#include <stdio.h>
#endif
#include "common.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <search.h>
#include <getopt.h>
#include <inttypes.h>
#include <signal.h>
#if defined (_POSIX)
#include <pthread.h>
#include <pwd.h>
#endif // _POSIX
#include "types_int.h"
#include "types.h"
#include "timer.h"
#include "bitops.h"
#include "memory.h"
#include "folder.h"
#include "convert.h"
#include "logging.h"
#include "logfile.h"
#include "ext_OpenCL.h"
#include "ext_ADL.h"
#include "ext_nvapi.h"
#include "ext_nvml.h"
#include "ext_xnvctrl.h"
#include "cpu_aes.h"
#include "cpu_crc32.h"
#include "cpu_des.h"
#include "cpu_md5.h"
#include "cpu_sha1.h"
#include "cpu_sha256.h"
#include "filehandling.h"
#include "opencl.h"
#include "tuningdb.h"
#include "thread.h"
#include "locking.h"
#include "rp_cpu.h"
#include "rp_kernel_on_cpu.h"
#include "terminal.h"
#include "inc_hash_constants.h"
#include "shared.h"
#include "interface.h"
#include "hwmon.h"
#include "mpsp.h"
#include "restore.h"
#include "potfile.h"
#include "data.h"
#include "affinity.h"
#include "bitmap.h"
#include "usage.h"
#include "status.h"
#include "hlfmt.h"
#include "filenames.h"
#include "stdout.h"
#include "wordlist.h"
#include "dictstat.h"
extern hc_global_data_t data;
extern int SUPPRESS_OUTPUT;
extern hc_thread_mutex_t mux_hwmon;
extern hc_thread_mutex_t mux_display;
extern void (*get_next_word_func) (char *, u32, u32 *, u32 *);
static const char *PROGNAME = "hashcat";
static double TARGET_MS_PROFILE[4] = { 2, 12, 96, 480 };
const int comptime = COMPTIME;
#define INCR_RULES 10000
#define INCR_SALTS 100000
#define INCR_MASKS 1000
#define USAGE 0
#define VERSION 0
#define QUIET 0
#define MARKOV_THRESHOLD 0
#define MARKOV_DISABLE 0
#define MARKOV_CLASSIC 0
#define BENCHMARK 0
#define MACHINE_READABLE 0
#define LOOPBACK 0
#define WEAK_HASH_THRESHOLD 100
#define SHOW 0
#define LEFT 0
#define USERNAME 0
#define REMOVE 0
#define REMOVE_TIMER 60
#define SKIP 0
#define LIMIT 0
#define KEYSPACE 0
#define DEBUG_MODE 0
#define RP_GEN 0
#define RP_GEN_FUNC_MIN 1
#define RP_GEN_FUNC_MAX 4
#define RP_GEN_SEED 0
#define RULE_BUF_L ":"
#define RULE_BUF_R ":"
#define FORCE 0
#define RUNTIME 0
#define HEX_CHARSET 0
#define HEX_SALT 0
#define HEX_WORDLIST 0
#define OUTFILE_FORMAT 3
#define OUTFILE_AUTOHEX 1
#define OUTFILE_CHECK_TIMER 5
#define ATTACK_MODE 0
#define HASH_MODE 0
#define SEGMENT_SIZE 32
#define INCREMENT 0
#define INCREMENT_MIN 1
#define INCREMENT_MAX PW_MAX
#define SEPARATOR ':'
#define NVIDIA_SPIN_DAMP 100
#define GPU_TEMP_DISABLE 0
#define GPU_TEMP_ABORT 90
#define GPU_TEMP_RETAIN 75
#define WORKLOAD_PROFILE 2
#define KERNEL_ACCEL 0
#define KERNEL_LOOPS 0
#define KERNEL_RULES 1024
#define KERNEL_COMBS 1024
#define KERNEL_BFS 1024
#define KERNEL_THREADS_MAX 256
#define KERNEL_THREADS_MAX_CPU 1
#define POWERTUNE_ENABLE 0
#define LOGFILE_DISABLE 0
#define SCRYPT_TMTO 0
#define OPENCL_VECTOR_WIDTH 0
static const char OPTI_STR_ZERO_BYTE[] = "Zero-Byte";
static const char OPTI_STR_PRECOMPUTE_INIT[] = "Precompute-Init";
static const char OPTI_STR_PRECOMPUTE_MERKLE[] = "Precompute-Merkle-Demgard";
static const char OPTI_STR_PRECOMPUTE_PERMUT[] = "Precompute-Final-Permutation";
static const char OPTI_STR_MEET_IN_MIDDLE[] = "Meet-In-The-Middle";
static const char OPTI_STR_EARLY_SKIP[] = "Early-Skip";
static const char OPTI_STR_NOT_SALTED[] = "Not-Salted";
static const char OPTI_STR_NOT_ITERATED[] = "Not-Iterated";
static const char OPTI_STR_PREPENDED_SALT[] = "Prepended-Salt";
static const char OPTI_STR_APPENDED_SALT[] = "Appended-Salt";
static const char OPTI_STR_SINGLE_HASH[] = "Single-Hash";
static const char OPTI_STR_SINGLE_SALT[] = "Single-Salt";
static const char OPTI_STR_BRUTE_FORCE[] = "Brute-Force";
static const char OPTI_STR_RAW_HASH[] = "Raw-Hash";
static const char OPTI_STR_SLOW_HASH_SIMD[] = "Slow-Hash-SIMD";
static const char OPTI_STR_USES_BITS_8[] = "Uses-8-Bit";
static const char OPTI_STR_USES_BITS_16[] = "Uses-16-Bit";
static const char OPTI_STR_USES_BITS_32[] = "Uses-32-Bit";
static const char OPTI_STR_USES_BITS_64[] = "Uses-64-Bit";
#if defined (_WIN)
#define mkdir(name,mode) mkdir (name)
#endif
#define INDUCT_DIR "induct"
#define OUTFILES_DIR "outfiles"
#define LOOPBACK_FILE "hashcat.loopback"
#define NUM_DEFAULT_BENCHMARK_ALGORITHMS 146
#define NVIDIA_100PERCENTCPU_WORKAROUND 100
#define global_free(attr) \
{ \
myfree ((void *) data.attr); \
\
data.attr = NULL; \
}
#define local_free(attr) \
{ \
myfree ((void *) attr); \
\
attr = NULL; \
}
static uint default_benchmark_algorithms[NUM_DEFAULT_BENCHMARK_ALGORITHMS] =
{
900,
0,
5100,
100,
1400,
10800,
1700,
5000,
10100,
6000,
6100,
6900,
11700,
11800,
14000,
14100,
400,
8900,
11900,
12000,
10900,
12100,
23,
2500,
5300,
5400,
5500,
5600,
7300,
7500,
13100,
8300,
11100,
11200,
11400,
121,
2611,
2711,
2811,
8400,
13900,
11,
2612,
7900,
21,
11000,
124,
10000,
3711,
7600,
12,
131,
132,
1731,
200,
300,
3100,
112,
12300,
8000,
141,
1441,
1600,
12600,
1421,
101,
111,
1711,
3000,
1000,
1100,
2100,
12800,
1500,
12400,
500,
3200,
7400,
1800,
122,
1722,
7100,
6300,
6700,
6400,
6500,
2400,
2410,
5700,
9200,
9300,
22,
501,
5800,
8100,
8500,
7200,
9900,
7700,
7800,
10300,
8600,
8700,
9100,
133,
13500,
11600,
13600,
12500,
13000,
13200,
13300,
6211,
6221,
6231,
6241,
13711,
13721,
13731,
13741,
13751,
13761,
8800,
12900,
12200,
9700,
9710,
9800,
9810,
9400,
9500,
9600,
10400,
10410,
10500,
10600,
10700,
9000,
5200,
6800,
6600,
8200,
11300,
12700,
13400,
125
};
/**
* types
*/
/**
* globals
*/
static unsigned int full01 = 0x01010101;
static unsigned int full80 = 0x80808080;
static hc_thread_mutex_t mux_counter;
static hc_thread_mutex_t mux_dispatcher;
const char *PROMPT = "[s]tatus [p]ause [r]esume [b]ypass [c]heckpoint [q]uit => ";
/**
* hashcat specific functions
*/
int sort_by_digest_p0p1 (const void *v1, const void *v2)
{
const u32 *d1 = (const u32 *) v1;
const u32 *d2 = (const u32 *) v2;
const uint dgst_pos0 = data.hashconfig->dgst_pos0;
const uint dgst_pos1 = data.hashconfig->dgst_pos1;
const uint dgst_pos2 = data.hashconfig->dgst_pos2;
const uint dgst_pos3 = data.hashconfig->dgst_pos3;
if (d1[dgst_pos3] > d2[dgst_pos3]) return ( 1);
if (d1[dgst_pos3] < d2[dgst_pos3]) return -1;
if (d1[dgst_pos2] > d2[dgst_pos2]) return ( 1);
if (d1[dgst_pos2] < d2[dgst_pos2]) return -1;
if (d1[dgst_pos1] > d2[dgst_pos1]) return ( 1);
if (d1[dgst_pos1] < d2[dgst_pos1]) return -1;
if (d1[dgst_pos0] > d2[dgst_pos0]) return ( 1);
if (d1[dgst_pos0] < d2[dgst_pos0]) return -1;
return 0;
}
int sort_by_salt (const void *v1, const void *v2)
{
const salt_t *s1 = (const salt_t *) v1;
const salt_t *s2 = (const salt_t *) v2;
const int res1 = s1->salt_len - s2->salt_len;
if (res1 != 0) return (res1);
const int res2 = s1->salt_iter - s2->salt_iter;
if (res2 != 0) return (res2);
uint n;
n = 16;
while (n--)
{
if (s1->salt_buf[n] > s2->salt_buf[n]) return ( 1);
if (s1->salt_buf[n] < s2->salt_buf[n]) return -1;
}
n = 8;
while (n--)
{
if (s1->salt_buf_pc[n] > s2->salt_buf_pc[n]) return ( 1);
if (s1->salt_buf_pc[n] < s2->salt_buf_pc[n]) return -1;
}
return 0;
}
int sort_by_hash_no_salt (const void *v1, const void *v2)
{
const hash_t *h1 = (const hash_t *) v1;
const hash_t *h2 = (const hash_t *) v2;
const void *d1 = h1->digest;
const void *d2 = h2->digest;
return sort_by_digest_p0p1 (d1, d2);
}
int sort_by_hash (const void *v1, const void *v2)
{
const hash_t *h1 = (const hash_t *) v1;
const hash_t *h2 = (const hash_t *) v2;
if (data.hashconfig->is_salted)
{
const salt_t *s1 = h1->salt;
const salt_t *s2 = h2->salt;
int res = sort_by_salt (s1, s2);
if (res != 0) return (res);
}
const void *d1 = h1->digest;
const void *d2 = h2->digest;
return sort_by_digest_p0p1 (d1, d2);
}
int sort_by_mtime (const void *p1, const void *p2)
{
const char **f1 = (const char **) p1;
const char **f2 = (const char **) p2;
struct stat s1; stat (*f1, &s1);
struct stat s2; stat (*f2, &s2);
return s2.st_mtime - s1.st_mtime;
}
int sort_by_stringptr (const void *p1, const void *p2)
{
const char **s1 = (const char **) p1;
const char **s2 = (const char **) p2;
return strcmp (*s1, *s2);
}
void format_plain (FILE *fp, unsigned char *plain_ptr, uint plain_len, uint outfile_autohex)
{
int needs_hexify = 0;
if (outfile_autohex == 1)
{
for (uint i = 0; i < plain_len; i++)
{
if (plain_ptr[i] < 0x20)
{
needs_hexify = 1;
break;
}
if (plain_ptr[i] > 0x7f)
{
needs_hexify = 1;
break;
}
}
}
if (needs_hexify == 1)
{
fprintf (fp, "$HEX[");
for (uint i = 0; i < plain_len; i++)
{
fprintf (fp, "%02x", plain_ptr[i]);
}
fprintf (fp, "]");
}
else
{
fwrite (plain_ptr, plain_len, 1, fp);
}
}
void format_debug (char *debug_file, uint debug_mode, unsigned char *orig_plain_ptr, uint orig_plain_len, unsigned char *mod_plain_ptr, uint mod_plain_len, char *rule_buf, int rule_len)
{
uint outfile_autohex = data.outfile_autohex;
unsigned char *rule_ptr = (unsigned char *) rule_buf;
FILE *debug_fp = NULL;
if (debug_file != NULL)
{
debug_fp = fopen (debug_file, "ab");
lock_file (debug_fp);
}
else
{
debug_fp = stderr;
}
if (debug_fp == NULL)
{
log_info ("WARNING: Could not open debug-file for writing");
}
else
{
if ((debug_mode == 2) || (debug_mode == 3) || (debug_mode == 4))
{
format_plain (debug_fp, orig_plain_ptr, orig_plain_len, outfile_autohex);
if ((debug_mode == 3) || (debug_mode == 4)) fputc (':', debug_fp);
}
fwrite (rule_ptr, rule_len, 1, debug_fp);
if (debug_mode == 4)
{
fputc (':', debug_fp);
format_plain (debug_fp, mod_plain_ptr, mod_plain_len, outfile_autohex);
}
fputc ('\n', debug_fp);
if (debug_file != NULL) fclose (debug_fp);
}
}
void format_output (FILE *out_fp, char *out_buf, unsigned char *plain_ptr, const uint plain_len, const u64 crackpos, unsigned char *username, const uint user_len, hashconfig_t *hashconfig)
{
uint outfile_format = data.outfile_format;
char separator = hashconfig->separator;
if (outfile_format & OUTFILE_FMT_HASH)
{
fprintf (out_fp, "%s", out_buf);
if (outfile_format & (OUTFILE_FMT_PLAIN | OUTFILE_FMT_HEXPLAIN | OUTFILE_FMT_CRACKPOS))
{
fputc (separator, out_fp);
}
}
else if (data.username)
{
if (username != NULL)
{
for (uint i = 0; i < user_len; i++)
{
fprintf (out_fp, "%c", username[i]);
}
if (outfile_format & (OUTFILE_FMT_PLAIN | OUTFILE_FMT_HEXPLAIN | OUTFILE_FMT_CRACKPOS))
{
fputc (separator, out_fp);
}
}
}
if (outfile_format & OUTFILE_FMT_PLAIN)
{
format_plain (out_fp, plain_ptr, plain_len, data.outfile_autohex);
if (outfile_format & (OUTFILE_FMT_HEXPLAIN | OUTFILE_FMT_CRACKPOS))
{
fputc (separator, out_fp);
}
}
if (outfile_format & OUTFILE_FMT_HEXPLAIN)
{
for (uint i = 0; i < plain_len; i++)
{
fprintf (out_fp, "%02x", plain_ptr[i]);
}
if (outfile_format & (OUTFILE_FMT_CRACKPOS))
{
fputc (separator, out_fp);
}
}
if (outfile_format & OUTFILE_FMT_CRACKPOS)
{
fprintf (out_fp, "%" PRIu64, crackpos);
}
fputs (EOL, out_fp);
}
static char *stroptitype (const uint opti_type)
{
switch (opti_type)
{
case OPTI_TYPE_ZERO_BYTE: return ((char *) OPTI_STR_ZERO_BYTE);
case OPTI_TYPE_PRECOMPUTE_INIT: return ((char *) OPTI_STR_PRECOMPUTE_INIT);
case OPTI_TYPE_PRECOMPUTE_MERKLE: return ((char *) OPTI_STR_PRECOMPUTE_MERKLE);
case OPTI_TYPE_PRECOMPUTE_PERMUT: return ((char *) OPTI_STR_PRECOMPUTE_PERMUT);
case OPTI_TYPE_MEET_IN_MIDDLE: return ((char *) OPTI_STR_MEET_IN_MIDDLE);
case OPTI_TYPE_EARLY_SKIP: return ((char *) OPTI_STR_EARLY_SKIP);
case OPTI_TYPE_NOT_SALTED: return ((char *) OPTI_STR_NOT_SALTED);
case OPTI_TYPE_NOT_ITERATED: return ((char *) OPTI_STR_NOT_ITERATED);
case OPTI_TYPE_PREPENDED_SALT: return ((char *) OPTI_STR_PREPENDED_SALT);
case OPTI_TYPE_APPENDED_SALT: return ((char *) OPTI_STR_APPENDED_SALT);
case OPTI_TYPE_SINGLE_HASH: return ((char *) OPTI_STR_SINGLE_HASH);
case OPTI_TYPE_SINGLE_SALT: return ((char *) OPTI_STR_SINGLE_SALT);
case OPTI_TYPE_BRUTE_FORCE: return ((char *) OPTI_STR_BRUTE_FORCE);
case OPTI_TYPE_RAW_HASH: return ((char *) OPTI_STR_RAW_HASH);
case OPTI_TYPE_SLOW_HASH_SIMD: return ((char *) OPTI_STR_SLOW_HASH_SIMD);
case OPTI_TYPE_USES_BITS_8: return ((char *) OPTI_STR_USES_BITS_8);
case OPTI_TYPE_USES_BITS_16: return ((char *) OPTI_STR_USES_BITS_16);
case OPTI_TYPE_USES_BITS_32: return ((char *) OPTI_STR_USES_BITS_32);
case OPTI_TYPE_USES_BITS_64: return ((char *) OPTI_STR_USES_BITS_64);
}
return (NULL);
}
static void myabort ()
{
data.devices_status = STATUS_ABORTED;
}
static void myquit ()
{
data.devices_status = STATUS_QUIT;
}
static void check_checkpoint ()
{
// if (data.restore_disable == 1) break; (this is already implied by previous checks)
u64 words_cur = get_lowest_words_done ();
if (words_cur != data.checkpoint_cur_words)
{
myabort ();
}
}
#if defined (_WIN)
static BOOL WINAPI sigHandler_default (DWORD sig)
{
switch (sig)
{
case CTRL_CLOSE_EVENT:
/*
* special case see: https://stackoverflow.com/questions/3640633/c-setconsolectrlhandler-routine-issue/5610042#5610042
* if the user interacts w/ the user-interface (GUI/cmd), we need to do the finalization job within this signal handler
* function otherwise it is too late (e.g. after returning from this function)
*/
myabort ();
SetConsoleCtrlHandler (NULL, TRUE);
hc_sleep (10);
return TRUE;
case CTRL_C_EVENT:
case CTRL_LOGOFF_EVENT:
case CTRL_SHUTDOWN_EVENT:
myabort ();
SetConsoleCtrlHandler (NULL, TRUE);
return TRUE;
}
return FALSE;
}
static BOOL WINAPI sigHandler_benchmark (DWORD sig)
{
switch (sig)
{
case CTRL_CLOSE_EVENT:
myquit ();
SetConsoleCtrlHandler (NULL, TRUE);
hc_sleep (10);
return TRUE;
case CTRL_C_EVENT:
case CTRL_LOGOFF_EVENT:
case CTRL_SHUTDOWN_EVENT:
myquit ();
SetConsoleCtrlHandler (NULL, TRUE);
return TRUE;
}
return FALSE;
}
static void hc_signal (BOOL WINAPI (callback) (DWORD))
{
if (callback == NULL)
{
SetConsoleCtrlHandler ((PHANDLER_ROUTINE) callback, FALSE);
}
else
{
SetConsoleCtrlHandler ((PHANDLER_ROUTINE) callback, TRUE);
}
}
#else
static void sigHandler_default (int sig)
{
myabort ();
signal (sig, NULL);
}
static void sigHandler_benchmark (int sig)
{
myquit ();
signal (sig, NULL);
}
static void hc_signal (void (callback) (int))
{
if (callback == NULL) callback = SIG_DFL;
signal (SIGINT, callback);
signal (SIGTERM, callback);
signal (SIGABRT, callback);
}
#endif
/**
* hashcat -only- functions
*/
static void clear_prompt ()
{
fputc ('\r', stdout);
for (size_t i = 0; i < strlen (PROMPT); i++)
{
fputc (' ', stdout);
}
fputc ('\r', stdout);
fflush (stdout);
}
static void check_hash (hc_device_param_t *device_param, plain_t *plain)
{
char *outfile = data.outfile;
uint quiet = data.quiet;
uint loopback = data.loopback;
uint debug_mode = data.debug_mode;
char *debug_file = data.debug_file;
char debug_rule_buf[BLOCK_SIZE] = { 0 };
int debug_rule_len = 0; // -1 error
uint debug_plain_len = 0;
u8 debug_plain_ptr[BLOCK_SIZE] = { 0 };
// hash
char out_buf[HCBUFSIZ_LARGE] = { 0 };
const u32 salt_pos = plain->salt_pos;
const u32 digest_pos = plain->digest_pos; // relative
const u32 gidvid = plain->gidvid;
const u32 il_pos = plain->il_pos;
hashconfig_t *hashconfig = data.hashconfig;
void *digests_buf = data.digests_buf;
salt_t *salts_buf = data.salts_buf;
void *esalts_buf = data.esalts_buf;
hashinfo_t **hash_info = data.hash_info;
char *hashfile = data.hashfile;
ascii_digest (out_buf, salt_pos, digest_pos, hashconfig, digests_buf, salts_buf, esalts_buf, hash_info, hashfile);
// plain
u64 crackpos = device_param->words_off;
uint plain_buf[16] = { 0 };
u8 *plain_ptr = (u8 *) plain_buf;
unsigned int plain_len = 0;
if (data.attack_mode == ATTACK_MODE_STRAIGHT)
{
pw_t pw;
gidd_to_pw_t (device_param, gidvid, &pw);
for (int i = 0; i < 16; i++)
{
plain_buf[i] = pw.i[i];
}
plain_len = pw.pw_len;
const uint off = device_param->innerloop_pos + il_pos;
if (debug_mode > 0)
{
debug_rule_len = 0;
// save rule
if ((debug_mode == 1) || (debug_mode == 3) || (debug_mode == 4))
{
memset (debug_rule_buf, 0, sizeof (debug_rule_buf));
debug_rule_len = kernel_rule_to_cpu_rule (debug_rule_buf, &data.kernel_rules_buf[off]);
}
// save plain
if ((debug_mode == 2) || (debug_mode == 3) || (debug_mode == 4))
{
memset (debug_plain_ptr, 0, sizeof (debug_plain_ptr));
memcpy (debug_plain_ptr, plain_ptr, plain_len);
debug_plain_len = plain_len;
}
}
plain_len = apply_rules (data.kernel_rules_buf[off].cmds, &plain_buf[0], &plain_buf[4], plain_len);
crackpos += gidvid;
crackpos *= data.kernel_rules_cnt;
crackpos += device_param->innerloop_pos + il_pos;
if (plain_len > data.pw_max) plain_len = data.pw_max;
}
else if (data.attack_mode == ATTACK_MODE_COMBI)
{
pw_t pw;
gidd_to_pw_t (device_param, gidvid, &pw);
for (int i = 0; i < 16; i++)
{
plain_buf[i] = pw.i[i];
}
plain_len = pw.pw_len;
char *comb_buf = (char *) device_param->combs_buf[il_pos].i;
uint comb_len = device_param->combs_buf[il_pos].pw_len;
if (data.combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
memcpy (plain_ptr + plain_len, comb_buf, comb_len);
}
else
{
memmove (plain_ptr + comb_len, plain_ptr, plain_len);
memcpy (plain_ptr, comb_buf, comb_len);
}
plain_len += comb_len;
crackpos += gidvid;
crackpos *= data.combs_cnt;
crackpos += device_param->innerloop_pos + il_pos;
if (data.pw_max != PW_DICTMAX1)
{
if (plain_len > data.pw_max) plain_len = data.pw_max;
}
}
else if (data.attack_mode == ATTACK_MODE_BF)
{
u64 l_off = device_param->kernel_params_mp_l_buf64[3] + gidvid;
u64 r_off = device_param->kernel_params_mp_r_buf64[3] + il_pos;
uint l_start = device_param->kernel_params_mp_l_buf32[5];
uint r_start = device_param->kernel_params_mp_r_buf32[5];
uint l_stop = device_param->kernel_params_mp_l_buf32[4];
uint r_stop = device_param->kernel_params_mp_r_buf32[4];
sp_exec (l_off, (char *) plain_ptr + l_start, data.root_css_buf, data.markov_css_buf, l_start, l_start + l_stop);
sp_exec (r_off, (char *) plain_ptr + r_start, data.root_css_buf, data.markov_css_buf, r_start, r_start + r_stop);
plain_len = data.css_cnt;
crackpos += gidvid;
crackpos *= data.bfs_cnt;
crackpos += device_param->innerloop_pos + il_pos;
}
else if (data.attack_mode == ATTACK_MODE_HYBRID1)
{
pw_t pw;
gidd_to_pw_t (device_param, gidvid, &pw);
for (int i = 0; i < 16; i++)
{
plain_buf[i] = pw.i[i];
}
plain_len = pw.pw_len;
u64 off = device_param->kernel_params_mp_buf64[3] + il_pos;
uint start = 0;
uint stop = device_param->kernel_params_mp_buf32[4];
sp_exec (off, (char *) plain_ptr + plain_len, data.root_css_buf, data.markov_css_buf, start, start + stop);
plain_len += start + stop;
crackpos += gidvid;
crackpos *= data.combs_cnt;
crackpos += device_param->innerloop_pos + il_pos;
if (data.pw_max != PW_DICTMAX1)
{
if (plain_len > data.pw_max) plain_len = data.pw_max;
}
}
else if (data.attack_mode == ATTACK_MODE_HYBRID2)
{
pw_t pw;
gidd_to_pw_t (device_param, gidvid, &pw);
for (int i = 0; i < 16; i++)
{
plain_buf[i] = pw.i[i];
}
plain_len = pw.pw_len;
u64 off = device_param->kernel_params_mp_buf64[3] + il_pos;
uint start = 0;
uint stop = device_param->kernel_params_mp_buf32[4];
memmove (plain_ptr + stop, plain_ptr, plain_len);
sp_exec (off, (char *) plain_ptr, data.root_css_buf, data.markov_css_buf, start, start + stop);
plain_len += start + stop;
crackpos += gidvid;
crackpos *= data.combs_cnt;
crackpos += device_param->innerloop_pos + il_pos;
if (data.pw_max != PW_DICTMAX1)
{
if (plain_len > data.pw_max) plain_len = data.pw_max;
}
}
if (data.attack_mode == ATTACK_MODE_BF)
{
if (hashconfig->opti_type & OPTI_TYPE_BRUTE_FORCE) // lots of optimizations can happen here
{
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT)
{
plain_len = plain_len - data.salts_buf[0].salt_len;
}
}
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
for (uint i = 0, j = 0; i < plain_len; i += 2, j += 1)
{
plain_ptr[j] = plain_ptr[i];
}
plain_len = plain_len / 2;
}
}
}
// if enabled, update also the potfile
// no need for locking, we're in a mutex protected function
potfile_ctx_t *potfile_ctx = data.potfile_ctx;
if (potfile_ctx->fp)
{
potfile_write_append (potfile_ctx, out_buf, plain_ptr, plain_len);
}
// outfile
FILE *out_fp = NULL;
if (outfile != NULL)
{
if ((out_fp = fopen (outfile, "ab")) == NULL)
{
log_error ("ERROR: %s: %s", outfile, strerror (errno));
out_fp = stdout;
}
lock_file (out_fp);
}
else
{
out_fp = stdout;
if (quiet == 0) clear_prompt ();
}
format_output (out_fp, out_buf, plain_ptr, plain_len, crackpos, NULL, 0, hashconfig);
if (outfile != NULL)
{
if (out_fp != stdout)
{
fclose (out_fp);
}
}
else
{
if ((data.wordlist_mode == WL_MODE_FILE) || (data.wordlist_mode == WL_MODE_MASK))
{
if ((data.devices_status != STATUS_CRACKED) && (data.status != 1))
{
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
}
}
}
// loopback
if (loopback)
{
char *loopback_file = data.loopback_file;
FILE *fb_fp = NULL;
if ((fb_fp = fopen (loopback_file, "ab")) != NULL)
{
lock_file (fb_fp);
format_plain (fb_fp, plain_ptr, plain_len, 1);
fputc ('\n', fb_fp);
fclose (fb_fp);
}
}
// (rule) debug mode
// the next check implies that:
// - (data.attack_mode == ATTACK_MODE_STRAIGHT)
// - debug_mode > 0
if ((debug_plain_len > 0) || (debug_rule_len > 0))
{
if (debug_rule_len < 0) debug_rule_len = 0;
if ((quiet == 0) && (debug_file == NULL)) clear_prompt ();
format_debug (debug_file, debug_mode, debug_plain_ptr, debug_plain_len, plain_ptr, plain_len, debug_rule_buf, debug_rule_len);
if ((quiet == 0) && (debug_file == NULL))
{
fprintf (stdout, "%s", PROMPT);
fflush (stdout);
}
}
}
static int check_cracked (hc_device_param_t *device_param, const uint salt_pos, hashconfig_t *hashconfig)
{
salt_t *salt_buf = &data.salts_buf[salt_pos];
u32 num_cracked;
cl_int CL_err;
CL_err = hc_clEnqueueReadBuffer (data.ocl, device_param->command_queue, device_param->d_result, CL_TRUE, 0, sizeof (u32), &num_cracked, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueReadBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (num_cracked)
{
// display hack (for weak hashes etc, it could be that there is still something to clear on the current line)
log_info_nn ("");
plain_t *cracked = (plain_t *) mycalloc (num_cracked, sizeof (plain_t));
CL_err = hc_clEnqueueReadBuffer (data.ocl, device_param->command_queue, device_param->d_plain_bufs, CL_TRUE, 0, num_cracked * sizeof (plain_t), cracked, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueReadBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
uint cpt_cracked = 0;
hc_thread_mutex_lock (mux_display);
for (uint i = 0; i < num_cracked; i++)
{
const uint hash_pos = cracked[i].hash_pos;
if (data.digests_shown[hash_pos] == 1) continue;
if ((hashconfig->opts_type & OPTS_TYPE_PT_NEVERCRACK) == 0)
{
data.digests_shown[hash_pos] = 1;
data.digests_done++;
cpt_cracked++;
salt_buf->digests_done++;
if (salt_buf->digests_done == salt_buf->digests_cnt)
{
data.salts_shown[salt_pos] = 1;
data.salts_done++;
}
}
if (data.salts_done == data.salts_cnt) data.devices_status = STATUS_CRACKED;
check_hash (device_param, &cracked[i]);
}
hc_thread_mutex_unlock (mux_display);
myfree (cracked);
if (cpt_cracked > 0)
{
hc_thread_mutex_lock (mux_display);
data.cpt_buf[data.cpt_pos].timestamp = time (NULL);
data.cpt_buf[data.cpt_pos].cracked = cpt_cracked;
data.cpt_pos++;
data.cpt_total += cpt_cracked;
if (data.cpt_pos == CPT_BUF) data.cpt_pos = 0;
hc_thread_mutex_unlock (mux_display);
}
if (hashconfig->opts_type & OPTS_TYPE_PT_NEVERCRACK)
{
// we need to reset cracked state on the device
// otherwise host thinks again and again the hash was cracked
// and returns invalid password each time
memset (data.digests_shown_tmp, 0, salt_buf->digests_cnt * sizeof (uint));
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_digests_shown, CL_TRUE, salt_buf->digests_offset * sizeof (uint), salt_buf->digests_cnt * sizeof (uint), &data.digests_shown_tmp[salt_buf->digests_offset], 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
num_cracked = 0;
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_result, CL_TRUE, 0, sizeof (u32), &num_cracked, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
return 0;
}
static void save_hash ()
{
hashconfig_t *hashconfig = data.hashconfig;
void *digests_buf = data.digests_buf;
salt_t *salts_buf = data.salts_buf;
void *esalts_buf = data.esalts_buf;
hashinfo_t **hash_info = data.hash_info;
char *hashfile = data.hashfile;
char new_hashfile[256] = { 0 };
char old_hashfile[256] = { 0 };
snprintf (new_hashfile, 255, "%s.new", hashfile);
snprintf (old_hashfile, 255, "%s.old", hashfile);
unlink (new_hashfile);
char separator = hashconfig->separator;
FILE *fp = fopen (new_hashfile, "wb");
if (fp == NULL)
{
log_error ("ERROR: %s: %s", new_hashfile, strerror (errno));
exit (-1);
}
for (uint salt_pos = 0; salt_pos < data.salts_cnt; salt_pos++)
{
if (data.salts_shown[salt_pos] == 1) continue;
salt_t *salt_buf = &data.salts_buf[salt_pos];
for (uint digest_pos = 0; digest_pos < salt_buf->digests_cnt; digest_pos++)
{
uint idx = salt_buf->digests_offset + digest_pos;
if (data.digests_shown[idx] == 1) continue;
if (hashconfig->hash_mode != 2500)
{
if (data.username == 1)
{
user_t *user = data.hash_info[idx]->user;
uint i;
for (i = 0; i < user->user_len; i++) fputc (user->user_name[i], fp);
fputc (separator, fp);
}
char out_buf[HCBUFSIZ_LARGE]; // scratch buffer
out_buf[0] = 0;
ascii_digest (out_buf, salt_pos, digest_pos, hashconfig, digests_buf, salts_buf, esalts_buf, hash_info, hashfile);
fputs (out_buf, fp);
fputc ('\n', fp);
}
else
{
hccap_t hccap;
to_hccap_t (&hccap, salt_pos, digest_pos, hashconfig, digests_buf, salts_buf, esalts_buf);
fwrite (&hccap, sizeof (hccap_t), 1, fp);
}
}
}
fflush (fp);
fclose (fp);
unlink (old_hashfile);
if (rename (hashfile, old_hashfile) != 0)
{
log_error ("ERROR: Rename file '%s' to '%s': %s", hashfile, old_hashfile, strerror (errno));
exit (-1);
}
unlink (hashfile);
if (rename (new_hashfile, hashfile) != 0)
{
log_error ("ERROR: Rename file '%s' to '%s': %s", new_hashfile, hashfile, strerror (errno));
exit (-1);
}
unlink (old_hashfile);
}
static int run_kernel (const uint kern_run, hc_device_param_t *device_param, const uint num, const uint event_update, const uint iteration, hashconfig_t *hashconfig)
{
cl_int CL_err = CL_SUCCESS;
uint num_elements = num;
device_param->kernel_params_buf32[33] = data.combs_mode;
device_param->kernel_params_buf32[34] = num;
uint kernel_threads = device_param->kernel_threads;
while (num_elements % kernel_threads) num_elements++;
cl_kernel kernel = NULL;
switch (kern_run)
{
case KERN_RUN_1: kernel = device_param->kernel1; break;
case KERN_RUN_12: kernel = device_param->kernel12; break;
case KERN_RUN_2: kernel = device_param->kernel2; break;
case KERN_RUN_23: kernel = device_param->kernel23; break;
case KERN_RUN_3: kernel = device_param->kernel3; break;
}
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 24, sizeof (cl_uint), device_param->kernel_params[24]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 25, sizeof (cl_uint), device_param->kernel_params[25]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 26, sizeof (cl_uint), device_param->kernel_params[26]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 27, sizeof (cl_uint), device_param->kernel_params[27]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 28, sizeof (cl_uint), device_param->kernel_params[28]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 29, sizeof (cl_uint), device_param->kernel_params[29]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 30, sizeof (cl_uint), device_param->kernel_params[30]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 31, sizeof (cl_uint), device_param->kernel_params[31]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 32, sizeof (cl_uint), device_param->kernel_params[32]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 33, sizeof (cl_uint), device_param->kernel_params[33]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 34, sizeof (cl_uint), device_param->kernel_params[34]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
cl_event event;
if ((hashconfig->opts_type & OPTS_TYPE_PT_BITSLICE) && (data.attack_mode == ATTACK_MODE_BF))
{
const size_t global_work_size[3] = { num_elements, 32, 1 };
const size_t local_work_size[3] = { kernel_threads / 32, 32, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 2, NULL, global_work_size, local_work_size, 0, NULL, &event);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else
{
if (kern_run == KERN_RUN_2)
{
if (hashconfig->opti_type & OPTI_TYPE_SLOW_HASH_SIMD)
{
num_elements = CEIL (num_elements / device_param->vector_width);
}
}
while (num_elements % kernel_threads) num_elements++;
const size_t global_work_size[3] = { num_elements, 1, 1 };
const size_t local_work_size[3] = { kernel_threads, 1, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, &event);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
CL_err = hc_clFlush (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFlush(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_param->nvidia_spin_damp > 0)
{
if (data.devices_status == STATUS_RUNNING)
{
if (iteration < EXPECTED_ITERATIONS)
{
switch (kern_run)
{
case KERN_RUN_1: if (device_param->exec_us_prev1[iteration] > 0) usleep ((useconds_t)(device_param->exec_us_prev1[iteration] * device_param->nvidia_spin_damp)); break;
case KERN_RUN_2: if (device_param->exec_us_prev2[iteration] > 0) usleep ((useconds_t)(device_param->exec_us_prev2[iteration] * device_param->nvidia_spin_damp)); break;
case KERN_RUN_3: if (device_param->exec_us_prev3[iteration] > 0) usleep ((useconds_t)(device_param->exec_us_prev3[iteration] * device_param->nvidia_spin_damp)); break;
}
}
}
}
CL_err = hc_clWaitForEvents (data.ocl, 1, &event);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clWaitForEvents(): %s\n", val2cstr_cl (CL_err));
return -1;
}
cl_ulong time_start;
cl_ulong time_end;
CL_err |= hc_clGetEventProfilingInfo (data.ocl, event, CL_PROFILING_COMMAND_START, sizeof (time_start), &time_start, NULL);
CL_err |= hc_clGetEventProfilingInfo (data.ocl, event, CL_PROFILING_COMMAND_END, sizeof (time_end), &time_end, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetEventProfilingInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
const double exec_us = (double) (time_end - time_start) / 1000;
if (data.devices_status == STATUS_RUNNING)
{
if (iteration < EXPECTED_ITERATIONS)
{
switch (kern_run)
{
case KERN_RUN_1: device_param->exec_us_prev1[iteration] = exec_us; break;
case KERN_RUN_2: device_param->exec_us_prev2[iteration] = exec_us; break;
case KERN_RUN_3: device_param->exec_us_prev3[iteration] = exec_us; break;
}
}
}
if (event_update)
{
uint exec_pos = device_param->exec_pos;
device_param->exec_ms[exec_pos] = exec_us / 1000;
exec_pos++;
if (exec_pos == EXEC_CACHE)
{
exec_pos = 0;
}
device_param->exec_pos = exec_pos;
}
CL_err = hc_clReleaseEvent (data.ocl, event);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clReleaseEvent(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFinish (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFinish(): %s\n", val2cstr_cl (CL_err));
return -1;
}
return 0;
}
static int run_kernel_mp (const uint kern_run, hc_device_param_t *device_param, const uint num)
{
cl_int CL_err = CL_SUCCESS;
uint num_elements = num;
switch (kern_run)
{
case KERN_RUN_MP: device_param->kernel_params_mp_buf32[8] = num; break;
case KERN_RUN_MP_R: device_param->kernel_params_mp_r_buf32[8] = num; break;
case KERN_RUN_MP_L: device_param->kernel_params_mp_l_buf32[9] = num; break;
}
// causes problems with special threads like in bcrypt
// const uint kernel_threads = device_param->kernel_threads;
uint kernel_threads = device_param->kernel_threads;
while (num_elements % kernel_threads) num_elements++;
cl_kernel kernel = NULL;
switch (kern_run)
{
case KERN_RUN_MP: kernel = device_param->kernel_mp; break;
case KERN_RUN_MP_R: kernel = device_param->kernel_mp_r; break;
case KERN_RUN_MP_L: kernel = device_param->kernel_mp_l; break;
}
switch (kern_run)
{
case KERN_RUN_MP: CL_err |= hc_clSetKernelArg (data.ocl, kernel, 3, sizeof (cl_ulong), device_param->kernel_params_mp[3]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 4, sizeof (cl_uint), device_param->kernel_params_mp[4]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 5, sizeof (cl_uint), device_param->kernel_params_mp[5]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 6, sizeof (cl_uint), device_param->kernel_params_mp[6]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 7, sizeof (cl_uint), device_param->kernel_params_mp[7]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 8, sizeof (cl_uint), device_param->kernel_params_mp[8]);
break;
case KERN_RUN_MP_R: CL_err |= hc_clSetKernelArg (data.ocl, kernel, 3, sizeof (cl_ulong), device_param->kernel_params_mp_r[3]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 4, sizeof (cl_uint), device_param->kernel_params_mp_r[4]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 5, sizeof (cl_uint), device_param->kernel_params_mp_r[5]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 6, sizeof (cl_uint), device_param->kernel_params_mp_r[6]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 7, sizeof (cl_uint), device_param->kernel_params_mp_r[7]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 8, sizeof (cl_uint), device_param->kernel_params_mp_r[8]);
break;
case KERN_RUN_MP_L: CL_err |= hc_clSetKernelArg (data.ocl, kernel, 3, sizeof (cl_ulong), device_param->kernel_params_mp_l[3]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 4, sizeof (cl_uint), device_param->kernel_params_mp_l[4]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 5, sizeof (cl_uint), device_param->kernel_params_mp_l[5]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 6, sizeof (cl_uint), device_param->kernel_params_mp_l[6]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 7, sizeof (cl_uint), device_param->kernel_params_mp_l[7]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 8, sizeof (cl_uint), device_param->kernel_params_mp_l[8]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 9, sizeof (cl_uint), device_param->kernel_params_mp_l[9]);
break;
}
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
const size_t global_work_size[3] = { num_elements, 1, 1 };
const size_t local_work_size[3] = { kernel_threads, 1, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFlush (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFlush(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFinish (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFinish(): %s\n", val2cstr_cl (CL_err));
return -1;
}
return 0;
}
static int run_kernel_tm (hc_device_param_t *device_param)
{
cl_int CL_err = CL_SUCCESS;
const uint num_elements = 1024; // fixed
uint kernel_threads = 32;
cl_kernel kernel = device_param->kernel_tm;
const size_t global_work_size[3] = { num_elements, 1, 1 };
const size_t local_work_size[3] = { kernel_threads, 1, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFlush (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFlush(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFinish (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFinish(): %s\n", val2cstr_cl (CL_err));
return -1;
}
return 0;
}
static int run_kernel_amp (hc_device_param_t *device_param, const uint num)
{
cl_int CL_err = CL_SUCCESS;
uint num_elements = num;
device_param->kernel_params_amp_buf32[5] = data.combs_mode;
device_param->kernel_params_amp_buf32[6] = num_elements;
// causes problems with special threads like in bcrypt
// const uint kernel_threads = device_param->kernel_threads;
uint kernel_threads = device_param->kernel_threads;
while (num_elements % kernel_threads) num_elements++;
cl_kernel kernel = device_param->kernel_amp;
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 5, sizeof (cl_uint), device_param->kernel_params_amp[5]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 6, sizeof (cl_uint), device_param->kernel_params_amp[6]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
const size_t global_work_size[3] = { num_elements, 1, 1 };
const size_t local_work_size[3] = { kernel_threads, 1, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFlush (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFlush(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFinish (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFinish(): %s\n", val2cstr_cl (CL_err));
return -1;
}
return 0;
}
static int run_kernel_memset (hc_device_param_t *device_param, cl_mem buf, const uint value, const uint num)
{
cl_int CL_err = CL_SUCCESS;
const u32 num16d = num / 16;
const u32 num16m = num % 16;
if (num16d)
{
device_param->kernel_params_memset_buf32[1] = value;
device_param->kernel_params_memset_buf32[2] = num16d;
uint kernel_threads = device_param->kernel_threads;
uint num_elements = num16d;
while (num_elements % kernel_threads) num_elements++;
cl_kernel kernel = device_param->kernel_memset;
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 0, sizeof (cl_mem), (void *) &buf);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 1, sizeof (cl_uint), device_param->kernel_params_memset[1]);
CL_err |= hc_clSetKernelArg (data.ocl, kernel, 2, sizeof (cl_uint), device_param->kernel_params_memset[2]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
const size_t global_work_size[3] = { num_elements, 1, 1 };
const size_t local_work_size[3] = { kernel_threads, 1, 1 };
CL_err = hc_clEnqueueNDRangeKernel (data.ocl, device_param->command_queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueNDRangeKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFlush (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFlush(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clFinish (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clFinish(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (num16m)
{
u32 tmp[4];
tmp[0] = value;
tmp[1] = value;
tmp[2] = value;
tmp[3] = value;
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, buf, CL_TRUE, num16d * 16, num16m, tmp, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
return 0;
}
static int run_kernel_bzero (hc_device_param_t *device_param, cl_mem buf, const size_t size)
{
return run_kernel_memset (device_param, buf, 0, size);
}
static int choose_kernel (hc_device_param_t *device_param, hashconfig_t *hashconfig, const uint attack_exec, const uint attack_mode, const uint opts_type, const salt_t *salt_buf, const uint highest_pw_len, const uint pws_cnt, const uint fast_iteration)
{
cl_int CL_err = CL_SUCCESS;
if (hashconfig->hash_mode == 2000)
{
process_stdout (device_param, pws_cnt);
return 0;
}
if (attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (attack_mode == ATTACK_MODE_BF)
{
if (opts_type & OPTS_TYPE_PT_BITSLICE)
{
const uint size_tm = 32 * sizeof (bs_word_t);
run_kernel_bzero (device_param, device_param->d_tm_c, size_tm);
run_kernel_tm (device_param);
CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_tm_c, device_param->d_bfs_c, 0, 0, size_tm, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
if (highest_pw_len < 16)
{
run_kernel (KERN_RUN_1, device_param, pws_cnt, true, fast_iteration, hashconfig);
}
else if (highest_pw_len < 32)
{
run_kernel (KERN_RUN_2, device_param, pws_cnt, true, fast_iteration, hashconfig);
}
else
{
run_kernel (KERN_RUN_3, device_param, pws_cnt, true, fast_iteration, hashconfig);
}
}
else
{
run_kernel_amp (device_param, pws_cnt);
run_kernel (KERN_RUN_1, device_param, pws_cnt, false, 0, hashconfig);
if (opts_type & OPTS_TYPE_HOOK12)
{
run_kernel (KERN_RUN_12, device_param, pws_cnt, false, 0, hashconfig);
CL_err = hc_clEnqueueReadBuffer (data.ocl, device_param->command_queue, device_param->d_hooks, CL_TRUE, 0, device_param->size_hooks, device_param->hooks_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueReadBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
// do something with data
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_hooks, CL_TRUE, 0, device_param->size_hooks, device_param->hooks_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
uint iter = salt_buf->salt_iter;
uint loop_step = device_param->kernel_loops;
for (uint loop_pos = 0, slow_iteration = 0; loop_pos < iter; loop_pos += loop_step, slow_iteration++)
{
uint loop_left = iter - loop_pos;
loop_left = MIN (loop_left, loop_step);
device_param->kernel_params_buf32[28] = loop_pos;
device_param->kernel_params_buf32[29] = loop_left;
run_kernel (KERN_RUN_2, device_param, pws_cnt, true, slow_iteration, hashconfig);
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
/**
* speed
*/
const float iter_part = (float) (loop_pos + loop_left) / iter;
const u64 perf_sum_all = (u64) (pws_cnt * iter_part);
double speed_ms;
hc_timer_get (device_param->timer_speed, speed_ms);
const u32 speed_pos = device_param->speed_pos;
device_param->speed_cnt[speed_pos] = perf_sum_all;
device_param->speed_ms[speed_pos] = speed_ms;
if (data.benchmark == 1)
{
if (speed_ms > 4096) data.devices_status = STATUS_ABORTED;
}
}
if (opts_type & OPTS_TYPE_HOOK23)
{
run_kernel (KERN_RUN_23, device_param, pws_cnt, false, 0, hashconfig);
CL_err = hc_clEnqueueReadBuffer (data.ocl, device_param->command_queue, device_param->d_hooks, CL_TRUE, 0, device_param->size_hooks, device_param->hooks_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueReadBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
// do something with data
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_hooks, CL_TRUE, 0, device_param->size_hooks, device_param->hooks_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
run_kernel (KERN_RUN_3, device_param, pws_cnt, false, 0, hashconfig);
}
return 0;
}
static int run_copy (hc_device_param_t *device_param, hashconfig_t *hashconfig, const uint pws_cnt)
{
cl_int CL_err = CL_SUCCESS;
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, pws_cnt * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
if (data.attack_mode == ATTACK_MODE_COMBI)
{
if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01)
{
for (u32 i = 0; i < pws_cnt; i++)
{
const u32 pw_len = device_param->pws_buf[i].pw_len;
u8 *ptr = (u8 *) device_param->pws_buf[i].i;
ptr[pw_len] = 0x01;
}
}
else if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80)
{
for (u32 i = 0; i < pws_cnt; i++)
{
const u32 pw_len = device_param->pws_buf[i].pw_len;
u8 *ptr = (u8 *) device_param->pws_buf[i].i;
ptr[pw_len] = 0x80;
}
}
}
}
else if (data.attack_mode == ATTACK_MODE_HYBRID2)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01)
{
for (u32 i = 0; i < pws_cnt; i++)
{
const u32 pw_len = device_param->pws_buf[i].pw_len;
u8 *ptr = (u8 *) device_param->pws_buf[i].i;
ptr[pw_len] = 0x01;
}
}
else if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80)
{
for (u32 i = 0; i < pws_cnt; i++)
{
const u32 pw_len = device_param->pws_buf[i].pw_len;
u8 *ptr = (u8 *) device_param->pws_buf[i].i;
ptr[pw_len] = 0x80;
}
}
}
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, pws_cnt * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_kern == ATTACK_KERN_BF)
{
const u64 off = device_param->words_off;
device_param->kernel_params_mp_l_buf64[3] = off;
run_kernel_mp (KERN_RUN_MP_L, device_param, pws_cnt);
}
return 0;
}
static double try_run (hc_device_param_t *device_param, hashconfig_t *hashconfig, const u32 kernel_accel, const u32 kernel_loops)
{
const u32 kernel_power_try = device_param->device_processors * device_param->kernel_threads * kernel_accel;
device_param->kernel_params_buf32[28] = 0;
device_param->kernel_params_buf32[29] = kernel_loops; // not a bug, both need to be set
device_param->kernel_params_buf32[30] = kernel_loops; // because there's two variables for inner iters for slow and fast hashes
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
run_kernel (KERN_RUN_1, device_param, kernel_power_try, true, 0, hashconfig);
}
else
{
run_kernel (KERN_RUN_2, device_param, kernel_power_try, true, 0, hashconfig);
}
const double exec_ms_prev = get_avg_exec_time (device_param, 1);
return exec_ms_prev;
}
static int autotune (hc_device_param_t *device_param, hashconfig_t *hashconfig)
{
const double target_ms = TARGET_MS_PROFILE[data.workload_profile - 1];
const u32 kernel_accel_min = device_param->kernel_accel_min;
const u32 kernel_accel_max = device_param->kernel_accel_max;
const u32 kernel_loops_min = device_param->kernel_loops_min;
const u32 kernel_loops_max = device_param->kernel_loops_max;
u32 kernel_accel = kernel_accel_min;
u32 kernel_loops = kernel_loops_min;
// in this case the user specified a fixed -u and -n on the commandline
// no way to tune anything
// but we need to run a few caching rounds
if ((kernel_loops_min == kernel_loops_max) && (kernel_accel_min == kernel_accel_max))
{
if (hashconfig->hash_mode != 2000)
{
try_run (device_param, hashconfig, kernel_accel, kernel_loops);
try_run (device_param, hashconfig, kernel_accel, kernel_loops);
try_run (device_param, hashconfig, kernel_accel, kernel_loops);
try_run (device_param, hashconfig, kernel_accel, kernel_loops);
}
device_param->kernel_accel = kernel_accel;
device_param->kernel_loops = kernel_loops;
const u32 kernel_power = device_param->device_processors * device_param->kernel_threads * device_param->kernel_accel;
device_param->kernel_power = kernel_power;
return 0;
}
// from here it's clear we are allowed to autotune
// so let's init some fake words
const u32 kernel_power_max = device_param->device_processors * device_param->kernel_threads * kernel_accel_max;
if (data.attack_kern == ATTACK_KERN_BF)
{
run_kernel_memset (device_param, device_param->d_pws_buf, 7, kernel_power_max * sizeof (pw_t));
}
else
{
for (u32 i = 0; i < kernel_power_max; i++)
{
device_param->pws_buf[i].i[0] = i;
device_param->pws_buf[i].i[1] = 0x01234567;
device_param->pws_buf[i].pw_len = 7 + (i & 7);
}
cl_int CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (data.kernel_rules_cnt > 1)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_rules, device_param->d_rules_c, 0, 0, MIN (kernel_loops_max, KERNEL_RULES) * sizeof (kernel_rule_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else
{
run_kernel_amp (device_param, kernel_power_max);
}
#define VERIFIER_CNT 1
// first find out highest kernel-loops that stays below target_ms
if (kernel_loops_min < kernel_loops_max)
{
for (kernel_loops = kernel_loops_max; kernel_loops > kernel_loops_min; kernel_loops >>= 1)
{
double exec_ms = try_run (device_param, hashconfig, kernel_accel_min, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (device_param, hashconfig, kernel_accel_min, kernel_loops);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms < target_ms) break;
}
}
// now the same for kernel-accel but with the new kernel-loops from previous loop set
#define STEPS_CNT 10
if (kernel_accel_min < kernel_accel_max)
{
for (int i = 0; i < STEPS_CNT; i++)
{
const u32 kernel_accel_try = 1u << i;
if (kernel_accel_try < kernel_accel_min) continue;
if (kernel_accel_try > kernel_accel_max) break;
double exec_ms = try_run (device_param, hashconfig, kernel_accel_try, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (device_param, hashconfig, kernel_accel_try, kernel_loops);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms > target_ms) break;
kernel_accel = kernel_accel_try;
}
}
// at this point we want to know the actual runtime for the following reason:
// we need a reference for the balancing loop following up, and this
// the balancing loop can have an effect that the creates a new opportunity, for example:
// if the target is 95 ms and the current runtime is 48ms the above loop
// stopped the execution because the previous exec_ms was > 95ms
// due to the rebalance it's possible that the runtime reduces from 48ms to 47ms
// and this creates the possibility to double the workload -> 47 * 2 = 95ms, which is < 96ms
double exec_ms_pre_final = try_run (device_param, hashconfig, kernel_accel, kernel_loops);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_pre_final_v = try_run (device_param, hashconfig, kernel_accel, kernel_loops);
exec_ms_pre_final = MIN (exec_ms_pre_final, exec_ms_pre_final_v);
}
u32 diff = kernel_loops - kernel_accel;
if ((kernel_loops_min < kernel_loops_max) && (kernel_accel_min < kernel_accel_max))
{
u32 kernel_accel_orig = kernel_accel;
u32 kernel_loops_orig = kernel_loops;
for (u32 f = 1; f < 1024; f++)
{
const u32 kernel_accel_try = kernel_accel_orig * f;
const u32 kernel_loops_try = kernel_loops_orig / f;
if (kernel_accel_try > kernel_accel_max) break;
if (kernel_loops_try < kernel_loops_min) break;
u32 diff_new = kernel_loops_try - kernel_accel_try;
if (diff_new > diff) break;
diff_new = diff;
double exec_ms = try_run (device_param, hashconfig, kernel_accel_try, kernel_loops_try);
for (int i = 0; i < VERIFIER_CNT; i++)
{
double exec_ms_v = try_run (device_param, hashconfig, kernel_accel_try, kernel_loops_try);
exec_ms = MIN (exec_ms, exec_ms_v);
}
if (exec_ms < exec_ms_pre_final)
{
exec_ms_pre_final = exec_ms;
kernel_accel = kernel_accel_try;
kernel_loops = kernel_loops_try;
}
}
}
const double exec_left = target_ms / exec_ms_pre_final;
const double accel_left = kernel_accel_max / kernel_accel;
const double exec_accel_min = MIN (exec_left, accel_left); // we want that to be int
if (exec_accel_min >= 1.0)
{
// this is safe to not overflow kernel_accel_max because of accel_left
kernel_accel *= (u32) exec_accel_min;
}
// reset them fake words
/*
memset (device_param->pws_buf, 0, kernel_power_max * sizeof (pw_t));
hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_pws_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_pws_amp_buf, CL_TRUE, 0, kernel_power_max * sizeof (pw_t), device_param->pws_buf, 0, NULL, NULL);
*/
run_kernel_memset (device_param, device_param->d_pws_buf, 0, kernel_power_max * sizeof (pw_t));
if (hashconfig->attack_exec == ATTACK_EXEC_OUTSIDE_KERNEL)
{
run_kernel_memset (device_param, device_param->d_pws_amp_buf, 0, kernel_power_max * sizeof (pw_t));
}
// reset timer
device_param->exec_pos = 0;
memset (device_param->exec_ms, 0, EXEC_CACHE * sizeof (double));
memset (device_param->exec_us_prev1, 0, EXPECTED_ITERATIONS * sizeof (double));
memset (device_param->exec_us_prev2, 0, EXPECTED_ITERATIONS * sizeof (double));
memset (device_param->exec_us_prev3, 0, EXPECTED_ITERATIONS * sizeof (double));
// store
device_param->kernel_accel = kernel_accel;
device_param->kernel_loops = kernel_loops;
const u32 kernel_power = device_param->device_processors * device_param->kernel_threads * device_param->kernel_accel;
device_param->kernel_power = kernel_power;
#if defined (DEBUG)
if (data.quiet == 0)
{
clear_prompt ();
log_info ("- Device #%u: autotuned kernel-accel to %u\n"
"- Device #%u: autotuned kernel-loops to %u\n",
device_param->device_id + 1, kernel_accel,
device_param->device_id + 1, kernel_loops);
fprintf (stdout, "%s", PROMPT);
fflush (stdout);
}
#endif
return 0;
}
static int run_cracker (hc_device_param_t *device_param, hashconfig_t *hashconfig, const uint pws_cnt)
{
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
// init speed timer
uint speed_pos = device_param->speed_pos;
#if defined (_POSIX)
if (device_param->timer_speed.tv_sec == 0)
{
hc_timer_set (&device_param->timer_speed);
}
#endif
#if defined (_WIN)
if (device_param->timer_speed.QuadPart == 0)
{
hc_timer_set (&device_param->timer_speed);
}
#endif
// find higest password length, this is for optimization stuff
uint highest_pw_len = 0;
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
}
else if (data.attack_kern == ATTACK_KERN_BF)
{
highest_pw_len = device_param->kernel_params_mp_l_buf32[4]
+ device_param->kernel_params_mp_l_buf32[5];
}
// iteration type
uint innerloop_step = 0;
uint innerloop_cnt = 0;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL) innerloop_step = device_param->kernel_loops;
else innerloop_step = 1;
if (data.attack_kern == ATTACK_KERN_STRAIGHT) innerloop_cnt = data.kernel_rules_cnt;
else if (data.attack_kern == ATTACK_KERN_COMBI) innerloop_cnt = data.combs_cnt;
else if (data.attack_kern == ATTACK_KERN_BF) innerloop_cnt = data.bfs_cnt;
// loop start: most outer loop = salt iteration, then innerloops (if multi)
for (uint salt_pos = 0; salt_pos < data.salts_cnt; salt_pos++)
{
while (data.devices_status == STATUS_PAUSED) hc_sleep (1);
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
salt_t *salt_buf = &data.salts_buf[salt_pos];
device_param->kernel_params_buf32[27] = salt_pos;
device_param->kernel_params_buf32[31] = salt_buf->digests_cnt;
device_param->kernel_params_buf32[32] = salt_buf->digests_offset;
FILE *combs_fp = device_param->combs_fp;
if (data.attack_mode == ATTACK_MODE_COMBI)
{
rewind (combs_fp);
}
// innerloops
for (uint innerloop_pos = 0; innerloop_pos < innerloop_cnt; innerloop_pos += innerloop_step)
{
while (data.devices_status == STATUS_PAUSED) hc_sleep (1);
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
uint fast_iteration = 0;
uint innerloop_left = innerloop_cnt - innerloop_pos;
if (innerloop_left > innerloop_step)
{
innerloop_left = innerloop_step;
fast_iteration = 1;
}
device_param->innerloop_pos = innerloop_pos;
device_param->innerloop_left = innerloop_left;
device_param->kernel_params_buf32[30] = innerloop_left;
// i think we can get rid of this
if (innerloop_left == 0)
{
puts ("bug, how should this happen????\n");
continue;
}
if (data.salts_shown[salt_pos] == 1)
{
data.words_progress_done[salt_pos] += (u64) pws_cnt * (u64) innerloop_left;
continue;
}
// initialize amplifiers
if (data.attack_mode == ATTACK_MODE_COMBI)
{
uint i = 0;
while (i < innerloop_left)
{
if (feof (combs_fp)) break;
int line_len = fgetl (combs_fp, line_buf);
if (line_len >= PW_MAX1) continue;
line_len = convert_from_hex (line_buf, line_len);
char *line_buf_new = line_buf;
if (run_rule_engine (data.rule_len_r, data.rule_buf_r))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = _old_apply_rule (data.rule_buf_r, data.rule_len_r, line_buf, line_len, rule_buf_out);
if (rule_len_out < 0)
{
data.words_progress_rejected[salt_pos] += pws_cnt;
continue;
}
line_len = rule_len_out;
line_buf_new = rule_buf_out;
}
line_len = MIN (line_len, PW_DICTMAX);
u8 *ptr = (u8 *) device_param->combs_buf[i].i;
memcpy (ptr, line_buf_new, line_len);
memset (ptr + line_len, 0, PW_DICTMAX1 - line_len);
if (hashconfig->opts_type & OPTS_TYPE_PT_UPPER)
{
uppercase (ptr, line_len);
}
if (data.combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80)
{
ptr[line_len] = 0x80;
}
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01)
{
ptr[line_len] = 0x01;
}
}
device_param->combs_buf[i].pw_len = line_len;
i++;
}
for (uint j = i; j < innerloop_left; j++)
{
device_param->combs_buf[j].i[0] = 0;
device_param->combs_buf[j].i[1] = 0;
device_param->combs_buf[j].i[2] = 0;
device_param->combs_buf[j].i[3] = 0;
device_param->combs_buf[j].i[4] = 0;
device_param->combs_buf[j].i[5] = 0;
device_param->combs_buf[j].i[6] = 0;
device_param->combs_buf[j].i[7] = 0;
device_param->combs_buf[j].pw_len = 0;
}
innerloop_left = i;
}
else if (data.attack_mode == ATTACK_MODE_BF)
{
u64 off = innerloop_pos;
device_param->kernel_params_mp_r_buf64[3] = off;
run_kernel_mp (KERN_RUN_MP_R, device_param, innerloop_left);
}
else if (data.attack_mode == ATTACK_MODE_HYBRID1)
{
u64 off = innerloop_pos;
device_param->kernel_params_mp_buf64[3] = off;
run_kernel_mp (KERN_RUN_MP, device_param, innerloop_left);
}
else if (data.attack_mode == ATTACK_MODE_HYBRID2)
{
u64 off = innerloop_pos;
device_param->kernel_params_mp_buf64[3] = off;
run_kernel_mp (KERN_RUN_MP, device_param, innerloop_left);
}
// copy amplifiers
if (data.attack_mode == ATTACK_MODE_STRAIGHT)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_rules, device_param->d_rules_c, innerloop_pos * sizeof (kernel_rule_t), 0, innerloop_left * sizeof (kernel_rule_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_mode == ATTACK_MODE_COMBI)
{
cl_int CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_combs_c, CL_TRUE, 0, innerloop_left * sizeof (comb_t), device_param->combs_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_mode == ATTACK_MODE_BF)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_bfs, device_param->d_bfs_c, 0, 0, innerloop_left * sizeof (bf_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_mode == ATTACK_MODE_HYBRID1)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_combs, device_param->d_combs_c, 0, 0, innerloop_left * sizeof (comb_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (data.attack_mode == ATTACK_MODE_HYBRID2)
{
cl_int CL_err = hc_clEnqueueCopyBuffer (data.ocl, device_param->command_queue, device_param->d_combs, device_param->d_combs_c, 0, 0, innerloop_left * sizeof (comb_t), 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueCopyBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (data.benchmark == 1)
{
hc_timer_set (&device_param->timer_speed);
}
int rc = choose_kernel (device_param, hashconfig, hashconfig->attack_exec, data.attack_mode, hashconfig->opts_type, salt_buf, highest_pw_len, pws_cnt, fast_iteration);
if (rc == -1) return -1;
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
/**
* result
*/
if (data.benchmark == 0)
{
check_cracked (device_param, salt_pos, hashconfig);
}
/**
* progress
*/
u64 perf_sum_all = (u64) pws_cnt * (u64) innerloop_left;
hc_thread_mutex_lock (mux_counter);
data.words_progress_done[salt_pos] += perf_sum_all;
hc_thread_mutex_unlock (mux_counter);
/**
* speed
*/
double speed_ms;
hc_timer_get (device_param->timer_speed, speed_ms);
hc_timer_set (&device_param->timer_speed);
// current speed
//hc_thread_mutex_lock (mux_display);
device_param->speed_cnt[speed_pos] = perf_sum_all;
device_param->speed_ms[speed_pos] = speed_ms;
//hc_thread_mutex_unlock (mux_display);
speed_pos++;
if (speed_pos == SPEED_CACHE)
{
speed_pos = 0;
}
/**
* benchmark
*/
if (data.benchmark == 1) break;
}
}
device_param->speed_pos = speed_pos;
myfree (line_buf);
return 0;
}
static u64 count_words (wl_data_t *wl_data, FILE *fd, const char *dictfile, dictstat_ctx_t *dictstat_ctx)
{
hc_signal (NULL);
dictstat_t d;
d.cnt = 0;
#if defined (_POSIX)
fstat (fileno (fd), &d.stat);
#endif
#if defined (_WIN)
_fstat64 (fileno (fd), &d.stat);
#endif
d.stat.st_mode = 0;
d.stat.st_nlink = 0;
d.stat.st_uid = 0;
d.stat.st_gid = 0;
d.stat.st_rdev = 0;
d.stat.st_atime = 0;
#if defined (_POSIX)
d.stat.st_blksize = 0;
d.stat.st_blocks = 0;
#endif
if (d.stat.st_size == 0) return 0;
const u64 cached_cnt = dictstat_find (dictstat_ctx, &d);
if (run_rule_engine (data.rule_len_l, data.rule_buf_l) == 0)
{
if (cached_cnt)
{
u64 keyspace = cached_cnt;
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
keyspace *= data.kernel_rules_cnt;
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
keyspace *= data.combs_cnt;
}
if (data.quiet == 0) log_info ("Cache-hit dictionary stats %s: %" PRIu64 " bytes, %" PRIu64 " words, %" PRIu64 " keyspace", dictfile, d.stat.st_size, cached_cnt, keyspace);
if (data.quiet == 0) log_info ("");
hc_signal (sigHandler_default);
return (keyspace);
}
}
time_t now = 0;
time_t prev = 0;
u64 comp = 0;
u64 cnt = 0;
u64 cnt2 = 0;
while (!feof (fd))
{
load_segment (wl_data, fd);
comp += wl_data->cnt;
u32 i = 0;
while (i < wl_data->cnt)
{
u32 len;
u32 off;
get_next_word_func (wl_data->buf + i, wl_data->cnt - i, &len, &off);
if (run_rule_engine (data.rule_len_l, data.rule_buf_l))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = -1;
if (len < BLOCK_SIZE)
{
rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, wl_data->buf + i, len, rule_buf_out);
}
if (rule_len_out < 0)
{
len = PW_MAX1;
}
else
{
len = rule_len_out;
}
}
if (len < PW_MAX1)
{
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
cnt += data.kernel_rules_cnt;
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
cnt += data.combs_cnt;
}
d.cnt++;
}
i += off;
cnt2++;
}
time (&now);
if ((now - prev) == 0) continue;
double percent = (double) comp / (double) d.stat.st_size;
if (data.quiet == 0) log_info_nn ("Generating dictionary stats for %s: %" PRIu64 " bytes (%.2f%%), %" PRIu64 " words, %" PRIu64 " keyspace", dictfile, comp, percent * 100, cnt2, cnt);
time (&prev);
}
if (data.quiet == 0) log_info ("Generated dictionary stats for %s: %" PRIu64 " bytes, %" PRIu64 " words, %" PRIu64 " keyspace", dictfile, comp, cnt2, cnt);
if (data.quiet == 0) log_info ("");
dictstat_append (dictstat_ctx, &d);
hc_signal (sigHandler_default);
return (cnt);
}
static void *thread_monitor (void *p)
{
uint runtime_check = 0;
uint remove_check = 0;
uint status_check = 0;
uint restore_check = 0;
uint restore_left = data.restore_timer;
uint remove_left = data.remove_timer;
uint status_left = data.status_timer;
#if defined (HAVE_HWMON)
uint hwmon_check = 0;
int slowdown_warnings = 0;
// these variables are mainly used for fan control
int *fan_speed_chgd = (int *) mycalloc (data.devices_cnt, sizeof (int));
// temperature controller "loopback" values
int *temp_diff_old = (int *) mycalloc (data.devices_cnt, sizeof (int));
int *temp_diff_sum = (int *) mycalloc (data.devices_cnt, sizeof (int));
int temp_threshold = 1; // degrees celcius
int fan_speed_min = 15; // in percentage
int fan_speed_max = 100;
time_t last_temp_check_time;
#endif // HAVE_HWMON
uint sleep_time = 1;
if (data.runtime)
{
runtime_check = 1;
}
if (data.restore_timer)
{
restore_check = 1;
}
if ((data.remove == 1) && (data.hashlist_mode == HL_MODE_FILE))
{
remove_check = 1;
}
if (data.status == 1)
{
status_check = 1;
}
#if defined (HAVE_HWMON)
if (data.gpu_temp_disable == 0)
{
time (&last_temp_check_time);
hwmon_check = 1;
}
#endif
if ((runtime_check == 0) && (remove_check == 0) && (status_check == 0) && (restore_check == 0))
{
#if defined (HAVE_HWMON)
if (hwmon_check == 0)
#endif
return (p);
}
while (data.shutdown_inner == 0)
{
hc_sleep (sleep_time);
if (data.devices_status != STATUS_RUNNING) continue;
#if defined (HAVE_HWMON)
if (hwmon_check == 1)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
if (device_param->device_vendor_id == VENDOR_ID_NV)
{
if (data.hm_nvapi)
{
NV_GPU_PERF_POLICIES_INFO_PARAMS_V1 perfPolicies_info;
NV_GPU_PERF_POLICIES_STATUS_PARAMS_V1 perfPolicies_status;
memset (&perfPolicies_info, 0, sizeof (NV_GPU_PERF_POLICIES_INFO_PARAMS_V1));
memset (&perfPolicies_status, 0, sizeof (NV_GPU_PERF_POLICIES_STATUS_PARAMS_V1));
perfPolicies_info.version = MAKE_NVAPI_VERSION (NV_GPU_PERF_POLICIES_INFO_PARAMS_V1, 1);
perfPolicies_status.version = MAKE_NVAPI_VERSION (NV_GPU_PERF_POLICIES_STATUS_PARAMS_V1, 1);
hm_NvAPI_GPU_GetPerfPoliciesInfo (data.hm_nvapi, data.hm_device[device_id].nvapi, &perfPolicies_info);
perfPolicies_status.info_value = perfPolicies_info.info_value;
hm_NvAPI_GPU_GetPerfPoliciesStatus (data.hm_nvapi, data.hm_device[device_id].nvapi, &perfPolicies_status);
if (perfPolicies_status.throttle & 2)
{
if (slowdown_warnings < 3)
{
if (data.quiet == 0) clear_prompt ();
log_info ("WARNING: Drivers temperature threshold hit on GPU #%d, expect performance to drop...", device_id + 1);
if (slowdown_warnings == 2)
{
log_info ("");
}
if (data.quiet == 0) fprintf (stdout, "%s", PROMPT);
if (data.quiet == 0) fflush (stdout);
slowdown_warnings++;
}
}
else
{
slowdown_warnings = 0;
}
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
if (hwmon_check == 1)
{
hc_thread_mutex_lock (mux_hwmon);
time_t temp_check_time;
time (&temp_check_time);
uint Ta = temp_check_time - last_temp_check_time; // set Ta = sleep_time; is not good enough (see --remove etc)
if (Ta == 0) Ta = 1;
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
if ((data.devices_param[device_id].device_type & CL_DEVICE_TYPE_GPU) == 0) continue;
const int temperature = hm_get_temperature_with_device_id (device_id);
if (temperature > (int) data.gpu_temp_abort)
{
log_error ("ERROR: Temperature limit on GPU %d reached, aborting...", device_id + 1);
if (data.devices_status != STATUS_QUIT) myabort ();
break;
}
const int gpu_temp_retain = data.gpu_temp_retain;
if (gpu_temp_retain)
{
if (data.hm_device[device_id].fan_set_supported == 1)
{
int temp_cur = temperature;
int temp_diff_new = gpu_temp_retain - temp_cur;
temp_diff_sum[device_id] = temp_diff_sum[device_id] + temp_diff_new;
// calculate Ta value (time difference in seconds between the last check and this check)
last_temp_check_time = temp_check_time;
float Kp = 1.8f;
float Ki = 0.005f;
float Kd = 6;
// PID controller (3-term controller: proportional - Kp, integral - Ki, derivative - Kd)
int fan_diff_required = (int) (Kp * (float)temp_diff_new + Ki * Ta * (float)temp_diff_sum[device_id] + Kd * ((float)(temp_diff_new - temp_diff_old[device_id])) / Ta);
if (abs (fan_diff_required) >= temp_threshold)
{
const int fan_speed_cur = hm_get_fanspeed_with_device_id (device_id);
int fan_speed_level = fan_speed_cur;
if (fan_speed_chgd[device_id] == 0) fan_speed_level = temp_cur;
int fan_speed_new = fan_speed_level - fan_diff_required;
if (fan_speed_new > fan_speed_max) fan_speed_new = fan_speed_max;
if (fan_speed_new < fan_speed_min) fan_speed_new = fan_speed_min;
if (fan_speed_new != fan_speed_cur)
{
int freely_change_fan_speed = (fan_speed_chgd[device_id] == 1);
int fan_speed_must_change = (fan_speed_new > fan_speed_cur);
if ((freely_change_fan_speed == 1) || (fan_speed_must_change == 1))
{
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
hm_set_fanspeed_with_device_id_adl (device_id, fan_speed_new, 1);
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
#if defined (_WIN)
hm_set_fanspeed_with_device_id_nvapi (device_id, fan_speed_new, 1);
#endif
#if defined (__linux__)
hm_set_fanspeed_with_device_id_xnvctrl (device_id, fan_speed_new);
#endif
}
fan_speed_chgd[device_id] = 1;
}
temp_diff_old[device_id] = temp_diff_new;
}
}
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
#endif // HAVE_HWMON
if (restore_check == 1)
{
restore_left--;
if (restore_left == 0)
{
if (data.restore_disable == 0) cycle_restore ();
restore_left = data.restore_timer;
}
}
if ((runtime_check == 1) && (data.runtime_start > 0))
{
double ms_paused = data.ms_paused;
if (data.devices_status == STATUS_PAUSED)
{
double ms_paused_tmp = 0;
hc_timer_get (data.timer_paused, ms_paused_tmp);
ms_paused += ms_paused_tmp;
}
time_t runtime_cur;
time (&runtime_cur);
int runtime_left = data.proc_start + data.runtime + data.prepare_time + (ms_paused / 1000) - runtime_cur;
if (runtime_left <= 0)
{
if (data.benchmark == 0)
{
if (data.quiet == 0) log_info ("\nNOTE: Runtime limit reached, aborting...\n");
}
if (data.devices_status != STATUS_QUIT) myabort ();
}
}
if (remove_check == 1)
{
remove_left--;
if (remove_left == 0)
{
if (data.digests_saved != data.digests_done)
{
data.digests_saved = data.digests_done;
save_hash ();
}
remove_left = data.remove_timer;
}
}
if (status_check == 1)
{
status_left--;
if (status_left == 0)
{
hc_thread_mutex_lock (mux_display);
if (data.quiet == 0) clear_prompt ();
if (data.quiet == 0) log_info ("");
status_display ();
if (data.quiet == 0) log_info ("");
hc_thread_mutex_unlock (mux_display);
status_left = data.status_timer;
}
}
}
#if defined (HAVE_HWMON)
myfree (fan_speed_chgd);
myfree (temp_diff_old);
myfree (temp_diff_sum);
#endif
p = NULL;
return (p);
}
static void *thread_outfile_remove (void *p)
{
// some hash-dependent constants
hashconfig_t *hashconfig = data.hashconfig;
uint dgst_size = hashconfig->dgst_size;
uint is_salted = hashconfig->is_salted;
uint esalt_size = hashconfig->esalt_size;
uint hash_mode = hashconfig->hash_mode;
char separator = hashconfig->separator;
char *outfile_dir = data.outfile_check_directory;
uint outfile_check_timer = data.outfile_check_timer;
// buffers
hash_t hash_buf = { 0, 0, 0, 0, 0 };
hash_buf.digest = mymalloc (dgst_size);
if (is_salted) hash_buf.salt = (salt_t *) mymalloc (sizeof (salt_t));
if (esalt_size) hash_buf.esalt = (void *) mymalloc (esalt_size);
uint digest_buf[64] = { 0 };
outfile_data_t *out_info = NULL;
char **out_files = NULL;
time_t folder_mtime = 0;
int out_cnt = 0;
uint check_left = outfile_check_timer; // or 1 if we want to check it at startup
while (data.shutdown_inner == 0)
{
hc_sleep (1);
if (data.devices_status != STATUS_RUNNING) continue;
check_left--;
if (check_left == 0)
{
struct stat outfile_check_stat;
if (stat (outfile_dir, &outfile_check_stat) == 0)
{
uint is_dir = S_ISDIR (outfile_check_stat.st_mode);
if (is_dir == 1)
{
if (outfile_check_stat.st_mtime > folder_mtime)
{
char **out_files_new = scan_directory (outfile_dir);
int out_cnt_new = count_dictionaries (out_files_new);
outfile_data_t *out_info_new = NULL;
if (out_cnt_new > 0)
{
out_info_new = (outfile_data_t *) mycalloc (out_cnt_new, sizeof (outfile_data_t));
for (int i = 0; i < out_cnt_new; i++)
{
out_info_new[i].file_name = out_files_new[i];
// check if there are files that we have seen/checked before (and not changed)
for (int j = 0; j < out_cnt; j++)
{
if (strcmp (out_info[j].file_name, out_info_new[i].file_name) == 0)
{
struct stat outfile_stat;
if (stat (out_info_new[i].file_name, &outfile_stat) == 0)
{
if (outfile_stat.st_ctime == out_info[j].ctime)
{
out_info_new[i].ctime = out_info[j].ctime;
out_info_new[i].seek = out_info[j].seek;
}
}
}
}
}
}
local_free (out_info);
local_free (out_files);
out_files = out_files_new;
out_cnt = out_cnt_new;
out_info = out_info_new;
folder_mtime = outfile_check_stat.st_mtime;
}
for (int j = 0; j < out_cnt; j++)
{
FILE *fp = fopen (out_info[j].file_name, "rb");
if (fp != NULL)
{
//hc_thread_mutex_lock (mux_display);
#if defined (_POSIX)
struct stat outfile_stat;
fstat (fileno (fp), &outfile_stat);
#endif
#if defined (_WIN)
struct stat64 outfile_stat;
_fstat64 (fileno (fp), &outfile_stat);
#endif
if (outfile_stat.st_ctime > out_info[j].ctime)
{
out_info[j].ctime = outfile_stat.st_ctime;
out_info[j].seek = 0;
}
fseek (fp, out_info[j].seek, SEEK_SET);
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
while (!feof (fp))
{
char *ptr = fgets (line_buf, HCBUFSIZ_LARGE - 1, fp);
if (ptr == NULL) break;
int line_len = strlen (line_buf);
if (line_len <= 0) continue;
int iter = MAX_CUT_TRIES;
for (uint i = line_len - 1; i && iter; i--, line_len--)
{
if (line_buf[i] != separator) continue;
int parser_status = PARSER_OK;
if ((hash_mode != 2500) && (hash_mode != 6800))
{
parser_status = hashconfig->parse_func (line_buf, line_len - 1, &hash_buf, hashconfig);
}
uint found = 0;
if (parser_status == PARSER_OK)
{
for (uint salt_pos = 0; (found == 0) && (salt_pos < data.salts_cnt); salt_pos++)
{
if (data.salts_shown[salt_pos] == 1) continue;
salt_t *salt_buf = &data.salts_buf[salt_pos];
for (uint digest_pos = 0; (found == 0) && (digest_pos < salt_buf->digests_cnt); digest_pos++)
{
uint idx = salt_buf->digests_offset + digest_pos;
if (data.digests_shown[idx] == 1) continue;
uint cracked = 0;
if (hash_mode == 6800)
{
if (i == salt_buf->salt_len)
{
cracked = (memcmp (line_buf, salt_buf->salt_buf, salt_buf->salt_len) == 0);
}
}
else if (hash_mode == 2500)
{
// BSSID : MAC1 : MAC2 (:plain)
if (i == (salt_buf->salt_len + 1 + 12 + 1 + 12))
{
cracked = (memcmp (line_buf, salt_buf->salt_buf, salt_buf->salt_len) == 0);
if (!cracked) continue;
// now compare MAC1 and MAC2 too, since we have this additional info
char *mac1_pos = line_buf + salt_buf->salt_len + 1;
char *mac2_pos = mac1_pos + 12 + 1;
wpa_t *wpas = (wpa_t *) data.esalts_buf;
wpa_t *wpa = &wpas[salt_pos];
// compare hex string(s) vs binary MAC address(es)
for (uint i = 0, j = 0; i < 6; i++, j += 2)
{
if (wpa->orig_mac1[i] != hex_to_u8 ((const u8 *) &mac1_pos[j]))
{
cracked = 0;
break;
}
}
// early skip ;)
if (!cracked) continue;
for (uint i = 0, j = 0; i < 6; i++, j += 2)
{
if (wpa->orig_mac2[i] != hex_to_u8 ((const u8 *) &mac2_pos[j]))
{
cracked = 0;
break;
}
}
}
}
else
{
char *digests_buf_ptr = (char *) data.digests_buf;
memcpy (digest_buf, digests_buf_ptr + (data.salts_buf[salt_pos].digests_offset * dgst_size) + (digest_pos * dgst_size), dgst_size);
cracked = (sort_by_digest_p0p1 (digest_buf, hash_buf.digest) == 0);
}
if (cracked == 1)
{
found = 1;
data.digests_shown[idx] = 1;
data.digests_done++;
salt_buf->digests_done++;
if (salt_buf->digests_done == salt_buf->digests_cnt)
{
data.salts_shown[salt_pos] = 1;
data.salts_done++;
if (data.salts_done == data.salts_cnt) data.devices_status = STATUS_CRACKED;
}
}
}
if (data.devices_status == STATUS_CRACKED) break;
}
}
if (found) break;
if (data.devices_status == STATUS_CRACKED) break;
iter--;
}
if (data.devices_status == STATUS_CRACKED) break;
}
myfree (line_buf);
out_info[j].seek = ftell (fp);
//hc_thread_mutex_unlock (mux_display);
fclose (fp);
}
}
}
}
check_left = outfile_check_timer;
}
}
if (esalt_size) local_free (hash_buf.esalt);
if (is_salted) local_free (hash_buf.salt);
local_free (hash_buf.digest);
local_free (out_info);
local_free (out_files);
p = NULL;
return (p);
}
static void set_kernel_power_final (const u64 kernel_power_final)
{
if (data.quiet == 0)
{
clear_prompt ();
//log_info ("");
log_info ("INFO: approaching final keyspace, workload adjusted");
log_info ("");
fprintf (stdout, "%s", PROMPT);
fflush (stdout);
}
data.kernel_power_final = kernel_power_final;
}
static u32 get_power (hc_device_param_t *device_param)
{
const u64 kernel_power_final = data.kernel_power_final;
if (kernel_power_final)
{
const double device_factor = (double) device_param->hardware_power / data.hardware_power_all;
const u64 words_left_device = (u64) CEIL (kernel_power_final * device_factor);
// work should be at least the hardware power available without any accelerator
const u64 work = MAX (words_left_device, device_param->hardware_power);
return work;
}
return device_param->kernel_power;
}
static uint get_work (hc_device_param_t *device_param, const u64 max)
{
hc_thread_mutex_lock (mux_dispatcher);
const u64 words_cur = data.words_cur;
const u64 words_base = (data.limit == 0) ? data.words_base : MIN (data.limit, data.words_base);
device_param->words_off = words_cur;
const u64 kernel_power_all = data.kernel_power_all;
const u64 words_left = words_base - words_cur;
if (words_left < kernel_power_all)
{
if (data.kernel_power_final == 0)
{
set_kernel_power_final (words_left);
}
}
const u32 kernel_power = get_power (device_param);
uint work = MIN (words_left, kernel_power);
work = MIN (work, max);
data.words_cur += work;
hc_thread_mutex_unlock (mux_dispatcher);
return work;
}
static void SuspendThreads ()
{
if (data.devices_status != STATUS_RUNNING) return;
hc_timer_set (&data.timer_paused);
data.devices_status = STATUS_PAUSED;
log_info ("Paused");
}
static void ResumeThreads ()
{
if (data.devices_status != STATUS_PAUSED) return;
double ms_paused;
hc_timer_get (data.timer_paused, ms_paused);
data.ms_paused += ms_paused;
data.devices_status = STATUS_RUNNING;
log_info ("Resumed");
}
static void bypass ()
{
data.devices_status = STATUS_BYPASS;
log_info ("Next dictionary / mask in queue selected, bypassing current one");
}
static void stop_at_checkpoint ()
{
if (data.devices_status != STATUS_STOP_AT_CHECKPOINT)
{
if (data.devices_status != STATUS_RUNNING) return;
}
// this feature only makes sense if --restore-disable was not specified
if (data.restore_disable == 1)
{
log_info ("WARNING: This feature is disabled when --restore-disable is specified");
return;
}
// check if monitoring of Restore Point updates should be enabled or disabled
if (data.devices_status != STATUS_STOP_AT_CHECKPOINT)
{
data.devices_status = STATUS_STOP_AT_CHECKPOINT;
// save the current restore point value
data.checkpoint_cur_words = get_lowest_words_done ();
log_info ("Checkpoint enabled: Will quit at next Restore Point update");
}
else
{
data.devices_status = STATUS_RUNNING;
// reset the global value for checkpoint checks
data.checkpoint_cur_words = 0;
log_info ("Checkpoint disabled: Restore Point updates will no longer be monitored");
}
}
static void *thread_autotune (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
hashconfig_t *hashconfig = data.hashconfig;
autotune (device_param, hashconfig);
return NULL;
}
static void *thread_calc_stdin (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
hashconfig_t *hashconfig = data.hashconfig;
char *buf = (char *) mymalloc (HCBUFSIZ_LARGE);
const uint attack_kern = data.attack_kern;
while ((data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
hc_thread_mutex_lock (mux_dispatcher);
if (feof (stdin) != 0)
{
hc_thread_mutex_unlock (mux_dispatcher);
break;
}
uint words_cur = 0;
while (words_cur < device_param->kernel_power)
{
char *line_buf = fgets (buf, HCBUFSIZ_LARGE - 1, stdin);
if (line_buf == NULL) break;
uint line_len = in_superchop (line_buf);
line_len = convert_from_hex (line_buf, line_len);
// post-process rule engine
if (run_rule_engine (data.rule_len_l, data.rule_buf_l))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = -1;
if (line_len < BLOCK_SIZE)
{
rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out);
}
if (rule_len_out < 0) continue;
line_buf = rule_buf_out;
line_len = rule_len_out;
}
if (line_len > PW_MAX)
{
continue;
}
// hmm that's always the case, or?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
if ((line_len < data.pw_min) || (line_len > data.pw_max))
{
hc_thread_mutex_lock (mux_counter);
for (uint salt_pos = 0; salt_pos < data.salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt;
}
hc_thread_mutex_unlock (mux_counter);
continue;
}
}
pw_add (device_param, (u8 *) line_buf, line_len);
words_cur++;
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
}
hc_thread_mutex_unlock (mux_dispatcher);
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
// flush
const uint pws_cnt = device_param->pws_cnt;
if (pws_cnt)
{
run_copy (device_param, hashconfig, pws_cnt);
run_cracker (device_param, hashconfig, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
run_kernel_bzero (device_param, device_param->d_rules_c, device_param->size_rules_c);
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
run_kernel_bzero (device_param, device_param->d_combs_c, device_param->size_combs);
}
*/
}
}
device_param->kernel_accel = 0;
device_param->kernel_loops = 0;
myfree (buf);
return NULL;
}
static void *thread_calc (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
hashconfig_t *hashconfig = data.hashconfig;
const uint attack_mode = data.attack_mode;
const uint attack_kern = data.attack_kern;
if (attack_mode == ATTACK_MODE_BF)
{
while ((data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
const uint work = get_work (device_param, -1u);
if (work == 0) break;
const u64 words_off = device_param->words_off;
const u64 words_fin = words_off + work;
const uint pws_cnt = work;
device_param->pws_cnt = pws_cnt;
if (pws_cnt)
{
run_copy (device_param, hashconfig, pws_cnt);
run_cracker (device_param, hashconfig, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
run_kernel_bzero (device_param, device_param->d_bfs_c, device_param->size_bfs);
*/
}
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
if (data.benchmark == 1) break;
device_param->words_done = words_fin;
}
}
else
{
const uint segment_size = data.segment_size;
char *dictfile = data.dictfile;
if (attack_mode == ATTACK_MODE_COMBI)
{
if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
dictfile = data.dictfile2;
}
}
FILE *fd = fopen (dictfile, "rb");
if (fd == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return NULL;
}
if (attack_mode == ATTACK_MODE_COMBI)
{
const uint combs_mode = data.combs_mode;
if (combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
const char *dictfilec = data.dictfile2;
FILE *combs_fp = fopen (dictfilec, "rb");
if (combs_fp == NULL)
{
log_error ("ERROR: %s: %s", dictfilec, strerror (errno));
fclose (fd);
return NULL;
}
device_param->combs_fp = combs_fp;
}
else if (combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
const char *dictfilec = data.dictfile;
FILE *combs_fp = fopen (dictfilec, "rb");
if (combs_fp == NULL)
{
log_error ("ERROR: %s: %s", dictfilec, strerror (errno));
fclose (fd);
return NULL;
}
device_param->combs_fp = combs_fp;
}
}
wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t));
wl_data->buf = (char *) mymalloc (segment_size);
wl_data->avail = segment_size;
wl_data->incr = segment_size;
wl_data->cnt = 0;
wl_data->pos = 0;
u64 words_cur = 0;
while ((data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
u64 words_off = 0;
u64 words_fin = 0;
u64 max = -1llu;
while (max)
{
const uint work = get_work (device_param, max);
if (work == 0) break;
max = 0;
words_off = device_param->words_off;
words_fin = words_off + work;
char *line_buf;
uint line_len;
for ( ; words_cur < words_off; words_cur++) get_next_word (wl_data, fd, &line_buf, &line_len);
for ( ; words_cur < words_fin; words_cur++)
{
get_next_word (wl_data, fd, &line_buf, &line_len);
line_len = convert_from_hex (line_buf, line_len);
// post-process rule engine
if (run_rule_engine (data.rule_len_l, data.rule_buf_l))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = -1;
if (line_len < BLOCK_SIZE)
{
rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out);
}
if (rule_len_out < 0) continue;
line_buf = rule_buf_out;
line_len = rule_len_out;
}
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
if ((line_len < data.pw_min) || (line_len > data.pw_max))
{
max++;
hc_thread_mutex_lock (mux_counter);
for (uint salt_pos = 0; salt_pos < data.salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt;
}
hc_thread_mutex_unlock (mux_counter);
continue;
}
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
// do not check if minimum restriction is satisfied (line_len >= data.pw_min) here
// since we still need to combine the plains
if (line_len > data.pw_max)
{
max++;
hc_thread_mutex_lock (mux_counter);
for (uint salt_pos = 0; salt_pos < data.salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.combs_cnt;
}
hc_thread_mutex_unlock (mux_counter);
continue;
}
}
pw_add (device_param, (u8 *) line_buf, line_len);
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
}
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
}
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
//
// flush
//
const uint pws_cnt = device_param->pws_cnt;
if (pws_cnt)
{
run_copy (device_param, hashconfig, pws_cnt);
run_cracker (device_param, hashconfig, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
run_kernel_bzero (device_param, device_param->d_rules_c, device_param->size_rules_c);
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
run_kernel_bzero (device_param, device_param->d_combs_c, device_param->size_combs);
}
*/
}
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) check_checkpoint ();
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
if (data.devices_status == STATUS_BYPASS) break;
if (words_fin == 0) break;
device_param->words_done = words_fin;
}
if (attack_mode == ATTACK_MODE_COMBI)
{
fclose (device_param->combs_fp);
}
free (wl_data->buf);
free (wl_data);
fclose (fd);
}
device_param->kernel_accel = 0;
device_param->kernel_loops = 0;
return NULL;
}
static void *thread_keypress (void *p)
{
uint quiet = data.quiet;
tty_break();
while (data.shutdown_outer == 0)
{
int ch = tty_getchar();
if (ch == -1) break;
if (ch == 0) continue;
//https://github.com/hashcat/hashcat/issues/302
//#if defined (_POSIX)
//if (ch != '\n')
//#endif
hc_thread_mutex_lock (mux_display);
log_info ("");
switch (ch)
{
case 's':
case '\r':
case '\n':
log_info ("");
status_display ();
log_info ("");
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
break;
case 'b':
log_info ("");
bypass ();
log_info ("");
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
break;
case 'p':
log_info ("");
SuspendThreads ();
log_info ("");
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
break;
case 'r':
log_info ("");
ResumeThreads ();
log_info ("");
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
break;
case 'c':
log_info ("");
stop_at_checkpoint ();
log_info ("");
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
break;
case 'q':
log_info ("");
myabort ();
break;
}
//https://github.com/hashcat/hashcat/issues/302
//#if defined (_POSIX)
//if (ch != '\n')
//#endif
hc_thread_mutex_unlock (mux_display);
}
tty_fix();
return (p);
}
static void weak_hash_check (hc_device_param_t *device_param, hashconfig_t *hashconfig, const uint salt_pos)
{
if (!device_param)
{
log_error ("ERROR: %s : Invalid argument", __func__);
exit (-1);
}
salt_t *salt_buf = &data.salts_buf[salt_pos];
device_param->kernel_params_buf32[27] = salt_pos;
device_param->kernel_params_buf32[30] = 1;
device_param->kernel_params_buf32[31] = salt_buf->digests_cnt;
device_param->kernel_params_buf32[32] = salt_buf->digests_offset;
device_param->kernel_params_buf32[33] = 0;
device_param->kernel_params_buf32[34] = 1;
char *dictfile_old = data.dictfile;
const char *weak_hash_check = "weak-hash-check";
data.dictfile = (char *) weak_hash_check;
uint cmd0_rule_old = data.kernel_rules_buf[0].cmds[0];
data.kernel_rules_buf[0].cmds[0] = 0;
/**
* run the kernel
*/
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
run_kernel (KERN_RUN_1, device_param, 1, false, 0, hashconfig);
}
else
{
run_kernel (KERN_RUN_1, device_param, 1, false, 0, hashconfig);
uint loop_step = 16;
const uint iter = salt_buf->salt_iter;
for (uint loop_pos = 0; loop_pos < iter; loop_pos += loop_step)
{
uint loop_left = iter - loop_pos;
loop_left = MIN (loop_left, loop_step);
device_param->kernel_params_buf32[28] = loop_pos;
device_param->kernel_params_buf32[29] = loop_left;
run_kernel (KERN_RUN_2, device_param, 1, false, 0, hashconfig);
}
run_kernel (KERN_RUN_3, device_param, 1, false, 0, hashconfig);
}
/**
* result
*/
check_cracked (device_param, salt_pos, hashconfig);
/**
* cleanup
*/
device_param->kernel_params_buf32[27] = 0;
device_param->kernel_params_buf32[28] = 0;
device_param->kernel_params_buf32[29] = 0;
device_param->kernel_params_buf32[30] = 0;
device_param->kernel_params_buf32[31] = 0;
device_param->kernel_params_buf32[32] = 0;
device_param->kernel_params_buf32[33] = 0;
device_param->kernel_params_buf32[34] = 0;
data.dictfile = dictfile_old;
data.kernel_rules_buf[0].cmds[0] = cmd0_rule_old;
}
int main (int argc, char **argv)
{
#if defined (_WIN)
SetConsoleWindowSize (132);
#endif
/**
* To help users a bit
*/
char *compute = getenv ("COMPUTE");
if (compute)
{
static char display[100];
snprintf (display, sizeof (display) - 1, "DISPLAY=%s", compute);
putenv (display);
}
else
{
if (getenv ("DISPLAY") == NULL)
putenv ((char *) "DISPLAY=:0");
}
if (getenv ("GPU_MAX_ALLOC_PERCENT") == NULL)
putenv ((char *) "GPU_MAX_ALLOC_PERCENT=100");
if (getenv ("CPU_MAX_ALLOC_PERCENT") == NULL)
putenv ((char *) "CPU_MAX_ALLOC_PERCENT=100");
if (getenv ("GPU_USE_SYNC_OBJECTS") == NULL)
putenv ((char *) "GPU_USE_SYNC_OBJECTS=1");
if (getenv ("CUDA_CACHE_DISABLE") == NULL)
putenv ((char *) "CUDA_CACHE_DISABLE=1");
if (getenv ("POCL_KERNEL_CACHE") == NULL)
putenv ((char *) "POCL_KERNEL_CACHE=0");
umask (077);
/**
* There's some buggy OpenCL runtime that do not support -I.
* A workaround is to chdir() to the OpenCL folder,
* then compile the kernels,
* then chdir() back to where we came from so we need to save it first
*/
char cwd[1024];
if (getcwd (cwd, sizeof (cwd) - 1) == NULL)
{
log_error ("ERROR: getcwd(): %s", strerror (errno));
return -1;
}
/**
* Real init
*/
memset (&data, 0, sizeof (hc_global_data_t));
time_t proc_start;
time (&proc_start);
data.proc_start = proc_start;
time_t prepare_start;
time (&prepare_start);
int myargc = argc;
char **myargv = argv;
hc_thread_mutex_init (mux_dispatcher);
hc_thread_mutex_init (mux_counter);
hc_thread_mutex_init (mux_display);
hc_thread_mutex_init (mux_hwmon);
/**
* commandline parameters
*/
uint usage = USAGE;
uint version = VERSION;
uint quiet = QUIET;
uint benchmark = BENCHMARK;
uint stdout_flag = STDOUT_FLAG;
uint show = SHOW;
uint left = LEFT;
uint username = USERNAME;
uint remove = REMOVE;
uint remove_timer = REMOVE_TIMER;
u64 skip = SKIP;
u64 limit = LIMIT;
uint keyspace = KEYSPACE;
uint potfile_disable = POTFILE_DISABLE;
char *potfile_path = NULL;
uint debug_mode = DEBUG_MODE;
char *debug_file = NULL;
char *induction_dir = NULL;
char *outfile_check_dir = NULL;
uint force = FORCE;
uint runtime = RUNTIME;
uint hash_mode = HASH_MODE;
uint attack_mode = ATTACK_MODE;
uint markov_disable = MARKOV_DISABLE;
uint markov_classic = MARKOV_CLASSIC;
uint markov_threshold = MARKOV_THRESHOLD;
char *markov_hcstat = NULL;
char *outfile = NULL;
uint outfile_format = OUTFILE_FORMAT;
uint outfile_autohex = OUTFILE_AUTOHEX;
uint outfile_check_timer = OUTFILE_CHECK_TIMER;
uint restore = RESTORE;
uint restore_timer = RESTORE_TIMER;
uint restore_disable = RESTORE_DISABLE;
uint status = STATUS;
uint status_timer = STATUS_TIMER;
uint machine_readable = MACHINE_READABLE;
uint loopback = LOOPBACK;
uint weak_hash_threshold = WEAK_HASH_THRESHOLD;
char *session = NULL;
uint hex_charset = HEX_CHARSET;
uint hex_salt = HEX_SALT;
uint hex_wordlist = HEX_WORDLIST;
uint rp_gen = RP_GEN;
uint rp_gen_func_min = RP_GEN_FUNC_MIN;
uint rp_gen_func_max = RP_GEN_FUNC_MAX;
uint rp_gen_seed = RP_GEN_SEED;
char *rule_buf_l = (char *) RULE_BUF_L;
char *rule_buf_r = (char *) RULE_BUF_R;
uint increment = INCREMENT;
uint increment_min = INCREMENT_MIN;
uint increment_max = INCREMENT_MAX;
char *cpu_affinity = NULL;
OCL_PTR *ocl = NULL;
char *opencl_devices = NULL;
char *opencl_platforms = NULL;
char *opencl_device_types = NULL;
uint opencl_vector_width = OPENCL_VECTOR_WIDTH;
char *truecrypt_keyfiles = NULL;
char *veracrypt_keyfiles = NULL;
uint veracrypt_pim = 0;
uint workload_profile = WORKLOAD_PROFILE;
uint kernel_accel = KERNEL_ACCEL;
uint kernel_loops = KERNEL_LOOPS;
uint nvidia_spin_damp = NVIDIA_SPIN_DAMP;
uint gpu_temp_disable = GPU_TEMP_DISABLE;
#if defined (HAVE_HWMON)
uint gpu_temp_abort = GPU_TEMP_ABORT;
uint gpu_temp_retain = GPU_TEMP_RETAIN;
uint powertune_enable = POWERTUNE_ENABLE;
#endif
uint logfile_disable = LOGFILE_DISABLE;
uint segment_size = SEGMENT_SIZE;
uint scrypt_tmto = SCRYPT_TMTO;
char separator = SEPARATOR;
uint bitmap_min = BITMAP_MIN;
uint bitmap_max = BITMAP_MAX;
char *custom_charset_1 = NULL;
char *custom_charset_2 = NULL;
char *custom_charset_3 = NULL;
char *custom_charset_4 = NULL;
#define IDX_HELP 'h'
#define IDX_VERSION 'V'
#define IDX_VERSION_LOWER 'v'
#define IDX_QUIET 0xff02
#define IDX_SHOW 0xff03
#define IDX_LEFT 0xff04
#define IDX_REMOVE 0xff05
#define IDX_REMOVE_TIMER 0xff37
#define IDX_SKIP 's'
#define IDX_LIMIT 'l'
#define IDX_KEYSPACE 0xff35
#define IDX_POTFILE_DISABLE 0xff06
#define IDX_POTFILE_PATH 0xffe0
#define IDX_DEBUG_MODE 0xff43
#define IDX_DEBUG_FILE 0xff44
#define IDX_INDUCTION_DIR 0xff46
#define IDX_OUTFILE_CHECK_DIR 0xff47
#define IDX_USERNAME 0xff07
#define IDX_FORCE 0xff08
#define IDX_RUNTIME 0xff09
#define IDX_BENCHMARK 'b'
#define IDX_STDOUT_FLAG 0xff77
#define IDX_HASH_MODE 'm'
#define IDX_ATTACK_MODE 'a'
#define IDX_RP_FILE 'r'
#define IDX_RP_GEN 'g'
#define IDX_RP_GEN_FUNC_MIN 0xff10
#define IDX_RP_GEN_FUNC_MAX 0xff11
#define IDX_RP_GEN_SEED 0xff34
#define IDX_RULE_BUF_L 'j'
#define IDX_RULE_BUF_R 'k'
#define IDX_INCREMENT 'i'
#define IDX_INCREMENT_MIN 0xff12
#define IDX_INCREMENT_MAX 0xff13
#define IDX_OUTFILE 'o'
#define IDX_OUTFILE_FORMAT 0xff14
#define IDX_OUTFILE_AUTOHEX_DISABLE 0xff39
#define IDX_OUTFILE_CHECK_TIMER 0xff45
#define IDX_RESTORE 0xff15
#define IDX_RESTORE_DISABLE 0xff27
#define IDX_STATUS 0xff17
#define IDX_STATUS_TIMER 0xff18
#define IDX_MACHINE_READABLE 0xff50
#define IDX_LOOPBACK 0xff38
#define IDX_WEAK_HASH_THRESHOLD 0xff42
#define IDX_SESSION 0xff19
#define IDX_HEX_CHARSET 0xff20
#define IDX_HEX_SALT 0xff21
#define IDX_HEX_WORDLIST 0xff40
#define IDX_MARKOV_DISABLE 0xff22
#define IDX_MARKOV_CLASSIC 0xff23
#define IDX_MARKOV_THRESHOLD 't'
#define IDX_MARKOV_HCSTAT 0xff24
#define IDX_CPU_AFFINITY 0xff25
#define IDX_OPENCL_DEVICES 'd'
#define IDX_OPENCL_PLATFORMS 0xff72
#define IDX_OPENCL_DEVICE_TYPES 'D'
#define IDX_OPENCL_VECTOR_WIDTH 0xff74
#define IDX_WORKLOAD_PROFILE 'w'
#define IDX_KERNEL_ACCEL 'n'
#define IDX_KERNEL_LOOPS 'u'
#define IDX_NVIDIA_SPIN_DAMP 0xff79
#define IDX_GPU_TEMP_DISABLE 0xff29
#define IDX_GPU_TEMP_ABORT 0xff30
#define IDX_GPU_TEMP_RETAIN 0xff31
#define IDX_POWERTUNE_ENABLE 0xff41
#define IDX_LOGFILE_DISABLE 0xff51
#define IDX_TRUECRYPT_KEYFILES 0xff52
#define IDX_VERACRYPT_KEYFILES 0xff53
#define IDX_VERACRYPT_PIM 0xff54
#define IDX_SCRYPT_TMTO 0xff61
#define IDX_SEGMENT_SIZE 'c'
#define IDX_SEPARATOR 'p'
#define IDX_BITMAP_MIN 0xff70
#define IDX_BITMAP_MAX 0xff71
#define IDX_CUSTOM_CHARSET_1 '1'
#define IDX_CUSTOM_CHARSET_2 '2'
#define IDX_CUSTOM_CHARSET_3 '3'
#define IDX_CUSTOM_CHARSET_4 '4'
char short_options[] = "hVvm:a:r:j:k:g:o:t:d:D:n:u:c:p:s:l:1:2:3:4:ibw:";
struct option long_options[] =
{
{"help", no_argument, 0, IDX_HELP},
{"version", no_argument, 0, IDX_VERSION},
{"quiet", no_argument, 0, IDX_QUIET},
{"show", no_argument, 0, IDX_SHOW},
{"left", no_argument, 0, IDX_LEFT},
{"username", no_argument, 0, IDX_USERNAME},
{"remove", no_argument, 0, IDX_REMOVE},
{"remove-timer", required_argument, 0, IDX_REMOVE_TIMER},
{"skip", required_argument, 0, IDX_SKIP},
{"limit", required_argument, 0, IDX_LIMIT},
{"keyspace", no_argument, 0, IDX_KEYSPACE},
{"potfile-disable", no_argument, 0, IDX_POTFILE_DISABLE},
{"potfile-path", required_argument, 0, IDX_POTFILE_PATH},
{"debug-mode", required_argument, 0, IDX_DEBUG_MODE},
{"debug-file", required_argument, 0, IDX_DEBUG_FILE},
{"induction-dir", required_argument, 0, IDX_INDUCTION_DIR},
{"outfile-check-dir", required_argument, 0, IDX_OUTFILE_CHECK_DIR},
{"force", no_argument, 0, IDX_FORCE},
{"benchmark", no_argument, 0, IDX_BENCHMARK},
{"stdout", no_argument, 0, IDX_STDOUT_FLAG},
{"restore", no_argument, 0, IDX_RESTORE},
{"restore-disable", no_argument, 0, IDX_RESTORE_DISABLE},
{"status", no_argument, 0, IDX_STATUS},
{"status-timer", required_argument, 0, IDX_STATUS_TIMER},
{"machine-readable", no_argument, 0, IDX_MACHINE_READABLE},
{"loopback", no_argument, 0, IDX_LOOPBACK},
{"weak-hash-threshold", required_argument, 0, IDX_WEAK_HASH_THRESHOLD},
{"session", required_argument, 0, IDX_SESSION},
{"runtime", required_argument, 0, IDX_RUNTIME},
{"generate-rules", required_argument, 0, IDX_RP_GEN},
{"generate-rules-func-min", required_argument, 0, IDX_RP_GEN_FUNC_MIN},
{"generate-rules-func-max", required_argument, 0, IDX_RP_GEN_FUNC_MAX},
{"generate-rules-seed", required_argument, 0, IDX_RP_GEN_SEED},
{"rule-left", required_argument, 0, IDX_RULE_BUF_L},
{"rule-right", required_argument, 0, IDX_RULE_BUF_R},
{"hash-type", required_argument, 0, IDX_HASH_MODE},
{"attack-mode", required_argument, 0, IDX_ATTACK_MODE},
{"rules-file", required_argument, 0, IDX_RP_FILE},
{"outfile", required_argument, 0, IDX_OUTFILE},
{"outfile-format", required_argument, 0, IDX_OUTFILE_FORMAT},
{"outfile-autohex-disable", no_argument, 0, IDX_OUTFILE_AUTOHEX_DISABLE},
{"outfile-check-timer", required_argument, 0, IDX_OUTFILE_CHECK_TIMER},
{"hex-charset", no_argument, 0, IDX_HEX_CHARSET},
{"hex-salt", no_argument, 0, IDX_HEX_SALT},
{"hex-wordlist", no_argument, 0, IDX_HEX_WORDLIST},
{"markov-disable", no_argument, 0, IDX_MARKOV_DISABLE},
{"markov-classic", no_argument, 0, IDX_MARKOV_CLASSIC},
{"markov-threshold", required_argument, 0, IDX_MARKOV_THRESHOLD},
{"markov-hcstat", required_argument, 0, IDX_MARKOV_HCSTAT},
{"cpu-affinity", required_argument, 0, IDX_CPU_AFFINITY},
{"opencl-devices", required_argument, 0, IDX_OPENCL_DEVICES},
{"opencl-platforms", required_argument, 0, IDX_OPENCL_PLATFORMS},
{"opencl-device-types", required_argument, 0, IDX_OPENCL_DEVICE_TYPES},
{"opencl-vector-width", required_argument, 0, IDX_OPENCL_VECTOR_WIDTH},
{"workload-profile", required_argument, 0, IDX_WORKLOAD_PROFILE},
{"kernel-accel", required_argument, 0, IDX_KERNEL_ACCEL},
{"kernel-loops", required_argument, 0, IDX_KERNEL_LOOPS},
{"nvidia-spin-damp", required_argument, 0, IDX_NVIDIA_SPIN_DAMP},
{"gpu-temp-disable", no_argument, 0, IDX_GPU_TEMP_DISABLE},
#if defined (HAVE_HWMON)
{"gpu-temp-abort", required_argument, 0, IDX_GPU_TEMP_ABORT},
{"gpu-temp-retain", required_argument, 0, IDX_GPU_TEMP_RETAIN},
{"powertune-enable", no_argument, 0, IDX_POWERTUNE_ENABLE},
#endif // HAVE_HWMON
{"logfile-disable", no_argument, 0, IDX_LOGFILE_DISABLE},
{"truecrypt-keyfiles", required_argument, 0, IDX_TRUECRYPT_KEYFILES},
{"veracrypt-keyfiles", required_argument, 0, IDX_VERACRYPT_KEYFILES},
{"veracrypt-pim", required_argument, 0, IDX_VERACRYPT_PIM},
{"segment-size", required_argument, 0, IDX_SEGMENT_SIZE},
{"scrypt-tmto", required_argument, 0, IDX_SCRYPT_TMTO},
{"seperator", required_argument, 0, IDX_SEPARATOR},
{"separator", required_argument, 0, IDX_SEPARATOR},
{"bitmap-min", required_argument, 0, IDX_BITMAP_MIN},
{"bitmap-max", required_argument, 0, IDX_BITMAP_MAX},
{"increment", no_argument, 0, IDX_INCREMENT},
{"increment-min", required_argument, 0, IDX_INCREMENT_MIN},
{"increment-max", required_argument, 0, IDX_INCREMENT_MAX},
{"custom-charset1", required_argument, 0, IDX_CUSTOM_CHARSET_1},
{"custom-charset2", required_argument, 0, IDX_CUSTOM_CHARSET_2},
{"custom-charset3", required_argument, 0, IDX_CUSTOM_CHARSET_3},
{"custom-charset4", required_argument, 0, IDX_CUSTOM_CHARSET_4},
{0, 0, 0, 0}
};
uint rp_files_cnt = 0;
char **rp_files = (char **) mycalloc (argc, sizeof (char *));
int option_index = 0;
int c = -1;
optind = 1;
optopt = 0;
while (((c = getopt_long (argc, argv, short_options, long_options, &option_index)) != -1) && optopt == 0)
{
switch (c)
{
case IDX_HELP: usage = 1; break;
case IDX_VERSION:
case IDX_VERSION_LOWER: version = 1; break;
case IDX_RESTORE: restore = 1; break;
case IDX_SESSION: session = optarg; break;
case IDX_SHOW: show = 1; break;
case IDX_LEFT: left = 1; break;
case '?': return -1;
}
}
if (optopt != 0)
{
log_error ("ERROR: Invalid argument specified");
return -1;
}
/**
* exit functions
*/
if (version)
{
log_info ("%s", VERSION_TAG);
return 0;
}
if (usage)
{
usage_big_print (PROGNAME);
return 0;
}
/**
* session needs to be set, always!
*/
if (session == NULL) session = (char *) PROGNAME;
/**
* folders, as discussed on https://github.com/hashcat/hashcat/issues/20
*/
char *exec_path = get_exec_path ();
#if defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__)
char *resolved_install_folder = realpath (INSTALL_FOLDER, NULL);
char *resolved_exec_path = realpath (exec_path, NULL);
if (resolved_install_folder == NULL)
{
log_error ("ERROR: %s: %s", resolved_install_folder, strerror (errno));
return -1;
}
if (resolved_exec_path == NULL)
{
log_error ("ERROR: %s: %s", resolved_exec_path, strerror (errno));
return -1;
}
char *install_dir = get_install_dir (resolved_exec_path);
char *profile_dir = NULL;
char *session_dir = NULL;
char *shared_dir = NULL;
if (strcmp (install_dir, resolved_install_folder) == 0)
{
struct passwd *pw = getpwuid (getuid ());
const char *homedir = pw->pw_dir;
profile_dir = get_profile_dir (homedir);
session_dir = get_session_dir (profile_dir);
shared_dir = mystrdup (SHARED_FOLDER);
mkdir (profile_dir, 0700);
mkdir (session_dir, 0700);
}
else
{
profile_dir = install_dir;
session_dir = install_dir;
shared_dir = install_dir;
}
myfree (resolved_install_folder);
myfree (resolved_exec_path);
#else
char *install_dir = get_install_dir (exec_path);
char *profile_dir = install_dir;
char *session_dir = install_dir;
char *shared_dir = install_dir;
#endif
data.install_dir = install_dir;
data.profile_dir = profile_dir;
data.session_dir = session_dir;
data.shared_dir = shared_dir;
myfree (exec_path);
/**
* There's alot of problem related to bad support -I parameters when building the kernel.
* Each OpenCL runtime handles it slightly different.
* The most problematic is with new AMD drivers on Windows, which can not handle quote characters!
* The best workaround found so far is to modify the TMP variable (only inside hashcat process) before the runtime is load
*/
char cpath[1024] = { 0 };
#if defined (_WIN)
snprintf (cpath, sizeof (cpath) - 1, "%s\\OpenCL\\", shared_dir);
char *cpath_real = mymalloc (MAX_PATH);
if (GetFullPathName (cpath, MAX_PATH, cpath_real, NULL) == 0)
{
log_error ("ERROR: %s: %s", cpath, "GetFullPathName()");
return -1;
}
#else
snprintf (cpath, sizeof (cpath) - 1, "%s/OpenCL/", shared_dir);
char *cpath_real = mymalloc (PATH_MAX);
if (realpath (cpath, cpath_real) == NULL)
{
log_error ("ERROR: %s: %s", cpath, strerror (errno));
return -1;
}
#endif
//if (getenv ("TMP") == NULL)
if (1)
{
char tmp[1000];
snprintf (tmp, sizeof (tmp) - 1, "TMP=%s", cpath_real);
putenv (tmp);
}
#if defined (_WIN)
naive_replace (cpath_real, '\\', '/');
// not escaping here, windows using quotes later
// naive_escape (cpath_real, PATH_MAX, ' ', '\\');
#else
naive_escape (cpath_real, PATH_MAX, ' ', '\\');
#endif
/**
* kernel cache, we need to make sure folder exist
*/
int kernels_folder_size = strlen (profile_dir) + 1 + 7 + 1 + 1;
char *kernels_folder = (char *) mymalloc (kernels_folder_size);
snprintf (kernels_folder, kernels_folder_size - 1, "%s/kernels", profile_dir);
mkdir (kernels_folder, 0700);
myfree (kernels_folder);
/**
* session
*/
size_t session_size = strlen (session_dir) + 1 + strlen (session) + 32;
data.session = session;
char *eff_restore_file = (char *) mymalloc (session_size);
char *new_restore_file = (char *) mymalloc (session_size);
snprintf (eff_restore_file, session_size - 1, "%s/%s.restore", data.session_dir, session);
snprintf (new_restore_file, session_size - 1, "%s/%s.restore.new", data.session_dir, session);
data.eff_restore_file = eff_restore_file;
data.new_restore_file = new_restore_file;
if (((show == 1) || (left == 1)) && (restore == 1))
{
if (show == 1) log_error ("ERROR: Mixing --restore parameter and --show is not supported");
else log_error ("ERROR: Mixing --restore parameter and --left is not supported");
return -1;
}
// this allows the user to use --show and --left while cracking (i.e. while another instance of hashcat is running)
if ((show == 1) || (left == 1))
{
restore_disable = 1;
restore = 0;
}
data.restore_disable = restore_disable;
restore_data_t *rd = init_restore (argc, argv);
data.rd = rd;
/**
* restore file
*/
if (restore == 1)
{
read_restore (eff_restore_file, rd);
if (rd->version < RESTORE_VERSION_MIN)
{
log_error ("ERROR: Incompatible restore-file version");
return -1;
}
myargc = rd->argc;
myargv = rd->argv;
#if defined (_POSIX)
rd->pid = getpid ();
#elif defined (_WIN)
rd->pid = GetCurrentProcessId ();
#endif
}
uint hash_mode_chgd = 0;
uint runtime_chgd = 0;
uint kernel_loops_chgd = 0;
uint kernel_accel_chgd = 0;
uint nvidia_spin_damp_chgd = 0;
uint attack_mode_chgd = 0;
uint outfile_format_chgd = 0;
uint rp_gen_seed_chgd = 0;
uint remove_timer_chgd = 0;
uint increment_min_chgd = 0;
uint increment_max_chgd = 0;
uint workload_profile_chgd = 0;
uint opencl_vector_width_chgd = 0;
optind = 1;
optopt = 0;
option_index = 0;
while (((c = getopt_long (myargc, myargv, short_options, long_options, &option_index)) != -1) && optopt == 0)
{
switch (c)
{
//case IDX_HELP: usage = 1; break;
//case IDX_VERSION: version = 1; break;
//case IDX_RESTORE: restore = 1; break;
case IDX_QUIET: quiet = 1; break;
//case IDX_SHOW: show = 1; break;
case IDX_SHOW: break;
//case IDX_LEFT: left = 1; break;
case IDX_LEFT: break;
case IDX_USERNAME: username = 1; break;
case IDX_REMOVE: remove = 1; break;
case IDX_REMOVE_TIMER: remove_timer = atoi (optarg);
remove_timer_chgd = 1; break;
case IDX_POTFILE_DISABLE: potfile_disable = 1; break;
case IDX_POTFILE_PATH: potfile_path = optarg; break;
case IDX_DEBUG_MODE: debug_mode = atoi (optarg); break;
case IDX_DEBUG_FILE: debug_file = optarg; break;
case IDX_INDUCTION_DIR: induction_dir = optarg; break;
case IDX_OUTFILE_CHECK_DIR: outfile_check_dir = optarg; break;
case IDX_FORCE: force = 1; break;
case IDX_SKIP: skip = atoll (optarg); break;
case IDX_LIMIT: limit = atoll (optarg); break;
case IDX_KEYSPACE: keyspace = 1; break;
case IDX_BENCHMARK: benchmark = 1; break;
case IDX_STDOUT_FLAG: stdout_flag = 1; break;
case IDX_RESTORE: break;
case IDX_RESTORE_DISABLE: restore_disable = 1; break;
case IDX_STATUS: status = 1; break;
case IDX_STATUS_TIMER: status_timer = atoi (optarg); break;
case IDX_MACHINE_READABLE: machine_readable = 1; break;
case IDX_LOOPBACK: loopback = 1; break;
case IDX_WEAK_HASH_THRESHOLD: weak_hash_threshold = atoi (optarg); break;
//case IDX_SESSION: session = optarg; break;
case IDX_SESSION: break;
case IDX_HASH_MODE: hash_mode = atoi (optarg);
hash_mode_chgd = 1; break;
case IDX_RUNTIME: runtime = atoi (optarg);
runtime_chgd = 1; break;
case IDX_ATTACK_MODE: attack_mode = atoi (optarg);
attack_mode_chgd = 1; break;
case IDX_RP_FILE: rp_files[rp_files_cnt++] = optarg; break;
case IDX_RP_GEN: rp_gen = atoi (optarg); break;
case IDX_RP_GEN_FUNC_MIN: rp_gen_func_min = atoi (optarg); break;
case IDX_RP_GEN_FUNC_MAX: rp_gen_func_max = atoi (optarg); break;
case IDX_RP_GEN_SEED: rp_gen_seed = atoi (optarg);
rp_gen_seed_chgd = 1; break;
case IDX_RULE_BUF_L: rule_buf_l = optarg; break;
case IDX_RULE_BUF_R: rule_buf_r = optarg; break;
case IDX_MARKOV_DISABLE: markov_disable = 1; break;
case IDX_MARKOV_CLASSIC: markov_classic = 1; break;
case IDX_MARKOV_THRESHOLD: markov_threshold = atoi (optarg); break;
case IDX_MARKOV_HCSTAT: markov_hcstat = optarg; break;
case IDX_OUTFILE: outfile = optarg; break;
case IDX_OUTFILE_FORMAT: outfile_format = atoi (optarg);
outfile_format_chgd = 1; break;
case IDX_OUTFILE_AUTOHEX_DISABLE: outfile_autohex = 0; break;
case IDX_OUTFILE_CHECK_TIMER: outfile_check_timer = atoi (optarg); break;
case IDX_HEX_CHARSET: hex_charset = 1; break;
case IDX_HEX_SALT: hex_salt = 1; break;
case IDX_HEX_WORDLIST: hex_wordlist = 1; break;
case IDX_CPU_AFFINITY: cpu_affinity = optarg; break;
case IDX_OPENCL_DEVICES: opencl_devices = optarg; break;
case IDX_OPENCL_PLATFORMS: opencl_platforms = optarg; break;
case IDX_OPENCL_DEVICE_TYPES: opencl_device_types = optarg; break;
case IDX_OPENCL_VECTOR_WIDTH: opencl_vector_width = atoi (optarg);
opencl_vector_width_chgd = 1; break;
case IDX_WORKLOAD_PROFILE: workload_profile = atoi (optarg);
workload_profile_chgd = 1; break;
case IDX_KERNEL_ACCEL: kernel_accel = atoi (optarg);
kernel_accel_chgd = 1; break;
case IDX_KERNEL_LOOPS: kernel_loops = atoi (optarg);
kernel_loops_chgd = 1; break;
case IDX_NVIDIA_SPIN_DAMP: nvidia_spin_damp = atoi (optarg);
nvidia_spin_damp_chgd = 1; break;
case IDX_GPU_TEMP_DISABLE: gpu_temp_disable = 1; break;
#if defined (HAVE_HWMON)
case IDX_GPU_TEMP_ABORT: gpu_temp_abort = atoi (optarg); break;
case IDX_GPU_TEMP_RETAIN: gpu_temp_retain = atoi (optarg); break;
case IDX_POWERTUNE_ENABLE: powertune_enable = 1; break;
#endif // HAVE_HWMON
case IDX_LOGFILE_DISABLE: logfile_disable = 1; break;
case IDX_TRUECRYPT_KEYFILES: truecrypt_keyfiles = optarg; break;
case IDX_VERACRYPT_KEYFILES: veracrypt_keyfiles = optarg; break;
case IDX_VERACRYPT_PIM: veracrypt_pim = atoi (optarg); break;
case IDX_SEGMENT_SIZE: segment_size = atoi (optarg); break;
case IDX_SCRYPT_TMTO: scrypt_tmto = atoi (optarg); break;
case IDX_SEPARATOR: separator = optarg[0]; break;
case IDX_BITMAP_MIN: bitmap_min = atoi (optarg); break;
case IDX_BITMAP_MAX: bitmap_max = atoi (optarg); break;
case IDX_INCREMENT: increment = 1; break;
case IDX_INCREMENT_MIN: increment_min = atoi (optarg);
increment_min_chgd = 1; break;
case IDX_INCREMENT_MAX: increment_max = atoi (optarg);
increment_max_chgd = 1; break;
case IDX_CUSTOM_CHARSET_1: custom_charset_1 = optarg; break;
case IDX_CUSTOM_CHARSET_2: custom_charset_2 = optarg; break;
case IDX_CUSTOM_CHARSET_3: custom_charset_3 = optarg; break;
case IDX_CUSTOM_CHARSET_4: custom_charset_4 = optarg; break;
default:
log_error ("ERROR: Invalid argument specified");
return -1;
}
}
if (optopt != 0)
{
log_error ("ERROR: Invalid argument specified");
return -1;
}
/**
* Inform user things getting started,
* - this is giving us a visual header before preparations start, so we do not need to clear them afterwards
* - we do not need to check algorithm_pos
*/
if (quiet == 0)
{
if (benchmark == 1)
{
if (machine_readable == 0)
{
log_info ("%s (%s) starting in benchmark-mode...", PROGNAME, VERSION_TAG);
log_info ("");
}
else
{
log_info ("# %s (%s) %s", PROGNAME, VERSION_TAG, ctime (&proc_start));
}
}
else if (restore == 1)
{
log_info ("%s (%s) starting in restore-mode...", PROGNAME, VERSION_TAG);
log_info ("");
}
else if (stdout_flag == 1)
{
// do nothing
}
else if (keyspace == 1)
{
// do nothing
}
else
{
if ((show == 1) || (left == 1))
{
// do nothing
}
else
{
log_info ("%s (%s) starting...", PROGNAME, VERSION_TAG);
log_info ("");
}
}
}
/**
* sanity check
*/
if (attack_mode > 7)
{
log_error ("ERROR: Invalid attack-mode specified");
return -1;
}
if (runtime_chgd && runtime == 0) // just added to remove compiler warnings for runtime_chgd
{
log_error ("ERROR: Invalid runtime specified");
return -1;
}
if (hash_mode_chgd && hash_mode > 14100) // just added to remove compiler warnings for hash_mode_chgd
{
log_error ("ERROR: Invalid hash-type specified");
return -1;
}
// renamed hash modes
if (hash_mode_chgd)
{
int n = -1;
switch (hash_mode)
{
case 123: n = 124;
break;
}
if (n >= 0)
{
log_error ("Old -m specified, use -m %d instead", n);
return -1;
}
}
if (username == 1)
{
if ((hash_mode == 2500) || (hash_mode == 5200) || ((hash_mode >= 6200) && (hash_mode <= 6299)) || ((hash_mode >= 13700) && (hash_mode <= 13799)))
{
log_error ("ERROR: Mixing support for user names and hashes of type %s is not supported", strhashtype (hash_mode));
return -1;
}
}
if (outfile_format > 16)
{
log_error ("ERROR: Invalid outfile-format specified");
return -1;
}
if (left == 1)
{
if (outfile_format_chgd == 1)
{
if (outfile_format > 1)
{
log_error ("ERROR: Mixing outfile-format > 1 with left parameter is not allowed");
return -1;
}
}
else
{
outfile_format = OUTFILE_FMT_HASH;
}
}
if (show == 1)
{
if (outfile_format_chgd == 1)
{
if ((outfile_format > 7) && (outfile_format < 16))
{
log_error ("ERROR: Mixing outfile-format > 7 with show parameter is not allowed");
return -1;
}
}
}
if (increment_min < INCREMENT_MIN)
{
log_error ("ERROR: Invalid increment-min specified");
return -1;
}
if (increment_max > INCREMENT_MAX)
{
log_error ("ERROR: Invalid increment-max specified");
return -1;
}
if (increment_min > increment_max)
{
log_error ("ERROR: Invalid increment-min specified");
return -1;
}
if ((increment == 1) && (attack_mode == ATTACK_MODE_STRAIGHT))
{
log_error ("ERROR: Increment is not allowed in attack-mode 0");
return -1;
}
if ((increment == 0) && (increment_min_chgd == 1))
{
log_error ("ERROR: Increment-min is only supported combined with increment switch");
return -1;
}
if ((increment == 0) && (increment_max_chgd == 1))
{
log_error ("ERROR: Increment-max is only supported combined with increment switch");
return -1;
}
if (rp_files_cnt && rp_gen)
{
log_error ("ERROR: Use of both rules-file and rules-generate is not supported");
return -1;
}
if (rp_files_cnt || rp_gen)
{
if (attack_mode != ATTACK_MODE_STRAIGHT)
{
log_error ("ERROR: Use of rules-file or rules-generate only allowed in attack-mode 0");
return -1;
}
}
if (rp_gen_func_min > rp_gen_func_max)
{
log_error ("ERROR: Invalid rp-gen-func-min specified");
return -1;
}
if (kernel_accel_chgd == 1)
{
if (force == 0)
{
log_info ("The manual use of the -n option (or --kernel-accel) is outdated");
log_info ("Please consider using the -w option instead");
log_info ("You can use --force to override this but do not post error reports if you do so");
log_info ("");
return -1;
}
if (kernel_accel < 1)
{
log_error ("ERROR: Invalid kernel-accel specified");
return -1;
}
if (kernel_accel > 1024)
{
log_error ("ERROR: Invalid kernel-accel specified");
return -1;
}
}
if (kernel_loops_chgd == 1)
{
if (force == 0)
{
log_info ("The manual use of the -u option (or --kernel-loops) is outdated");
log_info ("Please consider using the -w option instead");
log_info ("You can use --force to override this but do not post error reports if you do so");
log_info ("");
return -1;
}
if (kernel_loops < 1)
{
log_error ("ERROR: Invalid kernel-loops specified");
return -1;
}
if (kernel_loops > 1024)
{
log_error ("ERROR: Invalid kernel-loops specified");
return -1;
}
}
if ((workload_profile < 1) || (workload_profile > 4))
{
log_error ("ERROR: workload-profile %i not available", workload_profile);
return -1;
}
if (opencl_vector_width_chgd && (!is_power_of_2(opencl_vector_width) || opencl_vector_width > 16))
{
log_error ("ERROR: opencl-vector-width %i not allowed", opencl_vector_width);
return -1;
}
if (show == 1 || left == 1)
{
attack_mode = ATTACK_MODE_NONE;
if (remove == 1)
{
log_error ("ERROR: Mixing remove parameter not allowed with show parameter or left parameter");
return -1;
}
if (potfile_disable == 1)
{
log_error ("ERROR: Mixing potfile-disable parameter not allowed with show parameter or left parameter");
return -1;
}
}
if (show == 1)
{
if (outfile_autohex == 0)
{
log_error ("ERROR: Mixing outfile-autohex-disable parameter not allowed with show parameter");
return -1;
}
}
uint attack_kern = ATTACK_KERN_NONE;
switch (attack_mode)
{
case ATTACK_MODE_STRAIGHT: attack_kern = ATTACK_KERN_STRAIGHT; break;
case ATTACK_MODE_COMBI: attack_kern = ATTACK_KERN_COMBI; break;
case ATTACK_MODE_BF: attack_kern = ATTACK_KERN_BF; break;
case ATTACK_MODE_HYBRID1: attack_kern = ATTACK_KERN_COMBI; break;
case ATTACK_MODE_HYBRID2: attack_kern = ATTACK_KERN_COMBI; break;
}
if (benchmark == 1)
{
if (myargv[optind] != 0)
{
log_error ("ERROR: Invalid argument for benchmark mode specified");
return -1;
}
if (attack_mode_chgd == 1)
{
if (attack_mode != ATTACK_MODE_BF)
{
log_error ("ERROR: Only attack-mode 3 allowed in benchmark mode");
return -1;
}
}
}
else
{
if (stdout_flag == 1) // no hash here
{
optind--;
}
if (keyspace == 1)
{
int num_additional_params = 1;
if (attack_kern == ATTACK_KERN_COMBI)
{
num_additional_params = 2;
}
int keyspace_wordlist_specified = myargc - optind - num_additional_params;
if (keyspace_wordlist_specified == 0) optind--;
}
if (attack_kern == ATTACK_KERN_NONE)
{
if ((optind + 1) != myargc)
{
usage_mini_print (myargv[0]);
return -1;
}
}
else if (attack_kern == ATTACK_KERN_STRAIGHT)
{
if ((optind + 1) > myargc)
{
usage_mini_print (myargv[0]);
return -1;
}
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
if ((optind + 3) != myargc)
{
usage_mini_print (myargv[0]);
return -1;
}
}
else if (attack_kern == ATTACK_KERN_BF)
{
if ((optind + 1) > myargc)
{
usage_mini_print (myargv[0]);
return -1;
}
}
else
{
usage_mini_print (myargv[0]);
return -1;
}
}
if (skip != 0 && limit != 0)
{
limit += skip;
}
if (keyspace == 1)
{
if (show == 1)
{
log_error ("ERROR: Combining show parameter with keyspace parameter is not allowed");
return -1;
}
else if (left == 1)
{
log_error ("ERROR: Combining left parameter with keyspace parameter is not allowed");
return -1;
}
potfile_disable = 1;
restore_disable = 1;
restore = 0;
weak_hash_threshold = 0;
quiet = 1;
}
if (stdout_flag == 1)
{
status_timer = 0;
restore_timer = 0;
restore_disable = 1;
restore = 0;
potfile_disable = 1;
weak_hash_threshold = 0;
gpu_temp_disable = 1;
hash_mode = 2000;
quiet = 1;
outfile_format = OUTFILE_FMT_PLAIN;
kernel_accel = 1024;
kernel_loops = 1024;
force = 1;
outfile_check_timer = 0;
session = "stdout";
opencl_vector_width = 1;
}
if (remove_timer_chgd == 1)
{
if (remove == 0)
{
log_error ("ERROR: Parameter remove-timer require parameter remove enabled");
return -1;
}
if (remove_timer < 1)
{
log_error ("ERROR: Parameter remove-timer must have a value greater than or equal to 1");
return -1;
}
}
if (loopback == 1)
{
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
if ((rp_files_cnt == 0) && (rp_gen == 0))
{
log_error ("ERROR: Parameter loopback not allowed without rules-file or rules-generate");
return -1;
}
}
else
{
log_error ("ERROR: Parameter loopback allowed in attack-mode 0 only");
return -1;
}
}
if (debug_mode > 0)
{
if (attack_mode != ATTACK_MODE_STRAIGHT)
{
log_error ("ERROR: Parameter debug-mode option is only available with attack-mode 0");
return -1;
}
if ((rp_files_cnt == 0) && (rp_gen == 0))
{
log_error ("ERROR: Parameter debug-mode not allowed without rules-file or rules-generate");
return -1;
}
}
if (debug_mode > 4)
{
log_error ("ERROR: Invalid debug-mode specified");
return -1;
}
if (debug_file != NULL)
{
if (debug_mode < 1)
{
log_error ("ERROR: Parameter debug-file requires parameter debug-mode to be set");
return -1;
}
}
if (induction_dir != NULL)
{
if (attack_mode == ATTACK_MODE_BF)
{
log_error ("ERROR: Parameter induction-dir not allowed with brute-force attacks");
return -1;
}
}
if (attack_mode != ATTACK_MODE_STRAIGHT)
{
if ((weak_hash_threshold != WEAK_HASH_THRESHOLD) && (weak_hash_threshold != 0))
{
log_error ("ERROR: setting --weak-hash-threshold allowed only in straight-attack mode");
return -1;
}
weak_hash_threshold = 0;
}
if (nvidia_spin_damp > 100)
{
log_error ("ERROR: setting --nvidia-spin-damp must be between 0 and 100 (inclusive)");
return -1;
}
/**
* induction directory
*/
char *induction_directory = NULL;
if (attack_mode != ATTACK_MODE_BF)
{
if (induction_dir == NULL)
{
induction_directory = (char *) mymalloc (session_size);
snprintf (induction_directory, session_size - 1, "%s/%s.%s", session_dir, session, INDUCT_DIR);
// create induction folder if it does not already exist
if (keyspace == 0)
{
if (rmdir (induction_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
char *induction_directory_mv = (char *) mymalloc (session_size);
snprintf (induction_directory_mv, session_size - 1, "%s/%s.induct.%d", session_dir, session, (int) proc_start);
if (rename (induction_directory, induction_directory_mv) != 0)
{
log_error ("ERROR: Rename directory %s to %s: %s", induction_directory, induction_directory_mv, strerror (errno));
return -1;
}
}
else
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
if (mkdir (induction_directory, 0700) == -1)
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
}
else
{
induction_directory = induction_dir;
}
}
data.induction_directory = induction_directory;
/**
* loopback
*/
size_t loopback_size = strlen (session_dir) + 1 + session_size + strlen (LOOPBACK_FILE) + 12;
char *loopback_file = (char *) mymalloc (loopback_size);
/**
* tuning db
*/
char tuning_db_file[256] = { 0 };
snprintf (tuning_db_file, sizeof (tuning_db_file) - 1, "%s/%s", shared_dir, TUNING_DB_FILE);
tuning_db_t *tuning_db = tuning_db_init (tuning_db_file);
/**
* outfile-check directory
*/
char *outfile_check_directory = NULL;
if (outfile_check_dir == NULL)
{
outfile_check_directory = (char *) mymalloc (session_size);
snprintf (outfile_check_directory, session_size - 1, "%s/%s.%s", session_dir, session, OUTFILES_DIR);
}
else
{
outfile_check_directory = outfile_check_dir;
}
data.outfile_check_directory = outfile_check_directory;
if (keyspace == 0)
{
struct stat outfile_check_stat;
if (stat (outfile_check_directory, &outfile_check_stat) == 0)
{
uint is_dir = S_ISDIR (outfile_check_stat.st_mode);
if (is_dir == 0)
{
log_error ("ERROR: Directory specified in outfile-check '%s' is not a valid directory", outfile_check_directory);
return -1;
}
}
else if (outfile_check_dir == NULL)
{
if (mkdir (outfile_check_directory, 0700) == -1)
{
log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno));
return -1;
}
}
}
/**
* special other stuff
*/
if (hash_mode == 9710)
{
outfile_format = 5;
outfile_format_chgd = 1;
}
if (hash_mode == 9810)
{
outfile_format = 5;
outfile_format_chgd = 1;
}
if (hash_mode == 10410)
{
outfile_format = 5;
outfile_format_chgd = 1;
}
/**
* store stuff
*/
data.restore = restore;
data.restore_timer = restore_timer;
data.restore_disable = restore_disable;
data.status = status;
data.status_timer = status_timer;
data.machine_readable = machine_readable;
data.loopback = loopback;
data.runtime = runtime;
data.remove = remove;
data.remove_timer = remove_timer;
data.debug_mode = debug_mode;
data.debug_file = debug_file;
data.username = username;
data.quiet = quiet;
data.outfile = outfile;
data.outfile_format = outfile_format;
data.outfile_autohex = outfile_autohex;
data.hex_charset = hex_charset;
data.hex_salt = hex_salt;
data.hex_wordlist = hex_wordlist;
data.rp_files = rp_files;
data.rp_files_cnt = rp_files_cnt;
data.rp_gen = rp_gen;
data.rp_gen_seed = rp_gen_seed;
data.force = force;
data.benchmark = benchmark;
data.skip = skip;
data.limit = limit;
data.custom_charset_1 = custom_charset_1;
data.custom_charset_2 = custom_charset_2;
data.custom_charset_3 = custom_charset_3;
data.custom_charset_4 = custom_charset_4;
#if defined (HAVE_HWMONO)
data.powertune_enable = powertune_enable;
#endif
data.logfile_disable = logfile_disable;
data.truecrypt_keyfiles = truecrypt_keyfiles;
data.veracrypt_keyfiles = veracrypt_keyfiles;
data.veracrypt_pim = veracrypt_pim;
data.scrypt_tmto = scrypt_tmto;
data.workload_profile = workload_profile;
/**
* cpu affinity
*/
if (cpu_affinity)
{
set_cpu_affinity (cpu_affinity);
}
if (rp_gen_seed_chgd == 0)
{
srand (proc_start);
}
else
{
srand (rp_gen_seed);
}
/**
* logfile init
*/
if (logfile_disable == 0)
{
size_t logfile_size = strlen (session_dir) + 1 + strlen (session) + 32;
char *logfile = (char *) mymalloc (logfile_size);
snprintf (logfile, logfile_size - 1, "%s/%s.log", session_dir, session);
data.logfile = logfile;
char *topid = logfile_generate_topid ();
data.topid = topid;
}
logfile_top_msg ("START");
logfile_top_uint (attack_mode);
logfile_top_uint (attack_kern);
logfile_top_uint (benchmark);
logfile_top_uint (stdout_flag);
logfile_top_uint (bitmap_min);
logfile_top_uint (bitmap_max);
logfile_top_uint (debug_mode);
logfile_top_uint (force);
logfile_top_uint (kernel_accel);
logfile_top_uint (kernel_loops);
logfile_top_uint (nvidia_spin_damp);
logfile_top_uint (gpu_temp_disable);
#if defined (HAVE_HWMON)
logfile_top_uint (gpu_temp_abort);
logfile_top_uint (gpu_temp_retain);
#endif
logfile_top_uint (hash_mode);
logfile_top_uint (hex_charset);
logfile_top_uint (hex_salt);
logfile_top_uint (hex_wordlist);
logfile_top_uint (increment);
logfile_top_uint (increment_max);
logfile_top_uint (increment_min);
logfile_top_uint (keyspace);
logfile_top_uint (left);
logfile_top_uint (logfile_disable);
logfile_top_uint (loopback);
logfile_top_uint (markov_classic);
logfile_top_uint (markov_disable);
logfile_top_uint (markov_threshold);
logfile_top_uint (outfile_autohex);
logfile_top_uint (outfile_check_timer);
logfile_top_uint (outfile_format);
logfile_top_uint (potfile_disable);
logfile_top_string (potfile_path);
#if defined(HAVE_HWMON)
logfile_top_uint (powertune_enable);
#endif
logfile_top_uint (scrypt_tmto);
logfile_top_uint (quiet);
logfile_top_uint (remove);
logfile_top_uint (remove_timer);
logfile_top_uint (restore);
logfile_top_uint (restore_disable);
logfile_top_uint (restore_timer);
logfile_top_uint (rp_gen);
logfile_top_uint (rp_gen_func_max);
logfile_top_uint (rp_gen_func_min);
logfile_top_uint (rp_gen_seed);
logfile_top_uint (runtime);
logfile_top_uint (segment_size);
logfile_top_uint (show);
logfile_top_uint (status);
logfile_top_uint (machine_readable);
logfile_top_uint (status_timer);
logfile_top_uint (usage);
logfile_top_uint (username);
logfile_top_uint (version);
logfile_top_uint (weak_hash_threshold);
logfile_top_uint (workload_profile);
logfile_top_uint64 (limit);
logfile_top_uint64 (skip);
logfile_top_char (separator);
logfile_top_string (cpu_affinity);
logfile_top_string (custom_charset_1);
logfile_top_string (custom_charset_2);
logfile_top_string (custom_charset_3);
logfile_top_string (custom_charset_4);
logfile_top_string (debug_file);
logfile_top_string (opencl_devices);
logfile_top_string (opencl_platforms);
logfile_top_string (opencl_device_types);
logfile_top_uint (opencl_vector_width);
logfile_top_string (induction_dir);
logfile_top_string (markov_hcstat);
logfile_top_string (outfile);
logfile_top_string (outfile_check_dir);
logfile_top_string (rule_buf_l);
logfile_top_string (rule_buf_r);
logfile_top_string (session);
logfile_top_string (truecrypt_keyfiles);
logfile_top_string (veracrypt_keyfiles);
logfile_top_uint (veracrypt_pim);
/**
* Init OpenCL library loader
*/
if (keyspace == 0)
{
ocl = (OCL_PTR *) mymalloc (sizeof (OCL_PTR));
ocl_init (ocl);
data.ocl = ocl;
}
/**
* OpenCL platform selection
*/
u32 opencl_platforms_filter = setup_opencl_platforms_filter (opencl_platforms);
/**
* OpenCL device selection
*/
u32 devices_filter = setup_devices_filter (opencl_devices);
/**
* OpenCL device type selection
*/
cl_device_type device_types_filter = setup_device_types_filter (opencl_device_types);
/**
* benchmark
*/
if (benchmark == 1)
{
/**
* disable useless stuff for benchmark
*/
status_timer = 0;
restore_timer = 0;
restore_disable = 1;
potfile_disable = 1;
weak_hash_threshold = 0;
nvidia_spin_damp = 0;
gpu_temp_disable = 1;
outfile_check_timer = 0;
#if defined (HAVE_HWMON)
if (powertune_enable == 1)
{
gpu_temp_disable = 0;
}
#endif
data.status_timer = status_timer;
data.restore_timer = restore_timer;
data.restore_disable = restore_disable;
data.outfile_check_timer = outfile_check_timer;
/**
* force attack mode to be bruteforce
*/
attack_mode = ATTACK_MODE_BF;
attack_kern = ATTACK_KERN_BF;
if (workload_profile_chgd == 0)
{
workload_profile = 3;
data.workload_profile = workload_profile;
}
}
data.attack_mode = attack_mode;
data.attack_kern = attack_kern;
/**
* status, monitor and outfile remove threads
*/
uint wordlist_mode = ((optind + 1) < myargc) ? WL_MODE_FILE : WL_MODE_STDIN;
data.wordlist_mode = wordlist_mode;
if (wordlist_mode == WL_MODE_STDIN)
{
// enable status (in stdin mode) whenever we do not use --stdout together with an outfile
if (stdout_flag == 0) status = 1;
else if (outfile != NULL) status = 1;
data.status = status;
}
uint outer_threads_cnt = 0;
hc_thread_t *outer_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t));
data.shutdown_outer = 0;
if (keyspace == 0 && benchmark == 0 && stdout_flag == 0)
{
if ((data.wordlist_mode == WL_MODE_FILE) || (data.wordlist_mode == WL_MODE_MASK))
{
hc_thread_create (outer_threads[outer_threads_cnt], thread_keypress, NULL);
outer_threads_cnt++;
}
}
/**
* config
*/
hashconfig_t *hashconfig = (hashconfig_t *) mymalloc (sizeof (hashconfig_t));
data.hashconfig = hashconfig;
uint algorithm_pos = 0;
uint algorithm_max = 1;
uint *algorithms = default_benchmark_algorithms;
if (benchmark == 1 && hash_mode_chgd == 0) algorithm_max = NUM_DEFAULT_BENCHMARK_ALGORITHMS;
for (algorithm_pos = 0; algorithm_pos < algorithm_max; algorithm_pos++)
{
/*
* We need to reset 'rd' in benchmark mode otherwise when the user hits 'bypass'
* the following algos are skipped entirely
*/
if (algorithm_pos > 0)
{
local_free (rd);
rd = init_restore (argc, argv);
data.rd = rd;
}
/**
* update hash_mode in case of multihash benchmark
*/
if (benchmark == 1)
{
if (hash_mode_chgd == 0)
{
hash_mode = algorithms[algorithm_pos];
}
quiet = 1;
data.quiet = quiet;
}
int rc = hashconfig_init (hashconfig, hash_mode, separator, hex_salt);
if (rc == -1)
{
return -1;
}
/**
* choose dictionary parser
*/
get_next_word_func = get_next_word_std;
if (hashconfig->opts_type & OPTS_TYPE_PT_UPPER)
{
get_next_word_func = get_next_word_uc;
}
if (hashconfig->hash_type == HASH_TYPE_LM) // yes that's fine that way
{
get_next_word_func = get_next_word_lm;
}
/**
* dictstat
*/
dictstat_ctx_t *dictstat_ctx = mymalloc (sizeof (dictstat_ctx_t));
dictstat_init (dictstat_ctx, profile_dir);
if (keyspace == 0)
{
dictstat_read (dictstat_ctx);
}
/**
* outfile
*/
FILE *out_fp = NULL;
if (show == 1 || left == 1)
{
if (outfile != NULL)
{
if ((out_fp = fopen (outfile, "ab")) == NULL)
{
log_error ("ERROR: %s: %s", outfile, strerror (errno));
return -1;
}
}
else
{
out_fp = stdout;
}
}
/**
* potfile
*/
potfile_ctx_t *potfile_ctx = mymalloc (sizeof (potfile_ctx_t));
data.potfile_ctx = potfile_ctx;
potfile_init (potfile_ctx, profile_dir, potfile_path);
if (show == 1 || left == 1)
{
SUPPRESS_OUTPUT = 1;
int rc = potfile_read_open (potfile_ctx);
if (rc == -1) return -1;
potfile_read_parse (potfile_ctx, hashconfig);
potfile_read_close (potfile_ctx);
SUPPRESS_OUTPUT = 0;
}
/**
* word len
*/
uint pw_min = PW_MIN;
uint pw_max = PW_MAX;
switch (hashconfig->hash_mode)
{
case 125: if (pw_max > 32) pw_max = 32;
break;
case 400: if (pw_max > 40) pw_max = 40;
break;
case 500: if (pw_max > 16) pw_max = 16;
break;
case 1500: if (pw_max > 8) pw_max = 8;
break;
case 1600: if (pw_max > 16) pw_max = 16;
break;
case 1800: if (pw_max > 16) pw_max = 16;
break;
case 2100: if (pw_max > 16) pw_max = 16;
break;
case 2500: if (pw_min < 8) pw_min = 8;
break;
case 3000: if (pw_max > 7) pw_max = 7;
break;
case 5200: if (pw_max > 24) pw_max = 24;
break;
case 5800: if (pw_max > 16) pw_max = 16;
break;
case 6300: if (pw_max > 16) pw_max = 16;
break;
case 7400: if (pw_max > 16) pw_max = 16;
break;
case 7700: if (pw_max > 8) pw_max = 8;
break;
case 7900: if (pw_max > 48) pw_max = 48;
break;
case 8500: if (pw_max > 8) pw_max = 8;
break;
case 8600: if (pw_max > 16) pw_max = 16;
break;
case 9710: pw_min = 5;
pw_max = 5;
break;
case 9810: pw_min = 5;
pw_max = 5;
break;
case 10410: pw_min = 5;
pw_max = 5;
break;
case 10300: if (pw_max < 3) pw_min = 3;
if (pw_max > 40) pw_max = 40;
break;
case 10500: if (pw_max < 3) pw_min = 3;
if (pw_max > 40) pw_max = 40;
break;
case 10700: if (pw_max > 16) pw_max = 16;
break;
case 11300: if (pw_max > 40) pw_max = 40;
break;
case 11600: if (pw_max > 32) pw_max = 32;
break;
case 12500: if (pw_max > 20) pw_max = 20;
break;
case 12800: if (pw_max > 24) pw_max = 24;
break;
case 14000: if (pw_min < 8) pw_min = 8;
if (pw_max > 8) pw_max = 8;
break;
case 14100: if (pw_min < 24) pw_min = 24;
if (pw_max > 24) pw_max = 24;
break;
}
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
switch (attack_kern)
{
case ATTACK_KERN_STRAIGHT: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
case ATTACK_KERN_COMBI: if (pw_max > PW_DICTMAX) pw_max = PW_DICTMAX1;
break;
}
}
/**
* charsets : keep them together for more easy maintainnce
*/
cs_t mp_sys[6] = { { { 0 }, 0 } };
cs_t mp_usr[4] = { { { 0 }, 0 } };
mp_setup_sys (mp_sys);
if (custom_charset_1) mp_setup_usr (mp_sys, mp_usr, custom_charset_1, 0, hashconfig);
if (custom_charset_2) mp_setup_usr (mp_sys, mp_usr, custom_charset_2, 1, hashconfig);
if (custom_charset_3) mp_setup_usr (mp_sys, mp_usr, custom_charset_3, 2, hashconfig);
if (custom_charset_4) mp_setup_usr (mp_sys, mp_usr, custom_charset_4, 3, hashconfig);
/**
* load hashes, part I: find input mode, count hashes
*/
uint hashlist_mode = 0;
uint hashlist_format = HLFMT_HASHCAT;
uint hashes_avail = 0;
if ((benchmark == 0) && (stdout_flag == 0))
{
struct stat f;
hashlist_mode = (stat (myargv[optind], &f) == 0) ? HL_MODE_FILE : HL_MODE_ARG;
if ((hashconfig->hash_mode == 2500) ||
(hashconfig->hash_mode == 5200) ||
((hashconfig->hash_mode >= 6200) && (hashconfig->hash_mode <= 6299)) ||
((hashconfig->hash_mode >= 13700) && (hashconfig->hash_mode <= 13799)) ||
(hashconfig->hash_mode == 9000))
{
hashlist_mode = HL_MODE_ARG;
char *hashfile = myargv[optind];
data.hashfile = hashfile;
logfile_top_var_string ("target", hashfile);
}
if (hashlist_mode == HL_MODE_ARG)
{
if (hashconfig->hash_mode == 2500)
{
struct stat st;
if (stat (data.hashfile, &st) == -1)
{
log_error ("ERROR: %s: %s", data.hashfile, strerror (errno));
return -1;
}
hashes_avail = st.st_size / sizeof (hccap_t);
}
else
{
hashes_avail = 1;
}
}
else if (hashlist_mode == HL_MODE_FILE)
{
char *hashfile = myargv[optind];
data.hashfile = hashfile;
logfile_top_var_string ("target", hashfile);
FILE *fp = NULL;
if ((fp = fopen (hashfile, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", hashfile, strerror (errno));
return -1;
}
if (data.quiet == 0) log_info_nn ("Counting lines in %s", hashfile);
hashes_avail = count_lines (fp);
rewind (fp);
if (hashes_avail == 0)
{
log_error ("ERROR: hashfile is empty or corrupt");
fclose (fp);
return -1;
}
hashlist_format = hlfmt_detect (fp, 100, hashconfig); // 100 = max numbers to "scan". could be hashes_avail, too
if ((remove == 1) && (hashlist_format != HLFMT_HASHCAT))
{
log_error ("ERROR: remove not supported in native hashfile-format mode");
fclose (fp);
return -1;
}
fclose (fp);
}
}
else
{
hashlist_mode = HL_MODE_ARG;
hashes_avail = 1;
}
if (hashconfig->hash_mode == 3000) hashes_avail *= 2;
data.hashlist_mode = hashlist_mode;
data.hashlist_format = hashlist_format;
logfile_top_uint (hashlist_mode);
logfile_top_uint (hashlist_format);
/**
* load hashes, part II: allocate required memory, set pointers
*/
hash_t *hashes_buf = NULL;
void *digests_buf = NULL;
salt_t *salts_buf = NULL;
void *esalts_buf = NULL;
hashes_buf = (hash_t *) mycalloc (hashes_avail, sizeof (hash_t));
digests_buf = (void *) mycalloc (hashes_avail, hashconfig->dgst_size);
if ((username && (remove || show)) || (hashconfig->opts_type & OPTS_TYPE_HASH_COPY))
{
u32 hash_pos;
for (hash_pos = 0; hash_pos < hashes_avail; hash_pos++)
{
hashinfo_t *hash_info = (hashinfo_t *) mymalloc (sizeof (hashinfo_t));
hashes_buf[hash_pos].hash_info = hash_info;
if (username && (remove || show || left))
{
hash_info->user = (user_t*) mymalloc (sizeof (user_t));
}
if (benchmark)
{
hash_info->orighash = (char *) mymalloc (256);
}
}
}
if (hashconfig->is_salted)
{
salts_buf = (salt_t *) mycalloc (hashes_avail, sizeof (salt_t));
if (hashconfig->esalt_size)
{
esalts_buf = (void *) mycalloc (hashes_avail, hashconfig->esalt_size);
}
}
else
{
salts_buf = (salt_t *) mycalloc (1, sizeof (salt_t));
}
for (uint hash_pos = 0; hash_pos < hashes_avail; hash_pos++)
{
hashes_buf[hash_pos].digest = ((char *) digests_buf) + (hash_pos * hashconfig->dgst_size);
if (hashconfig->is_salted)
{
hashes_buf[hash_pos].salt = &salts_buf[hash_pos];
if (hashconfig->esalt_size)
{
hashes_buf[hash_pos].esalt = ((char *) esalts_buf) + (hash_pos * hashconfig->esalt_size);
}
}
else
{
hashes_buf[hash_pos].salt = &salts_buf[0];
}
}
/**
* load hashes, part III: parse hashes or generate them if benchmark
*/
uint hashes_cnt = 0;
if (benchmark == 0)
{
if (keyspace == 1)
{
// useless to read hash file for keyspace, cheat a little bit w/ optind
}
else if (stdout_flag == 1)
{
// useless to read hash file for stdout, cheat a little bit w/ optind
}
else if (hashes_avail == 0)
{
}
else if (hashlist_mode == HL_MODE_ARG)
{
char *input_buf = myargv[optind];
uint input_len = strlen (input_buf);
logfile_top_var_string ("target", input_buf);
char *hash_buf = NULL;
int hash_len = 0;
hlfmt_hash (hashlist_format, input_buf, input_len, &hash_buf, &hash_len, hashconfig);
bool hash_fmt_error = 0;
if (hash_len < 1) hash_fmt_error = 1;
if (hash_buf == NULL) hash_fmt_error = 1;
if (hash_fmt_error)
{
log_info ("WARNING: Failed to parse hashes using the '%s' format", strhlfmt (hashlist_format));
}
else
{
if (hashconfig->opts_type & OPTS_TYPE_HASH_COPY)
{
hashinfo_t *hash_info_tmp = hashes_buf[hashes_cnt].hash_info;
hash_info_tmp->orighash = mystrdup (hash_buf);
}
if (hashconfig->is_salted)
{
memset (hashes_buf[0].salt, 0, sizeof (salt_t));
}
int parser_status = PARSER_OK;
if (hashconfig->hash_mode == 2500)
{
if (hash_len == 0)
{
log_error ("ERROR: hccap file not specified");
return -1;
}
hashlist_mode = HL_MODE_FILE;
data.hashlist_mode = hashlist_mode;
FILE *fp = fopen (hash_buf, "rb");
if (fp == NULL)
{
log_error ("ERROR: %s: %s", hash_buf, strerror (errno));
return -1;
}
if (hashes_avail < 1)
{
log_error ("ERROR: hccap file is empty or corrupt");
fclose (fp);
return -1;
}
uint hccap_size = sizeof (hccap_t);
char *in = (char *) mymalloc (hccap_size);
while (!feof (fp))
{
int n = fread (in, hccap_size, 1, fp);
if (n != 1)
{
if (hashes_cnt < 1) parser_status = PARSER_HCCAP_FILE_SIZE;
break;
}
parser_status = hashconfig->parse_func (in, hccap_size, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status != PARSER_OK)
{
log_info ("WARNING: Hash '%s': %s", hash_buf, strparser (parser_status));
continue;
}
// hack: append MAC1 and MAC2 s.t. in --show and --left the line matches with the .pot file format (i.e. ESSID:MAC1:MAC2)
if ((show == 1) || (left == 1))
{
salt_t *tmp_salt = hashes_buf[hashes_cnt].salt;
char *salt_ptr = (char *) tmp_salt->salt_buf;
int cur_pos = tmp_salt->salt_len;
int rem_len = sizeof (hashes_buf[hashes_cnt].salt->salt_buf) - cur_pos;
wpa_t *wpa = (wpa_t *) hashes_buf[hashes_cnt].esalt;
// do the appending task
snprintf (salt_ptr + cur_pos,
rem_len,
":%02x%02x%02x%02x%02x%02x:%02x%02x%02x%02x%02x%02x",
wpa->orig_mac1[0],
wpa->orig_mac1[1],
wpa->orig_mac1[2],
wpa->orig_mac1[3],
wpa->orig_mac1[4],
wpa->orig_mac1[5],
wpa->orig_mac2[0],
wpa->orig_mac2[1],
wpa->orig_mac2[2],
wpa->orig_mac2[3],
wpa->orig_mac2[4],
wpa->orig_mac2[5]);
// memset () the remaining part of the salt
cur_pos = tmp_salt->salt_len + 1 + 12 + 1 + 12;
rem_len = sizeof (hashes_buf[hashes_cnt].salt->salt_buf) - cur_pos;
if (rem_len > 0) memset (salt_ptr + cur_pos, 0, rem_len);
tmp_salt->salt_len += 1 + 12 + 1 + 12;
}
if (show == 1) handle_show_request (potfile_ctx->pot, potfile_ctx->pot_cnt, (char *) hashes_buf[hashes_cnt].salt->salt_buf, hashes_buf[hashes_cnt].salt->salt_len, &hashes_buf[hashes_cnt], sort_by_salt_buf, out_fp, hashconfig);
if (left == 1) handle_left_request (potfile_ctx->pot, potfile_ctx->pot_cnt, (char *) hashes_buf[hashes_cnt].salt->salt_buf, hashes_buf[hashes_cnt].salt->salt_len, &hashes_buf[hashes_cnt], sort_by_salt_buf, out_fp, hashconfig);
hashes_cnt++;
}
fclose (fp);
myfree (in);
}
else if (hashconfig->hash_mode == 3000)
{
if (hash_len == 32)
{
parser_status = hashconfig->parse_func (hash_buf, 16, &hashes_buf[hashes_cnt], hashconfig);
hash_t *lm_hash_left = NULL;
if (parser_status == PARSER_OK)
{
lm_hash_left = &hashes_buf[hashes_cnt];
hashes_cnt++;
}
else
{
log_info ("WARNING: Hash '%s': %s", input_buf, strparser (parser_status));
}
parser_status = hashconfig->parse_func (hash_buf + 16, 16, &hashes_buf[hashes_cnt], hashconfig);
hash_t *lm_hash_right = NULL;
if (parser_status == PARSER_OK)
{
lm_hash_right = &hashes_buf[hashes_cnt];
hashes_cnt++;
}
else
{
log_info ("WARNING: Hash '%s': %s", input_buf, strparser (parser_status));
}
// show / left
if ((lm_hash_left != NULL) && (lm_hash_right != NULL))
{
if (show == 1) handle_show_request_lm (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, lm_hash_left, lm_hash_right, sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request_lm (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, lm_hash_left, lm_hash_right, sort_by_pot, out_fp, hashconfig);
}
}
else
{
parser_status = hashconfig->parse_func (hash_buf, hash_len, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status == PARSER_OK)
{
if (show == 1) handle_show_request (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
}
if (parser_status == PARSER_OK)
{
hashes_cnt++;
}
else
{
log_info ("WARNING: Hash '%s': %s", input_buf, strparser (parser_status));
}
}
}
else
{
parser_status = hashconfig->parse_func (hash_buf, hash_len, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status == PARSER_OK)
{
if (show == 1) handle_show_request (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request (potfile_ctx->pot, potfile_ctx->pot_cnt, input_buf, input_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
}
if (parser_status == PARSER_OK)
{
hashes_cnt++;
}
else
{
log_info ("WARNING: Hash '%s': %s", input_buf, strparser (parser_status));
}
}
}
}
else if (hashlist_mode == HL_MODE_FILE)
{
char *hashfile = data.hashfile;
FILE *fp;
if ((fp = fopen (hashfile, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", hashfile, strerror (errno));
return -1;
}
uint line_num = 0;
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
while (!feof (fp))
{
line_num++;
int line_len = fgetl (fp, line_buf);
if (line_len == 0) continue;
char *hash_buf = NULL;
int hash_len = 0;
hlfmt_hash (hashlist_format, line_buf, line_len, &hash_buf, &hash_len, hashconfig);
bool hash_fmt_error = 0;
if (hash_len < 1) hash_fmt_error = 1;
if (hash_buf == NULL) hash_fmt_error = 1;
if (hash_fmt_error)
{
log_info ("WARNING: failed to parse hashes using the '%s' format", strhlfmt (hashlist_format));
continue;
}
if (username)
{
char *user_buf = NULL;
int user_len = 0;
hlfmt_user (hashlist_format, line_buf, line_len, &user_buf, &user_len, hashconfig);
if (remove || show)
{
user_t **user = &hashes_buf[hashes_cnt].hash_info->user;
*user = (user_t *) mymalloc (sizeof (user_t));
user_t *user_ptr = *user;
if (user_buf != NULL)
{
user_ptr->user_name = mystrdup (user_buf);
}
else
{
user_ptr->user_name = mystrdup ("");
}
user_ptr->user_len = user_len;
}
}
if (hashconfig->opts_type & OPTS_TYPE_HASH_COPY)
{
hashinfo_t *hash_info_tmp = hashes_buf[hashes_cnt].hash_info;
hash_info_tmp->orighash = mystrdup (hash_buf);
}
if (hashconfig->is_salted)
{
memset (hashes_buf[hashes_cnt].salt, 0, sizeof (salt_t));
}
if (hashconfig->hash_mode == 3000)
{
if (hash_len == 32)
{
int parser_status = hashconfig->parse_func (hash_buf, 16, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status < PARSER_GLOBAL_ZERO)
{
log_info ("WARNING: Hashfile '%s' on line %u (%s): %s", data.hashfile, line_num, line_buf, strparser (parser_status));
continue;
}
hash_t *lm_hash_left = &hashes_buf[hashes_cnt];
hashes_cnt++;
parser_status = hashconfig->parse_func (hash_buf + 16, 16, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status < PARSER_GLOBAL_ZERO)
{
log_info ("WARNING: Hashfile '%s' on line %u (%s): %s", data.hashfile, line_num, line_buf, strparser (parser_status));
continue;
}
hash_t *lm_hash_right = &hashes_buf[hashes_cnt];
if (data.quiet == 0) if ((hashes_cnt % 0x20000) == 0) log_info_nn ("Parsed Hashes: %u/%u (%0.2f%%)", hashes_cnt, hashes_avail, ((double) hashes_cnt / hashes_avail) * 100);
hashes_cnt++;
// show / left
if (show == 1) handle_show_request_lm (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, lm_hash_left, lm_hash_right, sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request_lm (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, lm_hash_left, lm_hash_right, sort_by_pot, out_fp, hashconfig);
}
else
{
int parser_status = hashconfig->parse_func (hash_buf, hash_len, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status < PARSER_GLOBAL_ZERO)
{
log_info ("WARNING: Hashfile '%s' on line %u (%s): %s", data.hashfile, line_num, line_buf, strparser (parser_status));
continue;
}
if (data.quiet == 0) if ((hashes_cnt % 0x20000) == 0) log_info_nn ("Parsed Hashes: %u/%u (%0.2f%%)", hashes_cnt, hashes_avail, ((double) hashes_cnt / hashes_avail) * 100);
if (show == 1) handle_show_request (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
hashes_cnt++;
}
}
else
{
int parser_status = hashconfig->parse_func (hash_buf, hash_len, &hashes_buf[hashes_cnt], hashconfig);
if (parser_status < PARSER_GLOBAL_ZERO)
{
log_info ("WARNING: Hashfile '%s' on line %u (%s): %s", data.hashfile, line_num, line_buf, strparser (parser_status));
continue;
}
if (data.quiet == 0) if ((hashes_cnt % 0x20000) == 0) log_info_nn ("Parsed Hashes: %u/%u (%0.2f%%)", hashes_cnt, hashes_avail, ((double) hashes_cnt / hashes_avail) * 100);
if (show == 1) handle_show_request (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
if (left == 1) handle_left_request (potfile_ctx->pot, potfile_ctx->pot_cnt, line_buf, line_len, &hashes_buf[hashes_cnt], sort_by_pot, out_fp, hashconfig);
hashes_cnt++;
}
}
myfree (line_buf);
fclose (fp);
if (data.quiet == 0) log_info_nn ("Parsed Hashes: %u/%u (%0.2f%%)", hashes_avail, hashes_avail, 100.00);
if ((out_fp != NULL) && (out_fp != stdout)) fclose (out_fp);
}
}
else
{
if (hashconfig->is_salted)
{
hashes_buf[0].salt->salt_len = 8;
// special salt handling
switch (hashconfig->hash_mode)
{
case 1500: hashes_buf[0].salt->salt_len = 2;
hashes_buf[0].salt->salt_buf[0] = 388; // pure magic
break;
case 1731: hashes_buf[0].salt->salt_len = 4;
break;
case 2410: hashes_buf[0].salt->salt_len = 4;
break;
case 2500: memcpy (hashes_buf[0].salt->salt_buf, "hashcat.net", 11);
break;
case 3100: hashes_buf[0].salt->salt_len = 1;
break;
case 5000: hashes_buf[0].salt->keccak_mdlen = 32;
break;
case 5800: hashes_buf[0].salt->salt_len = 16;
break;
case 6800: hashes_buf[0].salt->salt_len = 32;
break;
case 8400: hashes_buf[0].salt->salt_len = 40;
break;
case 8800: hashes_buf[0].salt->salt_len = 16;
break;
case 8900: hashes_buf[0].salt->salt_len = 16;
hashes_buf[0].salt->scrypt_N = 1024;
hashes_buf[0].salt->scrypt_r = 1;
hashes_buf[0].salt->scrypt_p = 1;
break;
case 9100: hashes_buf[0].salt->salt_len = 16;
break;
case 9300: hashes_buf[0].salt->salt_len = 14;
hashes_buf[0].salt->scrypt_N = 16384;
hashes_buf[0].salt->scrypt_r = 1;
hashes_buf[0].salt->scrypt_p = 1;
break;
case 9400: hashes_buf[0].salt->salt_len = 16;
break;
case 9500: hashes_buf[0].salt->salt_len = 16;
break;
case 9600: hashes_buf[0].salt->salt_len = 16;
break;
case 9700: hashes_buf[0].salt->salt_len = 16;
break;
case 9710: hashes_buf[0].salt->salt_len = 16;
break;
case 9720: hashes_buf[0].salt->salt_len = 16;
break;
case 9800: hashes_buf[0].salt->salt_len = 16;
break;
case 9810: hashes_buf[0].salt->salt_len = 16;
break;
case 9820: hashes_buf[0].salt->salt_len = 16;
break;
case 10300: hashes_buf[0].salt->salt_len = 12;
break;
case 11500: hashes_buf[0].salt->salt_len = 4;
break;
case 11600: hashes_buf[0].salt->salt_len = 4;
break;
case 12400: hashes_buf[0].salt->salt_len = 4;
break;
case 12500: hashes_buf[0].salt->salt_len = 8;
break;
case 12600: hashes_buf[0].salt->salt_len = 64;
break;
case 14000: hashes_buf[0].salt->salt_len = 8;
break;
case 14100: hashes_buf[0].salt->salt_len = 8;
break;
}
// special esalt handling
switch (hashconfig->hash_mode)
{
case 2500: ((wpa_t *) hashes_buf[0].esalt)->eapol_size = 128;
break;
case 5300: ((ikepsk_t *) hashes_buf[0].esalt)->nr_len = 1;
((ikepsk_t *) hashes_buf[0].esalt)->msg_len = 1;
break;
case 5400: ((ikepsk_t *) hashes_buf[0].esalt)->nr_len = 1;
((ikepsk_t *) hashes_buf[0].esalt)->msg_len = 1;
break;
case 5500: ((netntlm_t *) hashes_buf[0].esalt)->user_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->domain_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->srvchall_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->clichall_len = 1;
break;
case 5600: ((netntlm_t *) hashes_buf[0].esalt)->user_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->domain_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->srvchall_len = 1;
((netntlm_t *) hashes_buf[0].esalt)->clichall_len = 1;
break;
case 7300: ((rakp_t *) hashes_buf[0].esalt)->salt_len = 32;
break;
case 10400: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 32;
((pdf_t *) hashes_buf[0].esalt)->u_len = 32;
break;
case 10410: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 32;
((pdf_t *) hashes_buf[0].esalt)->u_len = 32;
break;
case 10420: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 32;
((pdf_t *) hashes_buf[0].esalt)->u_len = 32;
break;
case 10500: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 32;
((pdf_t *) hashes_buf[0].esalt)->u_len = 32;
break;
case 10600: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 127;
((pdf_t *) hashes_buf[0].esalt)->u_len = 127;
break;
case 10700: ((pdf_t *) hashes_buf[0].esalt)->id_len = 16;
((pdf_t *) hashes_buf[0].esalt)->o_len = 127;
((pdf_t *) hashes_buf[0].esalt)->u_len = 127;
break;
case 11600: ((seven_zip_t *) hashes_buf[0].esalt)->iv_len = 16;
((seven_zip_t *) hashes_buf[0].esalt)->data_len = 112;
((seven_zip_t *) hashes_buf[0].esalt)->unpack_size = 112;
break;
case 13400: ((keepass_t *) hashes_buf[0].esalt)->version = 2;
break;
case 13500: ((pstoken_t *) hashes_buf[0].esalt)->salt_len = 113;
break;
case 13600: ((zip2_t *) hashes_buf[0].esalt)->salt_len = 16;
((zip2_t *) hashes_buf[0].esalt)->data_len = 32;
((zip2_t *) hashes_buf[0].esalt)->mode = 3;
break;
}
}
// set hashfile
switch (hashconfig->hash_mode)
{
case 5200: data.hashfile = mystrdup ("hashcat.psafe3");
break;
case 5300: data.hashfile = mystrdup ("hashcat.ikemd5");
break;
case 5400: data.hashfile = mystrdup ("hashcat.ikesha1");
break;
case 6211: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6212: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6213: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6221: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6222: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6223: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6231: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6232: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6233: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6241: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6242: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6243: data.hashfile = mystrdup ("hashcat.tc");
break;
case 6600: data.hashfile = mystrdup ("hashcat.agilekey");
break;
case 8200: data.hashfile = mystrdup ("hashcat.cloudkey");
break;
case 9000: data.hashfile = mystrdup ("hashcat.psafe2");
break;
case 13711: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13712: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13713: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13721: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13722: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13723: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13731: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13732: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13733: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13741: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13742: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13743: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13751: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13752: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13753: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13761: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13762: data.hashfile = mystrdup ("hashcat.vc");
break;
case 13763: data.hashfile = mystrdup ("hashcat.vc");
break;
}
// set default iterations
switch (hashconfig->hash_mode)
{
case 400: hashes_buf[0].salt->salt_iter = ROUNDS_PHPASS;
break;
case 500: hashes_buf[0].salt->salt_iter = ROUNDS_MD5CRYPT;
break;
case 501: hashes_buf[0].salt->salt_iter = ROUNDS_MD5CRYPT;
break;
case 1600: hashes_buf[0].salt->salt_iter = ROUNDS_MD5CRYPT;
break;
case 1800: hashes_buf[0].salt->salt_iter = ROUNDS_SHA512CRYPT;
break;
case 2100: hashes_buf[0].salt->salt_iter = ROUNDS_DCC2;
break;
case 2500: hashes_buf[0].salt->salt_iter = ROUNDS_WPA2;
break;
case 3200: hashes_buf[0].salt->salt_iter = ROUNDS_BCRYPT;
break;
case 5200: hashes_buf[0].salt->salt_iter = ROUNDS_PSAFE3;
break;
case 5800: hashes_buf[0].salt->salt_iter = ROUNDS_ANDROIDPIN - 1;
break;
case 6211: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_2K;
break;
case 6212: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_2K;
break;
case 6213: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_2K;
break;
case 6221: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6222: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6223: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6231: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6232: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6233: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6241: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6242: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6243: hashes_buf[0].salt->salt_iter = ROUNDS_TRUECRYPT_1K;
break;
case 6300: hashes_buf[0].salt->salt_iter = ROUNDS_MD5CRYPT;
break;
case 6400: hashes_buf[0].salt->salt_iter = ROUNDS_SHA256AIX;
break;
case 6500: hashes_buf[0].salt->salt_iter = ROUNDS_SHA512AIX;
break;
case 6700: hashes_buf[0].salt->salt_iter = ROUNDS_SHA1AIX;
break;
case 6600: hashes_buf[0].salt->salt_iter = ROUNDS_AGILEKEY;
break;
case 6800: hashes_buf[0].salt->salt_iter = ROUNDS_LASTPASS;
break;
case 7100: hashes_buf[0].salt->salt_iter = ROUNDS_SHA512OSX;
break;
case 7200: hashes_buf[0].salt->salt_iter = ROUNDS_GRUB;
break;
case 7400: hashes_buf[0].salt->salt_iter = ROUNDS_SHA256CRYPT;
break;
case 7900: hashes_buf[0].salt->salt_iter = ROUNDS_DRUPAL7;
break;
case 8200: hashes_buf[0].salt->salt_iter = ROUNDS_CLOUDKEY;
break;
case 8300: hashes_buf[0].salt->salt_iter = ROUNDS_NSEC3;
break;
case 8800: hashes_buf[0].salt->salt_iter = ROUNDS_ANDROIDFDE;
break;
case 8900: hashes_buf[0].salt->salt_iter = 1;
break;
case 9000: hashes_buf[0].salt->salt_iter = ROUNDS_PSAFE2;
break;
case 9100: hashes_buf[0].salt->salt_iter = ROUNDS_LOTUS8;
break;
case 9200: hashes_buf[0].salt->salt_iter = ROUNDS_CISCO8;
break;
case 9300: hashes_buf[0].salt->salt_iter = 1;
break;
case 9400: hashes_buf[0].salt->salt_iter = ROUNDS_OFFICE2007;
break;
case 9500: hashes_buf[0].salt->salt_iter = ROUNDS_OFFICE2010;
break;
case 9600: hashes_buf[0].salt->salt_iter = ROUNDS_OFFICE2013;
break;
case 10000: hashes_buf[0].salt->salt_iter = ROUNDS_DJANGOPBKDF2;
break;
case 10300: hashes_buf[0].salt->salt_iter = ROUNDS_SAPH_SHA1 - 1;
break;
case 10500: hashes_buf[0].salt->salt_iter = ROUNDS_PDF14;
break;
case 10700: hashes_buf[0].salt->salt_iter = ROUNDS_PDF17L8;
break;
case 10900: hashes_buf[0].salt->salt_iter = ROUNDS_PBKDF2_SHA256 - 1;
break;
case 11300: hashes_buf[0].salt->salt_iter = ROUNDS_BITCOIN_WALLET - 1;
break;
case 11600: hashes_buf[0].salt->salt_iter = ROUNDS_SEVEN_ZIP;
break;
case 11900: hashes_buf[0].salt->salt_iter = ROUNDS_PBKDF2_MD5 - 1;
break;
case 12000: hashes_buf[0].salt->salt_iter = ROUNDS_PBKDF2_SHA1 - 1;
break;
case 12100: hashes_buf[0].salt->salt_iter = ROUNDS_PBKDF2_SHA512 - 1;
break;
case 12200: hashes_buf[0].salt->salt_iter = ROUNDS_ECRYPTFS - 1;
break;
case 12300: hashes_buf[0].salt->salt_iter = ROUNDS_ORACLET - 1;
break;
case 12400: hashes_buf[0].salt->salt_iter = ROUNDS_BSDICRYPT - 1;
break;
case 12500: hashes_buf[0].salt->salt_iter = ROUNDS_RAR3;
break;
case 12700: hashes_buf[0].salt->salt_iter = ROUNDS_MYWALLET;
break;
case 12800: hashes_buf[0].salt->salt_iter = ROUNDS_MS_DRSR - 1;
break;
case 12900: hashes_buf[0].salt->salt_iter = ROUNDS_ANDROIDFDE_SAMSUNG - 1;
break;
case 13000: hashes_buf[0].salt->salt_iter = ROUNDS_RAR5 - 1;
break;
case 13200: hashes_buf[0].salt->salt_iter = ROUNDS_AXCRYPT;
break;
case 13400: hashes_buf[0].salt->salt_iter = ROUNDS_KEEPASS;
break;
case 13600: hashes_buf[0].salt->salt_iter = ROUNDS_ZIP2;
break;
case 13711: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_655331;
break;
case 13712: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_655331;
break;
case 13713: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_655331;
break;
case 13721: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13722: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13723: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13731: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13732: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13733: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13741: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_327661;
break;
case 13742: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_327661;
break;
case 13743: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_327661;
break;
case 13751: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13752: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13753: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_500000;
break;
case 13761: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_200000;
break;
case 13762: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_200000;
break;
case 13763: hashes_buf[0].salt->salt_iter = ROUNDS_VERACRYPT_200000;
break;
}
hashes_cnt = 1;
}
if (show == 1 || left == 1)
{
potfile_hash_free (potfile_ctx, hashconfig);
if (data.quiet == 0) log_info_nn ("");
return 0;
}
if ((keyspace == 0) && (stdout_flag == 0))
{
if (hashes_cnt == 0)
{
log_error ("ERROR: No hashes loaded");
return -1;
}
}
/**
* Sanity check for hashfile vs outfile (should not point to the same physical file)
*/
if (data.outfile != NULL)
{
if (data.hashfile != NULL)
{
#if defined (_POSIX)
struct stat tmpstat_outfile;
struct stat tmpstat_hashfile;
#endif
#if defined (_WIN)
struct stat64 tmpstat_outfile;
struct stat64 tmpstat_hashfile;
#endif
FILE *tmp_outfile_fp = fopen (data.outfile, "r");
if (tmp_outfile_fp)
{
#if defined (_POSIX)
fstat (fileno (tmp_outfile_fp), &tmpstat_outfile);
#endif
#if defined (_WIN)
_fstat64 (fileno (tmp_outfile_fp), &tmpstat_outfile);
#endif
fclose (tmp_outfile_fp);
}
FILE *tmp_hashfile_fp = fopen (data.hashfile, "r");
if (tmp_hashfile_fp)
{
#if defined (_POSIX)
fstat (fileno (tmp_hashfile_fp), &tmpstat_hashfile);
#endif
#if defined (_WIN)
_fstat64 (fileno (tmp_hashfile_fp), &tmpstat_hashfile);
#endif
fclose (tmp_hashfile_fp);
}
if (tmp_outfile_fp && tmp_outfile_fp)
{
tmpstat_outfile.st_mode = 0;
tmpstat_outfile.st_nlink = 0;
tmpstat_outfile.st_uid = 0;
tmpstat_outfile.st_gid = 0;
tmpstat_outfile.st_rdev = 0;
tmpstat_outfile.st_atime = 0;
tmpstat_hashfile.st_mode = 0;
tmpstat_hashfile.st_nlink = 0;
tmpstat_hashfile.st_uid = 0;
tmpstat_hashfile.st_gid = 0;
tmpstat_hashfile.st_rdev = 0;
tmpstat_hashfile.st_atime = 0;
#if defined (_POSIX)
tmpstat_outfile.st_blksize = 0;
tmpstat_outfile.st_blocks = 0;
tmpstat_hashfile.st_blksize = 0;
tmpstat_hashfile.st_blocks = 0;
#endif
#if defined (_POSIX)
if (memcmp (&tmpstat_outfile, &tmpstat_hashfile, sizeof (struct stat)) == 0)
{
log_error ("ERROR: Hashfile and Outfile are not allowed to point to the same file");
return -1;
}
#endif
#if defined (_WIN)
if (memcmp (&tmpstat_outfile, &tmpstat_hashfile, sizeof (struct stat64)) == 0)
{
log_error ("ERROR: Hashfile and Outfile are not allowed to point to the same file");
return -1;
}
#endif
}
}
}
/**
* Remove duplicates
*/
if (data.quiet == 0) log_info_nn ("Removing duplicate hashes...");
if (hashconfig->is_salted)
{
qsort (hashes_buf, hashes_cnt, sizeof (hash_t), sort_by_hash);
}
else
{
qsort (hashes_buf, hashes_cnt, sizeof (hash_t), sort_by_hash_no_salt);
}
uint hashes_cnt_orig = hashes_cnt;
hashes_cnt = 1;
for (uint hashes_pos = 1; hashes_pos < hashes_cnt_orig; hashes_pos++)
{
if (hashconfig->is_salted)
{
if (sort_by_salt (hashes_buf[hashes_pos].salt, hashes_buf[hashes_pos - 1].salt) == 0)
{
if (sort_by_digest_p0p1 (hashes_buf[hashes_pos].digest, hashes_buf[hashes_pos - 1].digest) == 0) continue;
}
}
else
{
if (sort_by_digest_p0p1 (hashes_buf[hashes_pos].digest, hashes_buf[hashes_pos - 1].digest) == 0) continue;
}
if (hashes_pos > hashes_cnt)
{
memcpy (&hashes_buf[hashes_cnt], &hashes_buf[hashes_pos], sizeof (hash_t));
}
hashes_cnt++;
}
/**
* Potfile removes
*/
int potfile_remove_cracks = 0;
if (potfile_disable == 0)
{
if (data.quiet == 0) log_info_nn ("Comparing hashes with potfile entries...");
potfile_remove_cracks = potfile_remove_parse (potfile_ctx, hashconfig, hashes_buf, hashes_cnt);
}
/**
* Now generate all the buffers required for later
*/
void *digests_buf_new = (void *) mycalloc (hashes_avail, hashconfig->dgst_size);
salt_t *salts_buf_new = NULL;
void *esalts_buf_new = NULL;
if (hashconfig->is_salted)
{
salts_buf_new = (salt_t *) mycalloc (hashes_avail, sizeof (salt_t));
if (hashconfig->esalt_size)
{
esalts_buf_new = (void *) mycalloc (hashes_avail, hashconfig->esalt_size);
}
}
else
{
salts_buf_new = (salt_t *) mycalloc (1, sizeof (salt_t));
}
if (data.quiet == 0) log_info_nn ("Structuring salts for cracking task...");
uint digests_cnt = hashes_cnt;
uint digests_done = 0;
size_t size_digests = digests_cnt * hashconfig->dgst_size;
size_t size_shown = digests_cnt * sizeof (uint);
uint *digests_shown = (uint *) mymalloc (size_shown);
uint *digests_shown_tmp = (uint *) mymalloc (size_shown);
uint salts_cnt = 0;
uint salts_done = 0;
hashinfo_t **hash_info = NULL;
if ((username && (remove || show)) || (hashconfig->opts_type & OPTS_TYPE_HASH_COPY))
{
hash_info = (hashinfo_t **) mymalloc (hashes_cnt * sizeof (hashinfo_t *));
if (username && (remove || show))
{
uint user_pos;
for (user_pos = 0; user_pos < hashes_cnt; user_pos++)
{
hash_info[user_pos] = (hashinfo_t*) mycalloc (hashes_cnt, sizeof (hashinfo_t));
hash_info[user_pos]->user = (user_t*) mymalloc (sizeof (user_t));
}
}
}
uint *salts_shown = (uint *) mymalloc (size_shown);
salt_t *salt_buf;
{
// copied from inner loop
salt_buf = &salts_buf_new[salts_cnt];
memcpy (salt_buf, hashes_buf[0].salt, sizeof (salt_t));
if (hashconfig->esalt_size)
{
memcpy (((char *) esalts_buf_new) + (salts_cnt * hashconfig->esalt_size), hashes_buf[0].esalt, hashconfig->esalt_size);
}
salt_buf->digests_cnt = 0;
salt_buf->digests_done = 0;
salt_buf->digests_offset = 0;
salts_cnt++;
}
if (hashes_buf[0].cracked == 1)
{
digests_shown[0] = 1;
digests_done++;
salt_buf->digests_done++;
}
salt_buf->digests_cnt++;
memcpy (((char *) digests_buf_new) + (0 * hashconfig->dgst_size), hashes_buf[0].digest, hashconfig->dgst_size);
if ((username && (remove || show)) || (hashconfig->opts_type & OPTS_TYPE_HASH_COPY))
{
hash_info[0] = hashes_buf[0].hash_info;
}
// copy from inner loop
for (uint hashes_pos = 1; hashes_pos < hashes_cnt; hashes_pos++)
{
if (hashconfig->is_salted)
{
if (sort_by_salt (hashes_buf[hashes_pos].salt, hashes_buf[hashes_pos - 1].salt) != 0)
{
salt_buf = &salts_buf_new[salts_cnt];
memcpy (salt_buf, hashes_buf[hashes_pos].salt, sizeof (salt_t));
if (hashconfig->esalt_size)
{
memcpy (((char *) esalts_buf_new) + (salts_cnt * hashconfig->esalt_size), hashes_buf[hashes_pos].esalt, hashconfig->esalt_size);
}
salt_buf->digests_cnt = 0;
salt_buf->digests_done = 0;
salt_buf->digests_offset = hashes_pos;
salts_cnt++;
}
}
if (hashes_buf[hashes_pos].cracked == 1)
{
digests_shown[hashes_pos] = 1;
digests_done++;
salt_buf->digests_done++;
}
salt_buf->digests_cnt++;
memcpy (((char *) digests_buf_new) + (hashes_pos * hashconfig->dgst_size), hashes_buf[hashes_pos].digest, hashconfig->dgst_size);
if ((username && (remove || show)) || (hashconfig->opts_type & OPTS_TYPE_HASH_COPY))
{
hash_info[hashes_pos] = hashes_buf[hashes_pos].hash_info;
}
}
for (uint salt_pos = 0; salt_pos < salts_cnt; salt_pos++)
{
salt_t *salt_buf = &salts_buf_new[salt_pos];
if (salt_buf->digests_done == salt_buf->digests_cnt)
{
salts_shown[salt_pos] = 1;
salts_done++;
}
if (salts_done == salts_cnt) data.devices_status = STATUS_CRACKED;
}
local_free (digests_buf);
local_free (salts_buf);
local_free (esalts_buf);
digests_buf = digests_buf_new;
salts_buf = salts_buf_new;
esalts_buf = esalts_buf_new;
local_free (hashes_buf);
/**
* special modification not set from parser
*/
switch (hashconfig->hash_mode)
{
case 6211: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 6212: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 6213: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 6221: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 6222: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 6223: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 6231: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 6232: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 6233: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 6241: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 6242: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 6243: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13711: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13712: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13713: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13721: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13722: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13723: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13731: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13732: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13733: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13741: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13742: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13743: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13751: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13752: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13753: salts_buf->truecrypt_mdlen = 3 * 512; break;
case 13761: salts_buf->truecrypt_mdlen = 1 * 512; break;
case 13762: salts_buf->truecrypt_mdlen = 2 * 512; break;
case 13763: salts_buf->truecrypt_mdlen = 3 * 512; break;
}
if (truecrypt_keyfiles)
{
uint *keyfile_buf = ((tc_t *) esalts_buf)->keyfile_buf;
char *keyfiles = mystrdup (truecrypt_keyfiles);
char *keyfile = strtok (keyfiles, ",");
do
{
cpu_crc32 (keyfile, (u8 *) keyfile_buf);
} while ((keyfile = strtok (NULL, ",")) != NULL);
free (keyfiles);
}
if (veracrypt_keyfiles)
{
uint *keyfile_buf = ((tc_t *) esalts_buf)->keyfile_buf;
char *keyfiles = mystrdup (veracrypt_keyfiles);
char *keyfile = strtok (keyfiles, ",");
do
{
cpu_crc32 (keyfile, (u8 *) keyfile_buf);
} while ((keyfile = strtok (NULL, ",")) != NULL);
free (keyfiles);
}
data.digests_cnt = digests_cnt;
data.digests_done = digests_done;
data.digests_buf = digests_buf;
data.digests_shown = digests_shown;
data.digests_shown_tmp = digests_shown_tmp;
data.salts_cnt = salts_cnt;
data.salts_done = salts_done;
data.salts_buf = salts_buf;
data.salts_shown = salts_shown;
data.esalts_buf = esalts_buf;
data.hash_info = hash_info;
/**
* Automatic Optimizers
*/
if (salts_cnt == 1)
hashconfig->opti_type |= OPTI_TYPE_SINGLE_SALT;
if (digests_cnt == 1)
hashconfig->opti_type |= OPTI_TYPE_SINGLE_HASH;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
hashconfig->opti_type |= OPTI_TYPE_NOT_ITERATED;
if (attack_mode == ATTACK_MODE_BF)
hashconfig->opti_type |= OPTI_TYPE_BRUTE_FORCE;
if (hashconfig->opti_type & OPTI_TYPE_BRUTE_FORCE)
{
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT)
{
if (hashconfig->opts_type & OPTS_TYPE_ST_ADD80)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADD80;
hashconfig->opts_type |= OPTS_TYPE_PT_ADD80;
}
if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS14)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS14;
hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS14;
}
if (hashconfig->opts_type & OPTS_TYPE_ST_ADDBITS15)
{
hashconfig->opts_type &= ~OPTS_TYPE_ST_ADDBITS15;
hashconfig->opts_type |= OPTS_TYPE_PT_ADDBITS15;
}
}
}
}
/**
* Some algorithm, like descrypt, can benefit from JIT compilation
*/
int force_jit_compilation = -1;
if (hashconfig->hash_mode == 8900)
{
force_jit_compilation = 8900;
}
else if (hashconfig->hash_mode == 9300)
{
force_jit_compilation = 8900;
}
else if (hashconfig->hash_mode == 1500 && attack_mode == ATTACK_MODE_BF && data.salts_cnt == 1)
{
force_jit_compilation = 1500;
}
/**
* generate bitmap tables
*/
const uint bitmap_shift1 = 5;
const uint bitmap_shift2 = 13;
if (bitmap_max < bitmap_min) bitmap_max = bitmap_min;
uint *bitmap_s1_a = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s1_b = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s1_c = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s1_d = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s2_a = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s2_b = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s2_c = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint *bitmap_s2_d = (uint *) mymalloc ((1u << bitmap_max) * sizeof (uint));
uint bitmap_bits;
uint bitmap_nums;
uint bitmap_mask;
uint bitmap_size;
for (bitmap_bits = bitmap_min; bitmap_bits < bitmap_max; bitmap_bits++)
{
if (data.quiet == 0) log_info_nn ("Generating bitmap tables with %u bits...", bitmap_bits);
bitmap_nums = 1u << bitmap_bits;
bitmap_mask = bitmap_nums - 1;
bitmap_size = bitmap_nums * sizeof (uint);
if ((hashes_cnt & bitmap_mask) == hashes_cnt) break;
if (generate_bitmaps (digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) data.digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, digests_cnt / 2) == 0x7fffffff) continue;
if (generate_bitmaps (digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) data.digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, digests_cnt / 2) == 0x7fffffff) continue;
break;
}
bitmap_nums = 1u << bitmap_bits;
bitmap_mask = bitmap_nums - 1;
bitmap_size = bitmap_nums * sizeof (uint);
generate_bitmaps (digests_cnt, hashconfig->dgst_size, bitmap_shift1, (char *) data.digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s1_a, bitmap_s1_b, bitmap_s1_c, bitmap_s1_d, -1ul);
generate_bitmaps (digests_cnt, hashconfig->dgst_size, bitmap_shift2, (char *) data.digests_buf, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, bitmap_mask, bitmap_size, bitmap_s2_a, bitmap_s2_b, bitmap_s2_c, bitmap_s2_d, -1ul);
/**
* prepare quick rule
*/
data.rule_buf_l = rule_buf_l;
data.rule_buf_r = rule_buf_r;
int rule_len_l = (int) strlen (rule_buf_l);
int rule_len_r = (int) strlen (rule_buf_r);
data.rule_len_l = rule_len_l;
data.rule_len_r = rule_len_r;
/**
* load rules
*/
uint *all_kernel_rules_cnt = NULL;
kernel_rule_t **all_kernel_rules_buf = NULL;
if (rp_files_cnt)
{
all_kernel_rules_cnt = (uint *) mycalloc (rp_files_cnt, sizeof (uint));
all_kernel_rules_buf = (kernel_rule_t **) mycalloc (rp_files_cnt, sizeof (kernel_rule_t *));
}
char *rule_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
int rule_len = 0;
for (uint i = 0; i < rp_files_cnt; i++)
{
uint kernel_rules_avail = 0;
uint kernel_rules_cnt = 0;
kernel_rule_t *kernel_rules_buf = NULL;
char *rp_file = rp_files[i];
char in[BLOCK_SIZE] = { 0 };
char out[BLOCK_SIZE] = { 0 };
FILE *fp = NULL;
uint rule_line = 0;
if ((fp = fopen (rp_file, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", rp_file, strerror (errno));
return -1;
}
while (!feof (fp))
{
memset (rule_buf, 0, HCBUFSIZ_LARGE);
rule_len = fgetl (fp, rule_buf);
rule_line++;
if (rule_len == 0) continue;
if (rule_buf[0] == '#') continue;
if (kernel_rules_avail == kernel_rules_cnt)
{
kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t));
kernel_rules_avail += INCR_RULES;
}
memset (in, 0, BLOCK_SIZE);
memset (out, 0, BLOCK_SIZE);
int result = _old_apply_rule (rule_buf, rule_len, in, 1, out);
if (result == -1)
{
log_info ("WARNING: Skipping invalid or unsupported rule in file %s on line %u: %s", rp_file, rule_line, rule_buf);
continue;
}
if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1)
{
log_info ("WARNING: Cannot convert rule for use on OpenCL device in file %s on line %u: %s", rp_file, rule_line, rule_buf);
memset (&kernel_rules_buf[kernel_rules_cnt], 0, sizeof (kernel_rule_t)); // needs to be cleared otherwise we could have some remaining data
continue;
}
kernel_rules_cnt++;
}
fclose (fp);
all_kernel_rules_cnt[i] = kernel_rules_cnt;
all_kernel_rules_buf[i] = kernel_rules_buf;
}
/**
* merge rules or automatic rule generator
*/
uint kernel_rules_cnt = 0;
kernel_rule_t *kernel_rules_buf = NULL;
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
if (rp_files_cnt)
{
kernel_rules_cnt = 1;
uint *repeats = (uint *) mycalloc (rp_files_cnt + 1, sizeof (uint));
repeats[0] = kernel_rules_cnt;
for (uint i = 0; i < rp_files_cnt; i++)
{
kernel_rules_cnt *= all_kernel_rules_cnt[i];
repeats[i + 1] = kernel_rules_cnt;
}
kernel_rules_buf = (kernel_rule_t *) mycalloc (kernel_rules_cnt, sizeof (kernel_rule_t));
memset (kernel_rules_buf, 0, kernel_rules_cnt * sizeof (kernel_rule_t));
for (uint i = 0; i < kernel_rules_cnt; i++)
{
uint out_pos = 0;
kernel_rule_t *out = &kernel_rules_buf[i];
for (uint j = 0; j < rp_files_cnt; j++)
{
uint in_off = (i / repeats[j]) % all_kernel_rules_cnt[j];
uint in_pos;
kernel_rule_t *in = &all_kernel_rules_buf[j][in_off];
for (in_pos = 0; in->cmds[in_pos]; in_pos++, out_pos++)
{
if (out_pos == RULES_MAX - 1)
{
// log_info ("WARNING: Truncating chaining of rule %d and rule %d as maximum number of function calls per rule exceeded", i, in_off);
break;
}
out->cmds[out_pos] = in->cmds[in_pos];
}
}
}
local_free (repeats);
}
else if (rp_gen)
{
uint kernel_rules_avail = 0;
while (kernel_rules_cnt < rp_gen)
{
if (kernel_rules_avail == kernel_rules_cnt)
{
kernel_rules_buf = (kernel_rule_t *) myrealloc (kernel_rules_buf, kernel_rules_avail * sizeof (kernel_rule_t), INCR_RULES * sizeof (kernel_rule_t));
kernel_rules_avail += INCR_RULES;
}
memset (rule_buf, 0, HCBUFSIZ_LARGE);
rule_len = (int) generate_random_rule (rule_buf, rp_gen_func_min, rp_gen_func_max);
if (cpu_rule_to_kernel_rule (rule_buf, rule_len, &kernel_rules_buf[kernel_rules_cnt]) == -1) continue;
kernel_rules_cnt++;
}
}
}
myfree (rule_buf);
/**
* generate NOP rules
*/
if ((rp_files_cnt == 0) && (rp_gen == 0))
{
kernel_rules_buf = (kernel_rule_t *) mymalloc (sizeof (kernel_rule_t));
kernel_rules_buf[kernel_rules_cnt].cmds[0] = RULE_OP_MANGLE_NOOP;
kernel_rules_cnt++;
}
data.kernel_rules_cnt = kernel_rules_cnt;
data.kernel_rules_buf = kernel_rules_buf;
if (kernel_rules_cnt == 0)
{
log_error ("ERROR: No valid rules left");
return -1;
}
/**
* OpenCL platforms: detect
*/
cl_platform_id platforms[CL_PLATFORMS_MAX] = { 0 };
cl_device_id platform_devices[DEVICES_MAX] = { 0 };
cl_uint platforms_cnt = 0;
cl_uint platform_devices_cnt = 0;
if (keyspace == 0)
{
cl_int CL_err = hc_clGetPlatformIDs (data.ocl, CL_PLATFORMS_MAX, platforms, &platforms_cnt);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetPlatformIDs(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (platforms_cnt == 0)
{
log_info ("");
log_info ("ATTENTION! No OpenCL compatible platform found");
log_info ("");
log_info ("You're probably missing the OpenCL runtime installation");
log_info (" AMD users require AMD drivers 14.9 or later (recommended 15.12 or later)");
log_info (" Intel users require Intel OpenCL Runtime 14.2 or later (recommended 15.1 or later)");
log_info (" NVidia users require NVidia drivers 346.59 or later (recommended 361.x or later)");
log_info ("");
return -1;
}
if (opencl_platforms_filter != (uint) -1)
{
uint platform_cnt_mask = ~(((uint) -1 >> platforms_cnt) << platforms_cnt);
if (opencl_platforms_filter > platform_cnt_mask)
{
log_error ("ERROR: The platform selected by the --opencl-platforms parameter is larger than the number of available platforms (%d)", platforms_cnt);
return -1;
}
}
}
if (opencl_device_types == NULL)
{
/**
* OpenCL device types:
* In case the user did not specify --opencl-device-types and the user runs hashcat in a system with only a CPU only he probably want to use that CPU.
*/
cl_device_type device_types_all = 0;
for (uint platform_id = 0; platform_id < platforms_cnt; platform_id++)
{
if ((opencl_platforms_filter & (1u << platform_id)) == 0) continue;
cl_platform_id platform = platforms[platform_id];
cl_int CL_err = hc_clGetDeviceIDs (data.ocl, platform, CL_DEVICE_TYPE_ALL, DEVICES_MAX, platform_devices, &platform_devices_cnt);
if (CL_err != CL_SUCCESS)
{
//log_error ("ERROR: clGetDeviceIDs(): %s\n", val2cstr_cl (CL_err));
//return -1;
// Silently ignore at this point, it will be reused later and create a note for the user at that point
continue;
}
for (uint platform_devices_id = 0; platform_devices_id < platform_devices_cnt; platform_devices_id++)
{
cl_device_id device = platform_devices[platform_devices_id];
cl_device_type device_type;
cl_int CL_err = hc_clGetDeviceInfo (data.ocl, device, CL_DEVICE_TYPE, sizeof (device_type), &device_type, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_types_all |= device_type;
}
}
// In such a case, automatically enable CPU device type support, since it's disabled by default.
if ((device_types_all & (CL_DEVICE_TYPE_GPU | CL_DEVICE_TYPE_ACCELERATOR)) == 0)
{
device_types_filter |= CL_DEVICE_TYPE_CPU;
}
// In another case, when the user uses --stdout, using CPU devices is much faster to setup
// If we have a CPU device, force it to be used
if (stdout_flag == 1)
{
if (device_types_all & CL_DEVICE_TYPE_CPU)
{
device_types_filter = CL_DEVICE_TYPE_CPU;
}
}
}
/**
* OpenCL devices: simply push all devices from all platforms into the same device array
*/
int need_adl = 0;
int need_nvml = 0;
#ifndef __APPLE__
int need_nvapi = 0;
int need_xnvctrl = 0;
#endif
hc_device_param_t *devices_param = (hc_device_param_t *) mycalloc (DEVICES_MAX, sizeof (hc_device_param_t));
data.devices_param = devices_param;
uint devices_cnt = 0;
uint devices_active = 0;
for (uint platform_id = 0; platform_id < platforms_cnt; platform_id++)
{
cl_int CL_err = CL_SUCCESS;
cl_platform_id platform = platforms[platform_id];
char platform_vendor[HCBUFSIZ_TINY] = { 0 };
CL_err = hc_clGetPlatformInfo (data.ocl, platform, CL_PLATFORM_VENDOR, sizeof (platform_vendor), platform_vendor, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetPlatformInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
// find our own platform vendor because pocl and mesa are pushing original vendor_id through opencl
// this causes trouble with vendor id based macros
// we'll assign generic to those without special optimization available
cl_uint platform_vendor_id = 0;
if (strcmp (platform_vendor, CL_VENDOR_AMD) == 0)
{
platform_vendor_id = VENDOR_ID_AMD;
}
else if (strcmp (platform_vendor, CL_VENDOR_AMD_USE_INTEL) == 0)
{
platform_vendor_id = VENDOR_ID_AMD_USE_INTEL;
}
else if (strcmp (platform_vendor, CL_VENDOR_APPLE) == 0)
{
platform_vendor_id = VENDOR_ID_APPLE;
}
else if (strcmp (platform_vendor, CL_VENDOR_INTEL_BEIGNET) == 0)
{
platform_vendor_id = VENDOR_ID_INTEL_BEIGNET;
}
else if (strcmp (platform_vendor, CL_VENDOR_INTEL_SDK) == 0)
{
platform_vendor_id = VENDOR_ID_INTEL_SDK;
}
else if (strcmp (platform_vendor, CL_VENDOR_MESA) == 0)
{
platform_vendor_id = VENDOR_ID_MESA;
}
else if (strcmp (platform_vendor, CL_VENDOR_NV) == 0)
{
platform_vendor_id = VENDOR_ID_NV;
}
else if (strcmp (platform_vendor, CL_VENDOR_POCL) == 0)
{
platform_vendor_id = VENDOR_ID_POCL;
}
else
{
platform_vendor_id = VENDOR_ID_GENERIC;
}
uint platform_skipped = ((opencl_platforms_filter & (1u << platform_id)) == 0);
CL_err = hc_clGetDeviceIDs (data.ocl, platform, CL_DEVICE_TYPE_ALL, DEVICES_MAX, platform_devices, &platform_devices_cnt);
if (CL_err != CL_SUCCESS)
{
//log_error ("ERROR: clGetDeviceIDs(): %s\n", val2cstr_cl (CL_err));
//return -1;
platform_skipped = 2;
}
if ((benchmark == 1 || quiet == 0) && (algorithm_pos == 0))
{
if (machine_readable == 0)
{
if (platform_skipped == 0)
{
const int len = log_info ("OpenCL Platform #%u: %s", platform_id + 1, platform_vendor);
char line[256] = { 0 };
for (int i = 0; i < len; i++) line[i] = '=';
log_info (line);
}
else if (platform_skipped == 1)
{
log_info ("OpenCL Platform #%u: %s, skipped", platform_id + 1, platform_vendor);
log_info ("");
}
else if (platform_skipped == 2)
{
log_info ("OpenCL Platform #%u: %s, skipped! No OpenCL compatible devices found", platform_id + 1, platform_vendor);
log_info ("");
}
}
}
if (platform_skipped == 1) continue;
if (platform_skipped == 2) continue;
for (uint platform_devices_id = 0; platform_devices_id < platform_devices_cnt; platform_devices_id++)
{
size_t param_value_size = 0;
const uint device_id = devices_cnt;
hc_device_param_t *device_param = &data.devices_param[device_id];
device_param->platform_vendor_id = platform_vendor_id;
device_param->device = platform_devices[platform_devices_id];
device_param->device_id = device_id;
device_param->platform_devices_id = platform_devices_id;
device_param->platform = platform;
// device_type
cl_device_type device_type;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_TYPE, sizeof (device_type), &device_type, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_type &= ~CL_DEVICE_TYPE_DEFAULT;
device_param->device_type = device_type;
// device_name
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_NAME, 0, NULL, &param_value_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *device_name = (char *) mymalloc (param_value_size);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_NAME, param_value_size, device_name, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_name = device_name;
// device_vendor
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_VENDOR, 0, NULL, &param_value_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *device_vendor = (char *) mymalloc (param_value_size);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_VENDOR, param_value_size, device_vendor, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_vendor = device_vendor;
cl_uint device_vendor_id = 0;
if (strcmp (device_vendor, CL_VENDOR_AMD) == 0)
{
device_vendor_id = VENDOR_ID_AMD;
}
else if (strcmp (device_vendor, CL_VENDOR_AMD_USE_INTEL) == 0)
{
device_vendor_id = VENDOR_ID_AMD_USE_INTEL;
}
else if (strcmp (device_vendor, CL_VENDOR_APPLE) == 0)
{
device_vendor_id = VENDOR_ID_APPLE;
}
else if (strcmp (device_vendor, CL_VENDOR_INTEL_BEIGNET) == 0)
{
device_vendor_id = VENDOR_ID_INTEL_BEIGNET;
}
else if (strcmp (device_vendor, CL_VENDOR_INTEL_SDK) == 0)
{
device_vendor_id = VENDOR_ID_INTEL_SDK;
}
else if (strcmp (device_vendor, CL_VENDOR_MESA) == 0)
{
device_vendor_id = VENDOR_ID_MESA;
}
else if (strcmp (device_vendor, CL_VENDOR_NV) == 0)
{
device_vendor_id = VENDOR_ID_NV;
}
else if (strcmp (device_vendor, CL_VENDOR_POCL) == 0)
{
device_vendor_id = VENDOR_ID_POCL;
}
else
{
device_vendor_id = VENDOR_ID_GENERIC;
}
device_param->device_vendor_id = device_vendor_id;
// tuning db
tuning_db_entry_t *tuningdb_entry = tuning_db_search (tuning_db, device_param, attack_mode, hashconfig->hash_mode);
// device_version
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_VERSION, 0, NULL, &param_value_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *device_version = (char *) mymalloc (param_value_size);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_VERSION, param_value_size, device_version, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_version = device_version;
// device_opencl_version
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_OPENCL_C_VERSION, 0, NULL, &param_value_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *device_opencl_version = (char *) mymalloc (param_value_size);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_OPENCL_C_VERSION, param_value_size, device_opencl_version, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->opencl_v12 = device_opencl_version[9] > '1' || device_opencl_version[11] >= '2';
myfree (device_opencl_version);
// vector_width
cl_uint vector_width;
if (opencl_vector_width_chgd == 0)
{
if (tuningdb_entry == NULL || tuningdb_entry->vector_width == -1)
{
if (hashconfig->opti_type & OPTI_TYPE_USES_BITS_64)
{
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, sizeof (vector_width), &vector_width, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else
{
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, sizeof (vector_width), &vector_width, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else
{
vector_width = (cl_uint) tuningdb_entry->vector_width;
}
}
else
{
vector_width = opencl_vector_width;
}
if (vector_width > 16) vector_width = 16;
device_param->vector_width = vector_width;
// max_compute_units
cl_uint device_processors;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof (device_processors), &device_processors, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_processors = device_processors;
// device_maxmem_alloc
// note we'll limit to 2gb, otherwise this causes all kinds of weird errors because of possible integer overflows in opencl runtimes
cl_ulong device_maxmem_alloc;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof (device_maxmem_alloc), &device_maxmem_alloc, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_maxmem_alloc = MIN (device_maxmem_alloc, 0x7fffffff);
// device_global_mem
cl_ulong device_global_mem;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof (device_global_mem), &device_global_mem, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_global_mem = device_global_mem;
// max_work_group_size
size_t device_maxworkgroup_size;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof (device_maxworkgroup_size), &device_maxworkgroup_size, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_maxworkgroup_size = device_maxworkgroup_size;
// max_clock_frequency
cl_uint device_maxclock_frequency;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof (device_maxclock_frequency), &device_maxclock_frequency, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->device_maxclock_frequency = device_maxclock_frequency;
// device_endian_little
cl_bool device_endian_little;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_ENDIAN_LITTLE, sizeof (device_endian_little), &device_endian_little, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_endian_little == CL_FALSE)
{
log_info ("- Device #%u: WARNING: Not a little endian device", device_id + 1);
device_param->skipped = 1;
}
// device_available
cl_bool device_available;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_AVAILABLE, sizeof (device_available), &device_available, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_available == CL_FALSE)
{
log_info ("- Device #%u: WARNING: Device not available", device_id + 1);
device_param->skipped = 1;
}
// device_compiler_available
cl_bool device_compiler_available;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_COMPILER_AVAILABLE, sizeof (device_compiler_available), &device_compiler_available, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_compiler_available == CL_FALSE)
{
log_info ("- Device #%u: WARNING: No compiler available for device", device_id + 1);
device_param->skipped = 1;
}
// device_execution_capabilities
cl_device_exec_capabilities device_execution_capabilities;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_EXECUTION_CAPABILITIES, sizeof (device_execution_capabilities), &device_execution_capabilities, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if ((device_execution_capabilities & CL_EXEC_KERNEL) == 0)
{
log_info ("- Device #%u: WARNING: Device does not support executing kernels", device_id + 1);
device_param->skipped = 1;
}
// device_extensions
size_t device_extensions_size;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_EXTENSIONS, 0, NULL, &device_extensions_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *device_extensions = mymalloc (device_extensions_size + 1);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_EXTENSIONS, device_extensions_size, device_extensions, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (strstr (device_extensions, "base_atomics") == 0)
{
log_info ("- Device #%u: WARNING: Device does not support base atomics", device_id + 1);
device_param->skipped = 1;
}
if (strstr (device_extensions, "byte_addressable_store") == 0)
{
log_info ("- Device #%u: WARNING: Device does not support byte addressable store", device_id + 1);
device_param->skipped = 1;
}
myfree (device_extensions);
// device_local_mem_size
cl_ulong device_local_mem_size;
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_LOCAL_MEM_SIZE, sizeof (device_local_mem_size), &device_local_mem_size, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_local_mem_size < 32768)
{
log_info ("- Device #%u: WARNING: Device local mem size is too small", device_id + 1);
device_param->skipped = 1;
}
// If there's both an Intel CPU and an AMD OpenCL runtime it's a tricky situation
// Both platforms support CPU device types and therefore both will try to use 100% of the physical resources
// This results in both utilizing it for 50%
// However, Intel has much better SIMD control over their own hardware
// It makes sense to give them full control over their own hardware
if (device_type & CL_DEVICE_TYPE_CPU)
{
if (device_param->device_vendor_id == VENDOR_ID_AMD_USE_INTEL)
{
if (data.force == 0)
{
if (algorithm_pos == 0)
{
log_info ("- Device #%u: WARNING: Not a native Intel OpenCL runtime, expect massive speed loss", device_id + 1);
log_info (" You can use --force to override this but do not post error reports if you do so");
}
device_param->skipped = 1;
}
}
}
// skipped
device_param->skipped |= ((devices_filter & (1u << device_id)) == 0);
device_param->skipped |= ((device_types_filter & (device_type)) == 0);
// driver_version
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DRIVER_VERSION, 0, NULL, &param_value_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char *driver_version = (char *) mymalloc (param_value_size);
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DRIVER_VERSION, param_value_size, driver_version, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->driver_version = driver_version;
// device_name_chksum
char *device_name_chksum = (char *) mymalloc (HCBUFSIZ_TINY);
#if defined (__x86_64__)
snprintf (device_name_chksum, HCBUFSIZ_TINY - 1, "%u-%u-%u-%s-%s-%s-%u", 64, device_param->platform_vendor_id, device_param->vector_width, device_param->device_name, device_param->device_version, device_param->driver_version, COMPTIME);
#else
snprintf (device_name_chksum, HCBUFSIZ_TINY - 1, "%u-%u-%u-%s-%s-%s-%u", 32, device_param->platform_vendor_id, device_param->vector_width, device_param->device_name, device_param->device_version, device_param->driver_version, COMPTIME);
#endif
uint device_name_digest[4] = { 0 };
md5_64 ((uint *) device_name_chksum, device_name_digest);
snprintf (device_name_chksum, HCBUFSIZ_TINY - 1, "%08x", device_name_digest[0]);
device_param->device_name_chksum = device_name_chksum;
// vendor specific
if (device_param->device_type & CL_DEVICE_TYPE_GPU)
{
if ((device_param->platform_vendor_id == VENDOR_ID_AMD) && (device_param->device_vendor_id == VENDOR_ID_AMD))
{
need_adl = 1;
}
if ((device_param->platform_vendor_id == VENDOR_ID_NV) && (device_param->device_vendor_id == VENDOR_ID_NV))
{
need_nvml = 1;
#if defined (__linux__)
need_xnvctrl = 1;
#endif
#if defined (_WIN)
need_nvapi = 1;
#endif
}
}
if (device_type & CL_DEVICE_TYPE_GPU)
{
if (device_vendor_id == VENDOR_ID_NV)
{
cl_uint kernel_exec_timeout = 0;
#define CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV 0x4005
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV, sizeof (kernel_exec_timeout), &kernel_exec_timeout, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->kernel_exec_timeout = kernel_exec_timeout;
cl_uint sm_minor = 0;
cl_uint sm_major = 0;
#define CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV 0x4000
#define CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV 0x4001
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV, sizeof (sm_minor), &sm_minor, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetDeviceInfo (data.ocl, device_param->device, CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV, sizeof (sm_major), &sm_major, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetDeviceInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
device_param->sm_minor = sm_minor;
device_param->sm_major = sm_major;
// CPU burning loop damper
// Value is given as number between 0-100
// By default 100%
device_param->nvidia_spin_damp = (double) nvidia_spin_damp;
if (nvidia_spin_damp_chgd == 0)
{
if (data.attack_mode == ATTACK_MODE_STRAIGHT)
{
/**
* the workaround is not a friend of rule based attacks
* the words from the wordlist combined with fast and slow rules cause
* fluctuations which cause inaccurate wait time estimations
* using a reduced damping percentage almost compensates this
*/
device_param->nvidia_spin_damp = 64;
}
}
device_param->nvidia_spin_damp /= 100;
}
}
// display results
if ((benchmark == 1 || quiet == 0) && (algorithm_pos == 0))
{
if (machine_readable == 0)
{
if (device_param->skipped == 0)
{
log_info ("- Device #%u: %s, %lu/%lu MB allocatable, %uMCU",
device_id + 1,
device_name,
(unsigned int) (device_maxmem_alloc / 1024 / 1024),
(unsigned int) (device_global_mem / 1024 / 1024),
(unsigned int) device_processors);
}
else
{
log_info ("- Device #%u: %s, skipped",
device_id + 1,
device_name);
}
}
}
// common driver check
if (device_param->skipped == 0)
{
if (device_type & CL_DEVICE_TYPE_GPU)
{
if (platform_vendor_id == VENDOR_ID_AMD)
{
int catalyst_check = (force == 1) ? 0 : 1;
int catalyst_warn = 0;
int catalyst_broken = 0;
if (catalyst_check == 1)
{
catalyst_warn = 1;
// v14.9 and higher
if (atoi (device_param->driver_version) >= 1573)
{
catalyst_warn = 0;
}
catalyst_check = 0;
}
if (catalyst_broken == 1)
{
log_info ("");
log_info ("ATTENTION! The Catalyst driver installed on your system is known to be broken!");
log_info ("It passes over cracked hashes and will not report them as cracked");
log_info ("You are STRONGLY encouraged not to use it");
log_info ("You can use --force to override this but do not post error reports if you do so");
log_info ("");
return -1;
}
if (catalyst_warn == 1)
{
log_info ("");
log_info ("ATTENTION! Unsupported or incorrectly installed Catalyst driver detected!");
log_info ("You are STRONGLY encouraged to use the official supported catalyst driver");
log_info ("See hashcat's homepage for official supported catalyst drivers");
#if defined (_WIN)
log_info ("Also see: http://hashcat.net/wiki/doku.php?id=upgrading_amd_drivers_how_to");
#endif
log_info ("You can use --force to override this but do not post error reports if you do so");
log_info ("");
return -1;
}
}
else if (platform_vendor_id == VENDOR_ID_NV)
{
if (device_param->kernel_exec_timeout != 0)
{
if (data.quiet == 0) log_info ("- Device #%u: WARNING! Kernel exec timeout is not disabled, it might cause you errors of code 702", device_id + 1);
if (data.quiet == 0) log_info (" See the wiki on how to disable it: https://hashcat.net/wiki/doku.php?id=timeout_patch");
}
}
}
/* turns out pocl still creates segfaults (because of llvm)
if (device_type & CL_DEVICE_TYPE_CPU)
{
if (platform_vendor_id == VENDOR_ID_AMD)
{
if (force == 0)
{
log_info ("");
log_info ("ATTENTION! OpenCL support for CPU of catalyst driver is not reliable.");
log_info ("You are STRONGLY encouraged not to use it");
log_info ("You can use --force to override this but do not post error reports if you do so");
log_info ("A good alternative is the free pocl >= v0.13, but make sure to use a LLVM >= v3.8");
log_info ("");
return -1;
}
}
}
*/
/**
* kernel accel and loops tuning db adjustment
*/
device_param->kernel_accel_min = 1;
device_param->kernel_accel_max = 1024;
device_param->kernel_loops_min = 1;
device_param->kernel_loops_max = 1024;
tuning_db_entry_t *tuningdb_entry = tuning_db_search (tuning_db, device_param, attack_mode, hashconfig->hash_mode);
if (tuningdb_entry)
{
u32 _kernel_accel = tuningdb_entry->kernel_accel;
u32 _kernel_loops = tuningdb_entry->kernel_loops;
if (_kernel_accel)
{
device_param->kernel_accel_min = _kernel_accel;
device_param->kernel_accel_max = _kernel_accel;
}
if (_kernel_loops)
{
if (workload_profile == 1)
{
_kernel_loops = (_kernel_loops > 8) ? _kernel_loops / 8 : 1;
}
else if (workload_profile == 2)
{
_kernel_loops = (_kernel_loops > 4) ? _kernel_loops / 4 : 1;
}
device_param->kernel_loops_min = _kernel_loops;
device_param->kernel_loops_max = _kernel_loops;
}
}
// commandline parameters overwrite tuningdb entries
if (kernel_accel)
{
device_param->kernel_accel_min = kernel_accel;
device_param->kernel_accel_max = kernel_accel;
}
if (kernel_loops)
{
device_param->kernel_loops_min = kernel_loops;
device_param->kernel_loops_max = kernel_loops;
}
/**
* activate device
*/
devices_active++;
}
// next please
devices_cnt++;
}
if ((benchmark == 1 || quiet == 0) && (algorithm_pos == 0))
{
if (machine_readable == 0)
{
log_info ("");
}
}
}
if (keyspace == 0 && devices_active == 0)
{
log_error ("ERROR: No devices found/left");
return -1;
}
// additional check to see if the user has chosen a device that is not within the range of available devices (i.e. larger than devices_cnt)
if (devices_filter != (uint) -1)
{
uint devices_cnt_mask = ~(((uint) -1 >> devices_cnt) << devices_cnt);
if (devices_filter > devices_cnt_mask)
{
log_error ("ERROR: The device specified by the --opencl-devices parameter is larger than the number of available devices (%d)", devices_cnt);
return -1;
}
}
data.devices_cnt = devices_cnt;
data.devices_active = devices_active;
/**
* HM devices: init
*/
#if defined (HAVE_HWMON)
hm_attrs_t hm_adapters_adl[DEVICES_MAX];
hm_attrs_t hm_adapters_nvapi[DEVICES_MAX];
hm_attrs_t hm_adapters_nvml[DEVICES_MAX];
hm_attrs_t hm_adapters_xnvctrl[DEVICES_MAX];
memset (hm_adapters_adl, 0, sizeof (hm_adapters_adl));
memset (hm_adapters_nvapi, 0, sizeof (hm_adapters_nvapi));
memset (hm_adapters_nvml, 0, sizeof (hm_adapters_nvml));
memset (hm_adapters_xnvctrl, 0, sizeof (hm_adapters_xnvctrl));
if (gpu_temp_disable == 0)
{
ADL_PTR *adl = (ADL_PTR *) mymalloc (sizeof (ADL_PTR));
NVAPI_PTR *nvapi = (NVAPI_PTR *) mymalloc (sizeof (NVAPI_PTR));
NVML_PTR *nvml = (NVML_PTR *) mymalloc (sizeof (NVML_PTR));
XNVCTRL_PTR *xnvctrl = (XNVCTRL_PTR *) mymalloc (sizeof (XNVCTRL_PTR));
data.hm_adl = NULL;
data.hm_nvapi = NULL;
data.hm_nvml = NULL;
data.hm_xnvctrl = NULL;
if ((need_nvml == 1) && (nvml_init (nvml) == 0))
{
data.hm_nvml = nvml;
}
if (data.hm_nvml)
{
if (hm_NVML_nvmlInit (data.hm_nvml) == NVML_SUCCESS)
{
HM_ADAPTER_NVML nvmlGPUHandle[DEVICES_MAX] = { 0 };
int tmp_in = hm_get_adapter_index_nvml (nvmlGPUHandle);
int tmp_out = 0;
for (int i = 0; i < tmp_in; i++)
{
hm_adapters_nvml[tmp_out++].nvml = nvmlGPUHandle[i];
}
for (int i = 0; i < tmp_out; i++)
{
unsigned int speed;
if (hm_NVML_nvmlDeviceGetFanSpeed (data.hm_nvml, 0, hm_adapters_nvml[i].nvml, &speed) == NVML_SUCCESS) hm_adapters_nvml[i].fan_get_supported = 1;
// doesn't seem to create any advantages
//hm_NVML_nvmlDeviceSetComputeMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_COMPUTEMODE_EXCLUSIVE_PROCESS);
//hm_NVML_nvmlDeviceSetGpuOperationMode (data.hm_nvml, 1, hm_adapters_nvml[i].nvml, NVML_GOM_ALL_ON);
}
}
}
if ((need_nvapi == 1) && (nvapi_init (nvapi) == 0))
{
data.hm_nvapi = nvapi;
}
if (data.hm_nvapi)
{
if (hm_NvAPI_Initialize (data.hm_nvapi) == NVAPI_OK)
{
HM_ADAPTER_NVAPI nvGPUHandle[DEVICES_MAX] = { 0 };
int tmp_in = hm_get_adapter_index_nvapi (nvGPUHandle);
int tmp_out = 0;
for (int i = 0; i < tmp_in; i++)
{
hm_adapters_nvapi[tmp_out++].nvapi = nvGPUHandle[i];
}
}
}
if ((need_xnvctrl == 1) && (xnvctrl_init (xnvctrl) == 0))
{
data.hm_xnvctrl = xnvctrl;
}
if (data.hm_xnvctrl)
{
if (hm_XNVCTRL_XOpenDisplay (data.hm_xnvctrl) == 0)
{
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue;
hm_adapters_xnvctrl[device_id].xnvctrl = device_id;
int speed = 0;
if (get_fan_speed_current (data.hm_xnvctrl, device_id, &speed) == 0) hm_adapters_xnvctrl[device_id].fan_get_supported = 1;
}
}
}
if ((need_adl == 1) && (adl_init (adl) == 0))
{
data.hm_adl = adl;
}
if (data.hm_adl)
{
if (hm_ADL_Main_Control_Create (data.hm_adl, ADL_Main_Memory_Alloc, 0) == ADL_OK)
{
// total number of adapters
int hm_adapters_num;
if (get_adapters_num_adl (data.hm_adl, &hm_adapters_num) != 0) return -1;
// adapter info
LPAdapterInfo lpAdapterInfo = hm_get_adapter_info_adl (data.hm_adl, hm_adapters_num);
if (lpAdapterInfo == NULL) return -1;
// get a list (of ids of) valid/usable adapters
int num_adl_adapters = 0;
u32 *valid_adl_device_list = hm_get_list_valid_adl_adapters (hm_adapters_num, &num_adl_adapters, lpAdapterInfo);
if (num_adl_adapters > 0)
{
hc_thread_mutex_lock (mux_hwmon);
// hm_get_opencl_busid_devid (hm_adapters_adl, devices_all_cnt, devices_all);
hm_get_adapter_index_adl (hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hm_get_overdrive_version (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hm_check_fanspeed_control (data.hm_adl, hm_adapters_adl, valid_adl_device_list, num_adl_adapters, lpAdapterInfo);
hc_thread_mutex_unlock (mux_hwmon);
}
myfree (valid_adl_device_list);
myfree (lpAdapterInfo);
}
}
if (data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL)
{
gpu_temp_disable = 1;
}
}
/**
* OpenCL devices: allocate buffer for device specific information
*/
ADLOD6MemClockState *od_clock_mem_status = (ADLOD6MemClockState *) mycalloc (data.devices_cnt, sizeof (ADLOD6MemClockState));
int *od_power_control_status = (int *) mycalloc (data.devices_cnt, sizeof (int));
unsigned int *nvml_power_limit = (unsigned int *) mycalloc (data.devices_cnt, sizeof (unsigned int));
/**
* User-defined GPU temp handling
*/
if (gpu_temp_disable == 1)
{
gpu_temp_abort = 0;
gpu_temp_retain = 0;
}
if ((gpu_temp_abort != 0) && (gpu_temp_retain != 0))
{
if (gpu_temp_abort < gpu_temp_retain)
{
log_error ("ERROR: Invalid values for gpu-temp-abort. Parameter gpu-temp-abort is less than gpu-temp-retain.");
return -1;
}
}
data.gpu_temp_disable = gpu_temp_disable;
data.gpu_temp_abort = gpu_temp_abort;
data.gpu_temp_retain = gpu_temp_retain;
#endif
/**
* enable custom signal handler(s)
*/
if (benchmark == 0)
{
hc_signal (sigHandler_default);
}
else
{
hc_signal (sigHandler_benchmark);
}
/**
* inform the user
*/
if (data.quiet == 0)
{
log_info ("Hashes: %u hashes; %u unique digests, %u unique salts", hashes_cnt_orig, digests_cnt, salts_cnt);
log_info ("Bitmaps: %u bits, %u entries, 0x%08x mask, %u bytes, %u/%u rotates", bitmap_bits, bitmap_nums, bitmap_mask, bitmap_size, bitmap_shift1, bitmap_shift2);
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
log_info ("Rules: %u", kernel_rules_cnt);
}
if (hashconfig->opti_type)
{
log_info ("Applicable Optimizers:");
for (uint i = 0; i < 32; i++)
{
const uint opti_bit = 1u << i;
if (hashconfig->opti_type & opti_bit) log_info ("* %s", stroptitype (opti_bit));
}
}
/**
* Watchdog and Temperature balance
*/
#if defined (HAVE_HWMON)
if (gpu_temp_disable == 0 && data.hm_adl == NULL && data.hm_nvml == NULL && data.hm_xnvctrl == NULL)
{
log_info ("Watchdog: Hardware Monitoring Interface not found on your system");
}
if (gpu_temp_abort == 0)
{
log_info ("Watchdog: Temperature abort trigger disabled");
}
else
{
log_info ("Watchdog: Temperature abort trigger set to %uc", gpu_temp_abort);
}
if (gpu_temp_retain == 0)
{
log_info ("Watchdog: Temperature retain trigger disabled");
}
else
{
log_info ("Watchdog: Temperature retain trigger set to %uc", gpu_temp_retain);
}
if (data.quiet == 0) log_info ("");
#endif
}
#if defined (HAVE_HWMON)
/**
* HM devices: copy
*/
if (gpu_temp_disable == 0)
{
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if ((device_param->device_type & CL_DEVICE_TYPE_GPU) == 0) continue;
if (device_param->skipped) continue;
const uint platform_devices_id = device_param->platform_devices_id;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
data.hm_device[device_id].adl = hm_adapters_adl[platform_devices_id].adl;
data.hm_device[device_id].nvapi = 0;
data.hm_device[device_id].nvml = 0;
data.hm_device[device_id].xnvctrl = 0;
data.hm_device[device_id].od_version = hm_adapters_adl[platform_devices_id].od_version;
data.hm_device[device_id].fan_get_supported = hm_adapters_adl[platform_devices_id].fan_get_supported;
data.hm_device[device_id].fan_set_supported = 0;
}
if (device_param->device_vendor_id == VENDOR_ID_NV)
{
data.hm_device[device_id].adl = 0;
data.hm_device[device_id].nvapi = hm_adapters_nvapi[platform_devices_id].nvapi;
data.hm_device[device_id].nvml = hm_adapters_nvml[platform_devices_id].nvml;
data.hm_device[device_id].xnvctrl = hm_adapters_xnvctrl[platform_devices_id].xnvctrl;
data.hm_device[device_id].od_version = 0;
data.hm_device[device_id].fan_get_supported = hm_adapters_nvml[platform_devices_id].fan_get_supported;
data.hm_device[device_id].fan_set_supported = 0;
}
}
}
/**
* powertune on user request
*/
if (powertune_enable == 1)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
if (data.devices_param[device_id].device_vendor_id == VENDOR_ID_AMD)
{
/**
* Temporary fix:
* with AMD r9 295x cards it seems that we need to set the powertune value just AFTER the ocl init stuff
* otherwise after hc_clCreateContext () etc, powertune value was set back to "normal" and cards unfortunately
* were not working @ full speed (setting hm_ADL_Overdrive_PowerControl_Set () here seems to fix the problem)
* Driver / ADL bug?
*/
if (data.hm_device[device_id].od_version == 6)
{
int ADL_rc;
// check powertune capabilities first, if not available then skip device
int powertune_supported = 0;
if ((ADL_rc = hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL PowerControl Capabilities");
return -1;
}
// first backup current value, we will restore it later
if (powertune_supported != 0)
{
// powercontrol settings
ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) == ADL_OK)
{
ADL_rc = hm_ADL_Overdrive_PowerControl_Get (data.hm_adl, data.hm_device[device_id].adl, &od_power_control_status[device_id]);
}
if (ADL_rc != ADL_OK)
{
log_error ("ERROR: Failed to get current ADL PowerControl settings");
return -1;
}
if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK)
{
log_error ("ERROR: Failed to set new ADL PowerControl values");
return -1;
}
// clocks
memset (&od_clock_mem_status[device_id], 0, sizeof (ADLOD6MemClockState));
od_clock_mem_status[device_id].state.iNumberOfPerformanceLevels = 2;
if ((ADL_rc = hm_ADL_Overdrive_StateInfo_Get (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_GETSTATEINFO_CUSTOM_PERFORMANCE, &od_clock_mem_status[device_id])) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL memory and engine clock frequency");
return -1;
}
// Query capabilities only to see if profiles were not "damaged", if so output a warning but do accept the users profile settings
ADLOD6Capabilities caps = {0, 0, 0, {0, 0, 0}, {0, 0, 0}, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_Capabilities_Get (data.hm_adl, data.hm_device[device_id].adl, &caps)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL device capabilities");
return -1;
}
int engine_clock_max = (int) (0.6666 * caps.sEngineClockRange.iMax);
int memory_clock_max = (int) (0.6250 * caps.sMemoryClockRange.iMax);
int warning_trigger_engine = (int) (0.25 * engine_clock_max);
int warning_trigger_memory = (int) (0.25 * memory_clock_max);
int engine_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock;
int memory_clock_profile_max = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock;
// warning if profile has too low max values
if ((engine_clock_max - engine_clock_profile_max) > warning_trigger_engine)
{
log_info ("WARN: The custom profile seems to have too low maximum engine clock values. You therefore may not reach full performance");
}
if ((memory_clock_max - memory_clock_profile_max) > warning_trigger_memory)
{
log_info ("WARN: The custom profile seems to have too low maximum memory clock values. You therefore may not reach full performance");
}
ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel));
performance_state->iNumberOfPerformanceLevels = 2;
performance_state->aLevels[0].iEngineClock = engine_clock_profile_max;
performance_state->aLevels[1].iEngineClock = engine_clock_profile_max;
performance_state->aLevels[0].iMemoryClock = memory_clock_profile_max;
performance_state->aLevels[1].iMemoryClock = memory_clock_profile_max;
if ((ADL_rc = hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK)
{
log_info ("ERROR: Failed to set ADL performance state");
return -1;
}
local_free (performance_state);
}
// set powertune value only
if (powertune_supported != 0)
{
// powertune set
ADLOD6PowerControlInfo powertune = {0, 0, 0, 0, 0};
if ((ADL_rc = hm_ADL_Overdrive_PowerControlInfo_Get (data.hm_adl, data.hm_device[device_id].adl, &powertune)) != ADL_OK)
{
log_error ("ERROR: Failed to get current ADL PowerControl settings");
return -1;
}
if ((ADL_rc = hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, powertune.iMaxValue)) != ADL_OK)
{
log_error ("ERROR: Failed to set new ADL PowerControl values");
return -1;
}
}
}
}
if (data.devices_param[device_id].device_vendor_id == VENDOR_ID_NV)
{
// first backup current value, we will restore it later
unsigned int limit;
int powertune_supported = 0;
if (hm_NVML_nvmlDeviceGetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, &limit) == NVML_SUCCESS)
{
powertune_supported = 1;
}
// if backup worked, activate the maximum allowed
if (powertune_supported != 0)
{
unsigned int minLimit;
unsigned int maxLimit;
if (hm_NVML_nvmlDeviceGetPowerManagementLimitConstraints (data.hm_nvml, 0, data.hm_device[device_id].nvml, &minLimit, &maxLimit) == NVML_SUCCESS)
{
if (maxLimit > 0)
{
if (hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, maxLimit) == NVML_SUCCESS)
{
// now we can be sure we need to reset later
nvml_power_limit[device_id] = limit;
}
}
}
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
#endif // HAVE_HWMON
#if defined (DEBUG)
if (benchmark == 1) log_info ("Hashmode: %d", hashconfig->hash_mode);
#endif
if (data.quiet == 0) log_info_nn ("Initializing device kernels and memory...");
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
cl_int CL_err = CL_SUCCESS;
/**
* host buffer
*/
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
/**
* device properties
*/
const char *device_name_chksum = device_param->device_name_chksum;
const u32 device_processors = device_param->device_processors;
/**
* create context for each device
*/
cl_context_properties properties[3];
properties[0] = CL_CONTEXT_PLATFORM;
properties[1] = (cl_context_properties) device_param->platform;
properties[2] = 0;
CL_err = hc_clCreateContext (data.ocl, properties, 1, &device_param->device, NULL, NULL, &device_param->context);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateContext(): %s\n", val2cstr_cl (CL_err));
return -1;
}
/**
* create command-queue
*/
// not supported with NV
// device_param->command_queue = hc_clCreateCommandQueueWithProperties (device_param->context, device_param->device, NULL);
CL_err = hc_clCreateCommandQueue (data.ocl, device_param->context, device_param->device, CL_QUEUE_PROFILING_ENABLE, &device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateCommandQueue(): %s\n", val2cstr_cl (CL_err));
return -1;
}
/**
* kernel threads: some algorithms need a fixed kernel-threads count
* because of shared memory usage or bitslice
* there needs to be some upper limit, otherwise there's too much overhead
*/
uint kernel_threads = MIN (KERNEL_THREADS_MAX, device_param->device_maxworkgroup_size);
if (hashconfig->hash_mode == 8900) kernel_threads = 64; // Scrypt
if (hashconfig->hash_mode == 9300) kernel_threads = 64; // Scrypt
if (device_param->device_type & CL_DEVICE_TYPE_CPU)
{
kernel_threads = KERNEL_THREADS_MAX_CPU;
}
if (hashconfig->hash_mode == 1500) kernel_threads = 64; // DES
if (hashconfig->hash_mode == 3000) kernel_threads = 64; // DES
if (hashconfig->hash_mode == 3100) kernel_threads = 64; // DES
if (hashconfig->hash_mode == 3200) kernel_threads = 8; // Blowfish
if (hashconfig->hash_mode == 7500) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 8500) kernel_threads = 64; // DES
if (hashconfig->hash_mode == 9000) kernel_threads = 8; // Blowfish
if (hashconfig->hash_mode == 9700) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 9710) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 9800) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 9810) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 10400) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 10410) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 10500) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 13100) kernel_threads = 64; // RC4
if (hashconfig->hash_mode == 14000) kernel_threads = 64; // DES
if (hashconfig->hash_mode == 14100) kernel_threads = 64; // DES
device_param->kernel_threads = kernel_threads;
device_param->hardware_power = device_processors * kernel_threads;
/**
* create input buffers on device : calculate size of fixed memory buffers
*/
size_t size_root_css = SP_PW_MAX * sizeof (cs_t);
size_t size_markov_css = SP_PW_MAX * CHARSIZ * sizeof (cs_t);
device_param->size_root_css = size_root_css;
device_param->size_markov_css = size_markov_css;
size_t size_results = sizeof (uint);
device_param->size_results = size_results;
size_t size_rules = kernel_rules_cnt * sizeof (kernel_rule_t);
size_t size_rules_c = KERNEL_RULES * sizeof (kernel_rule_t);
size_t size_plains = digests_cnt * sizeof (plain_t);
size_t size_salts = salts_cnt * sizeof (salt_t);
size_t size_esalts = salts_cnt * hashconfig->esalt_size;
device_param->size_plains = size_plains;
device_param->size_digests = size_digests;
device_param->size_shown = size_shown;
device_param->size_salts = size_salts;
size_t size_combs = KERNEL_COMBS * sizeof (comb_t);
size_t size_bfs = KERNEL_BFS * sizeof (bf_t);
size_t size_tm = 32 * sizeof (bs_word_t);
// scryptV stuff
size_t size_scrypt = 4;
if ((hashconfig->hash_mode == 8900) || (hashconfig->hash_mode == 9300))
{
// we need to check that all hashes have the same scrypt settings
const u32 scrypt_N = data.salts_buf[0].scrypt_N;
const u32 scrypt_r = data.salts_buf[0].scrypt_r;
const u32 scrypt_p = data.salts_buf[0].scrypt_p;
for (uint i = 1; i < salts_cnt; i++)
{
if ((data.salts_buf[i].scrypt_N != scrypt_N)
|| (data.salts_buf[i].scrypt_r != scrypt_r)
|| (data.salts_buf[i].scrypt_p != scrypt_p))
{
log_error ("ERROR: Mixed scrypt settings not supported");
return -1;
}
}
uint tmto_start = 0;
uint tmto_stop = 10;
if (scrypt_tmto)
{
tmto_start = scrypt_tmto;
}
else
{
// in case the user did not specify the tmto manually
// use some values known to run best (tested on 290x for AMD and GTX1080 for NV)
if (hashconfig->hash_mode == 8900)
{
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
tmto_start = 3;
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
tmto_start = 2;
}
}
else if (hashconfig->hash_mode == 9300)
{
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
tmto_start = 2;
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
tmto_start = 4;
}
}
}
data.scrypt_tmp_size = (128 * scrypt_r * scrypt_p);
device_param->kernel_accel_min = 1;
device_param->kernel_accel_max = 8;
uint tmto;
for (tmto = tmto_start; tmto < tmto_stop; tmto++)
{
size_scrypt = (128 * scrypt_r) * scrypt_N;
size_scrypt /= 1u << tmto;
size_scrypt *= device_param->device_processors * device_param->kernel_threads * device_param->kernel_accel_max;
if ((size_scrypt / 4) > device_param->device_maxmem_alloc)
{
if (quiet == 0) log_info ("WARNING: Not enough single-block device memory allocatable to use --scrypt-tmto %d, increasing...", tmto);
continue;
}
if (size_scrypt > device_param->device_global_mem)
{
if (quiet == 0) log_info ("WARNING: Not enough total device memory allocatable to use --scrypt-tmto %d, increasing...", tmto);
continue;
}
for (uint salts_pos = 0; salts_pos < data.salts_cnt; salts_pos++)
{
data.scrypt_tmto_final = tmto;
}
break;
}
if (tmto == tmto_stop)
{
log_error ("ERROR: Can't allocate enough device memory");
return -1;
}
if (quiet == 0) log_info ("SCRYPT tmto optimizer value set to: %u, mem: %" PRIu64 "\n", data.scrypt_tmto_final, size_scrypt);
}
size_t size_scrypt4 = size_scrypt / 4;
/**
* some algorithms need a fixed kernel-loops count
*/
if (hashconfig->hash_mode == 1500 && attack_mode == ATTACK_MODE_BF)
{
const u32 kernel_loops_fixed = 1024;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 3000 && attack_mode == ATTACK_MODE_BF)
{
const u32 kernel_loops_fixed = 1024;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 8900)
{
const u32 kernel_loops_fixed = 1;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 9300)
{
const u32 kernel_loops_fixed = 1;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 12500)
{
const u32 kernel_loops_fixed = ROUNDS_RAR3 / 16;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 14000 && attack_mode == ATTACK_MODE_BF)
{
const u32 kernel_loops_fixed = 1024;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
if (hashconfig->hash_mode == 14100 && attack_mode == ATTACK_MODE_BF)
{
const u32 kernel_loops_fixed = 1024;
device_param->kernel_loops_min = kernel_loops_fixed;
device_param->kernel_loops_max = kernel_loops_fixed;
}
/**
* some algorithms have a maximum kernel-loops count
*/
if (device_param->kernel_loops_min < device_param->kernel_loops_max)
{
u32 innerloop_cnt = 0;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (data.attack_kern == ATTACK_KERN_STRAIGHT) innerloop_cnt = data.kernel_rules_cnt;
else if (data.attack_kern == ATTACK_KERN_COMBI) innerloop_cnt = data.combs_cnt;
else if (data.attack_kern == ATTACK_KERN_BF) innerloop_cnt = data.bfs_cnt;
}
else
{
innerloop_cnt = data.salts_buf[0].salt_iter;
}
if ((innerloop_cnt >= device_param->kernel_loops_min) &&
(innerloop_cnt <= device_param->kernel_loops_max))
{
device_param->kernel_loops_max = innerloop_cnt;
}
}
u32 kernel_accel_min = device_param->kernel_accel_min;
u32 kernel_accel_max = device_param->kernel_accel_max;
// find out if we would request too much memory on memory blocks which are based on kernel_accel
size_t size_pws = 4;
size_t size_tmps = 4;
size_t size_hooks = 4;
while (kernel_accel_max >= kernel_accel_min)
{
const u32 kernel_power_max = device_processors * kernel_threads * kernel_accel_max;
// size_pws
size_pws = kernel_power_max * sizeof (pw_t);
// size_tmps
switch (hashconfig->hash_mode)
{
case 400: size_tmps = kernel_power_max * sizeof (phpass_tmp_t); break;
case 500: size_tmps = kernel_power_max * sizeof (md5crypt_tmp_t); break;
case 501: size_tmps = kernel_power_max * sizeof (md5crypt_tmp_t); break;
case 1600: size_tmps = kernel_power_max * sizeof (md5crypt_tmp_t); break;
case 1800: size_tmps = kernel_power_max * sizeof (sha512crypt_tmp_t); break;
case 2100: size_tmps = kernel_power_max * sizeof (dcc2_tmp_t); break;
case 2500: size_tmps = kernel_power_max * sizeof (wpa_tmp_t); break;
case 3200: size_tmps = kernel_power_max * sizeof (bcrypt_tmp_t); break;
case 5200: size_tmps = kernel_power_max * sizeof (pwsafe3_tmp_t); break;
case 5800: size_tmps = kernel_power_max * sizeof (androidpin_tmp_t); break;
case 6211: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6212: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6213: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6221: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 6222: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 6223: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 6231: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6232: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6233: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6241: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6242: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6243: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 6300: size_tmps = kernel_power_max * sizeof (md5crypt_tmp_t); break;
case 6400: size_tmps = kernel_power_max * sizeof (sha256aix_tmp_t); break;
case 6500: size_tmps = kernel_power_max * sizeof (sha512aix_tmp_t); break;
case 6600: size_tmps = kernel_power_max * sizeof (agilekey_tmp_t); break;
case 6700: size_tmps = kernel_power_max * sizeof (sha1aix_tmp_t); break;
case 6800: size_tmps = kernel_power_max * sizeof (lastpass_tmp_t); break;
case 7100: size_tmps = kernel_power_max * sizeof (pbkdf2_sha512_tmp_t); break;
case 7200: size_tmps = kernel_power_max * sizeof (pbkdf2_sha512_tmp_t); break;
case 7400: size_tmps = kernel_power_max * sizeof (sha256crypt_tmp_t); break;
case 7900: size_tmps = kernel_power_max * sizeof (drupal7_tmp_t); break;
case 8200: size_tmps = kernel_power_max * sizeof (pbkdf2_sha512_tmp_t); break;
case 8800: size_tmps = kernel_power_max * sizeof (androidfde_tmp_t); break;
case 8900: size_tmps = kernel_power_max * data.scrypt_tmp_size; break;
case 9000: size_tmps = kernel_power_max * sizeof (pwsafe2_tmp_t); break;
case 9100: size_tmps = kernel_power_max * sizeof (lotus8_tmp_t); break;
case 9200: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 9300: size_tmps = kernel_power_max * data.scrypt_tmp_size; break;
case 9400: size_tmps = kernel_power_max * sizeof (office2007_tmp_t); break;
case 9500: size_tmps = kernel_power_max * sizeof (office2010_tmp_t); break;
case 9600: size_tmps = kernel_power_max * sizeof (office2013_tmp_t); break;
case 10000: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 10200: size_tmps = kernel_power_max * sizeof (cram_md5_t); break;
case 10300: size_tmps = kernel_power_max * sizeof (saph_sha1_tmp_t); break;
case 10500: size_tmps = kernel_power_max * sizeof (pdf14_tmp_t); break;
case 10700: size_tmps = kernel_power_max * sizeof (pdf17l8_tmp_t); break;
case 10900: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 11300: size_tmps = kernel_power_max * sizeof (bitcoin_wallet_tmp_t); break;
case 11600: size_tmps = kernel_power_max * sizeof (seven_zip_tmp_t); break;
case 11900: size_tmps = kernel_power_max * sizeof (pbkdf2_md5_tmp_t); break;
case 12000: size_tmps = kernel_power_max * sizeof (pbkdf2_sha1_tmp_t); break;
case 12100: size_tmps = kernel_power_max * sizeof (pbkdf2_sha512_tmp_t); break;
case 12200: size_tmps = kernel_power_max * sizeof (ecryptfs_tmp_t); break;
case 12300: size_tmps = kernel_power_max * sizeof (oraclet_tmp_t); break;
case 12400: size_tmps = kernel_power_max * sizeof (bsdicrypt_tmp_t); break;
case 12500: size_tmps = kernel_power_max * sizeof (rar3_tmp_t); break;
case 12700: size_tmps = kernel_power_max * sizeof (mywallet_tmp_t); break;
case 12800: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 12900: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 13000: size_tmps = kernel_power_max * sizeof (pbkdf2_sha256_tmp_t); break;
case 13200: size_tmps = kernel_power_max * sizeof (axcrypt_tmp_t); break;
case 13400: size_tmps = kernel_power_max * sizeof (keepass_tmp_t); break;
case 13600: size_tmps = kernel_power_max * sizeof (pbkdf2_sha1_tmp_t); break;
case 13711: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13712: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13713: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13721: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 13722: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 13723: size_tmps = kernel_power_max * sizeof (tc64_tmp_t); break;
case 13731: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13732: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13733: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13741: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13742: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13743: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13751: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13752: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13753: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13761: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13762: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
case 13763: size_tmps = kernel_power_max * sizeof (tc_tmp_t); break;
};
// size_hooks
if ((hashconfig->opts_type & OPTS_TYPE_HOOK12) || (hashconfig->opts_type & OPTS_TYPE_HOOK23))
{
switch (hashconfig->hash_mode)
{
}
}
// now check if all device-memory sizes which depend on the kernel_accel_max amplifier are within its boundaries
// if not, decrease amplifier and try again
int memory_limit_hit = 0;
if (size_pws > device_param->device_maxmem_alloc) memory_limit_hit = 1;
if (size_tmps > device_param->device_maxmem_alloc) memory_limit_hit = 1;
if (size_hooks > device_param->device_maxmem_alloc) memory_limit_hit = 1;
const u64 size_total
= bitmap_size
+ bitmap_size
+ bitmap_size
+ bitmap_size
+ bitmap_size
+ bitmap_size
+ bitmap_size
+ bitmap_size
+ size_bfs
+ size_combs
+ size_digests
+ size_esalts
+ size_hooks
+ size_markov_css
+ size_plains
+ size_pws
+ size_pws // not a bug
+ size_results
+ size_root_css
+ size_rules
+ size_rules_c
+ size_salts
+ size_scrypt4
+ size_scrypt4
+ size_scrypt4
+ size_scrypt4
+ size_shown
+ size_tm
+ size_tmps;
if (size_total > device_param->device_global_mem) memory_limit_hit = 1;
if (memory_limit_hit == 1)
{
kernel_accel_max--;
continue;
}
break;
}
if (kernel_accel_max < kernel_accel_min)
{
log_error ("- Device #%u: Device does not provide enough allocatable device-memory to handle this attack", device_id + 1);
return -1;
}
device_param->kernel_accel_min = kernel_accel_min;
device_param->kernel_accel_max = kernel_accel_max;
/*
if (kernel_accel_max < kernel_accel)
{
if (quiet == 0) log_info ("- Device #%u: Reduced maximum kernel-accel to %u", device_id + 1, kernel_accel_max);
device_param->kernel_accel = kernel_accel_max;
}
*/
device_param->size_bfs = size_bfs;
device_param->size_combs = size_combs;
device_param->size_rules = size_rules;
device_param->size_rules_c = size_rules_c;
device_param->size_pws = size_pws;
device_param->size_tmps = size_tmps;
device_param->size_hooks = size_hooks;
/**
* default building options
*/
if (chdir (cpath_real) == -1)
{
log_error ("ERROR: %s: %s", cpath_real, strerror (errno));
return -1;
}
char build_opts[1024] = { 0 };
#if defined (_WIN)
snprintf (build_opts, sizeof (build_opts) - 1, "-I \"%s\"", cpath_real);
#else
snprintf (build_opts, sizeof (build_opts) - 1, "-I %s", cpath_real);
#endif
// include check
// this test needs to be done manually because of osx opencl runtime
// if there's a problem with permission, its not reporting back and erroring out silently
#define files_cnt 15
const char *files_names[files_cnt] =
{
"inc_cipher_aes256.cl",
"inc_cipher_serpent256.cl",
"inc_cipher_twofish256.cl",
"inc_common.cl",
"inc_comp_multi_bs.cl",
"inc_comp_multi.cl",
"inc_comp_single_bs.cl",
"inc_comp_single.cl",
"inc_hash_constants.h",
"inc_hash_functions.cl",
"inc_rp.cl",
"inc_rp.h",
"inc_simd.cl",
"inc_types.cl",
"inc_vendor.cl",
};
for (int i = 0; i < files_cnt; i++)
{
FILE *fd = fopen (files_names[i], "r");
if (fd == NULL)
{
log_error ("ERROR: %s: fopen(): %s", files_names[i], strerror (errno));
return -1;
}
char buf[1];
size_t n = fread (buf, 1, 1, fd);
if (n != 1)
{
log_error ("ERROR: %s: fread(): %s", files_names[i], strerror (errno));
return -1;
}
fclose (fd);
}
// we don't have sm_* on vendors not NV but it doesn't matter
char build_opts_new[1024] = { 0 };
#if defined (DEBUG)
snprintf (build_opts_new, sizeof (build_opts_new) - 1, "%s -D VENDOR_ID=%u -D CUDA_ARCH=%d -D VECT_SIZE=%u -D DEVICE_TYPE=%u -D DGST_R0=%u -D DGST_R1=%u -D DGST_R2=%u -D DGST_R3=%u -D DGST_ELEM=%u -D KERN_TYPE=%u -D _unroll -cl-std=CL1.1", build_opts, device_param->device_vendor_id, (device_param->sm_major * 100) + device_param->sm_minor, device_param->vector_width, (u32) device_param->device_type, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, hashconfig->dgst_size / 4, hashconfig->kern_type);
#else
snprintf (build_opts_new, sizeof (build_opts_new) - 1, "%s -D VENDOR_ID=%u -D CUDA_ARCH=%d -D VECT_SIZE=%u -D DEVICE_TYPE=%u -D DGST_R0=%u -D DGST_R1=%u -D DGST_R2=%u -D DGST_R3=%u -D DGST_ELEM=%u -D KERN_TYPE=%u -D _unroll -cl-std=CL1.1 -w", build_opts, device_param->device_vendor_id, (device_param->sm_major * 100) + device_param->sm_minor, device_param->vector_width, (u32) device_param->device_type, hashconfig->dgst_pos0, hashconfig->dgst_pos1, hashconfig->dgst_pos2, hashconfig->dgst_pos3, hashconfig->dgst_size / 4, hashconfig->kern_type);
#endif
strncpy (build_opts, build_opts_new, sizeof (build_opts));
#if defined (DEBUG)
log_info ("- Device #%u: build_opts '%s'\n", device_id + 1, build_opts);
#endif
/**
* main kernel
*/
{
/**
* kernel source filename
*/
char source_file[256] = { 0 };
generate_source_kernel_filename (hashconfig->attack_exec, attack_kern, hashconfig->kern_type, shared_dir, source_file);
struct stat sst;
if (stat (source_file, &sst) == -1)
{
log_error ("ERROR: %s: %s", source_file, strerror (errno));
return -1;
}
/**
* kernel cached filename
*/
char cached_file[256] = { 0 };
generate_cached_kernel_filename (hashconfig->attack_exec, attack_kern, hashconfig->kern_type, profile_dir, device_name_chksum, cached_file);
int cached = 1;
struct stat cst;
if ((stat (cached_file, &cst) == -1) || cst.st_size == 0)
{
cached = 0;
}
/**
* kernel compile or load
*/
size_t *kernel_lengths = (size_t *) mymalloc (sizeof (size_t));
const u8 **kernel_sources = (const u8 **) mymalloc (sizeof (u8 *));
if (force_jit_compilation == -1)
{
if (cached == 0)
{
if (quiet == 0) log_info ("- Device #%u: Kernel %s not found in cache! Building may take a while...", device_id + 1, filename_from_filepath (cached_file));
load_kernel (source_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithSource (data.ocl, device_param->context, 1, (const char **) kernel_sources, NULL, &device_param->program);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithSource(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
//return -1;
}
size_t build_log_size = 0;
/*
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
*/
hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
#if defined (DEBUG)
if ((build_log_size != 0) || (CL_err != CL_SUCCESS))
#else
if (CL_err != CL_SUCCESS)
#endif
{
char *build_log = (char *) mymalloc (build_log_size + 1);
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, build_log_size, build_log, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
puts (build_log);
myfree (build_log);
}
if (CL_err != CL_SUCCESS)
{
device_param->skipped = true;
log_info ("- Device #%u: Kernel %s build failure. Proceeding without this device.", device_id + 1, source_file);
continue;
}
size_t binary_size;
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program, CL_PROGRAM_BINARY_SIZES, sizeof (size_t), &binary_size, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
u8 *binary = (u8 *) mymalloc (binary_size);
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program, CL_PROGRAM_BINARIES, sizeof (binary), &binary, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
writeProgramBin (cached_file, binary, binary_size);
local_free (binary);
}
else
{
#if defined (DEBUG)
log_info ("- Device #%u: Kernel %s (%ld bytes)", device_id + 1, cached_file, cst.st_size);
#endif
load_kernel (cached_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithBinary (data.ocl, device_param->context, 1, &device_param->device, kernel_lengths, (const u8 **) kernel_sources, NULL, &device_param->program);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithBinary(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else
{
#if defined (DEBUG)
log_info ("- Device #%u: Kernel %s (%ld bytes)", device_id + 1, source_file, sst.st_size);
#endif
load_kernel (source_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithSource (data.ocl, device_param->context, 1, (const char **) kernel_sources, NULL, &device_param->program);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithSource(): %s\n", val2cstr_cl (CL_err));
return -1;
}
char build_opts_update[1024] = { 0 };
if (force_jit_compilation == 1500)
{
snprintf (build_opts_update, sizeof (build_opts_update) - 1, "%s -DDESCRYPT_SALT=%u", build_opts, data.salts_buf[0].salt_buf[0]);
}
else if (force_jit_compilation == 8900)
{
snprintf (build_opts_update, sizeof (build_opts_update) - 1, "%s -DSCRYPT_N=%u -DSCRYPT_R=%u -DSCRYPT_P=%u -DSCRYPT_TMTO=%u -DSCRYPT_TMP_ELEM=%u", build_opts, data.salts_buf[0].scrypt_N, data.salts_buf[0].scrypt_r, data.salts_buf[0].scrypt_p, 1 << data.scrypt_tmto_final, data.scrypt_tmp_size / 16);
}
else
{
snprintf (build_opts_update, sizeof (build_opts_update) - 1, "%s", build_opts);
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program, 1, &device_param->device, build_opts_update, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
//return -1;
}
size_t build_log_size = 0;
/*
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
*/
hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
#if defined (DEBUG)
if ((build_log_size != 0) || (CL_err != CL_SUCCESS))
#else
if (CL_err != CL_SUCCESS)
#endif
{
char *build_log = (char *) mymalloc (build_log_size + 1);
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program, device_param->device, CL_PROGRAM_BUILD_LOG, build_log_size, build_log, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
puts (build_log);
myfree (build_log);
}
if (CL_err != CL_SUCCESS)
{
device_param->skipped = true;
log_info ("- Device #%u: Kernel %s build failure. Proceeding without this device.", device_id + 1, source_file);
}
}
local_free (kernel_lengths);
local_free (kernel_sources[0]);
local_free (kernel_sources);
}
/**
* word generator kernel
*/
if (attack_mode != ATTACK_MODE_STRAIGHT)
{
/**
* kernel mp source filename
*/
char source_file[256] = { 0 };
generate_source_kernel_mp_filename (hashconfig->opti_type, hashconfig->opts_type, shared_dir, source_file);
struct stat sst;
if (stat (source_file, &sst) == -1)
{
log_error ("ERROR: %s: %s", source_file, strerror (errno));
return -1;
}
/**
* kernel mp cached filename
*/
char cached_file[256] = { 0 };
generate_cached_kernel_mp_filename (hashconfig->opti_type, hashconfig->opts_type, profile_dir, device_name_chksum, cached_file);
int cached = 1;
struct stat cst;
if (stat (cached_file, &cst) == -1)
{
cached = 0;
}
/**
* kernel compile or load
*/
size_t *kernel_lengths = (size_t *) mymalloc (sizeof (size_t));
const u8 **kernel_sources = (const u8 **) mymalloc (sizeof (u8 *));
if (cached == 0)
{
if (quiet == 0) log_info ("- Device #%u: Kernel %s not found in cache! Building may take a while...", device_id + 1, filename_from_filepath (cached_file));
if (quiet == 0) log_info ("");
load_kernel (source_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithSource (data.ocl, device_param->context, 1, (const char **) kernel_sources, NULL, &device_param->program_mp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithSource(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program_mp, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
//return -1;
}
size_t build_log_size = 0;
/*
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program_mp, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
*/
hc_clGetProgramBuildInfo (data.ocl, device_param->program_mp, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
#if defined (DEBUG)
if ((build_log_size != 0) || (CL_err != CL_SUCCESS))
#else
if (CL_err != CL_SUCCESS)
#endif
{
char *build_log = (char *) mymalloc (build_log_size + 1);
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program_mp, device_param->device, CL_PROGRAM_BUILD_LOG, build_log_size, build_log, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
puts (build_log);
myfree (build_log);
}
if (CL_err != CL_SUCCESS)
{
device_param->skipped = true;
log_info ("- Device #%u: Kernel %s build failure. Proceeding without this device.", device_id + 1, source_file);
continue;
}
size_t binary_size;
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program_mp, CL_PROGRAM_BINARY_SIZES, sizeof (size_t), &binary_size, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
u8 *binary = (u8 *) mymalloc (binary_size);
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program_mp, CL_PROGRAM_BINARIES, sizeof (binary), &binary, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
writeProgramBin (cached_file, binary, binary_size);
local_free (binary);
}
else
{
#if defined (DEBUG)
log_info ("- Device #%u: Kernel %s (%ld bytes)", device_id + 1, cached_file, cst.st_size);
#endif
load_kernel (cached_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithBinary (data.ocl, device_param->context, 1, &device_param->device, kernel_lengths, (const u8 **) kernel_sources, NULL, &device_param->program_mp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithBinary(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program_mp, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
local_free (kernel_lengths);
local_free (kernel_sources[0]);
local_free (kernel_sources);
}
/**
* amplifier kernel
*/
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
}
else
{
/**
* kernel amp source filename
*/
char source_file[256] = { 0 };
generate_source_kernel_amp_filename (attack_kern, shared_dir, source_file);
struct stat sst;
if (stat (source_file, &sst) == -1)
{
log_error ("ERROR: %s: %s", source_file, strerror (errno));
return -1;
}
/**
* kernel amp cached filename
*/
char cached_file[256] = { 0 };
generate_cached_kernel_amp_filename (attack_kern, profile_dir, device_name_chksum, cached_file);
int cached = 1;
struct stat cst;
if (stat (cached_file, &cst) == -1)
{
cached = 0;
}
/**
* kernel compile or load
*/
size_t *kernel_lengths = (size_t *) mymalloc (sizeof (size_t));
const u8 **kernel_sources = (const u8 **) mymalloc (sizeof (u8 *));
if (cached == 0)
{
if (quiet == 0) log_info ("- Device #%u: Kernel %s not found in cache! Building may take a while...", device_id + 1, filename_from_filepath (cached_file));
if (quiet == 0) log_info ("");
load_kernel (source_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithSource (data.ocl, device_param->context, 1, (const char **) kernel_sources, NULL, &device_param->program_amp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithSource(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program_amp, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
//return -1;
}
size_t build_log_size = 0;
/*
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program_amp, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
*/
hc_clGetProgramBuildInfo (data.ocl, device_param->program_amp, device_param->device, CL_PROGRAM_BUILD_LOG, 0, NULL, &build_log_size);
#if defined (DEBUG)
if ((build_log_size != 0) || (CL_err != CL_SUCCESS))
#else
if (CL_err != CL_SUCCESS)
#endif
{
char *build_log = (char *) mymalloc (build_log_size + 1);
CL_err = hc_clGetProgramBuildInfo (data.ocl, device_param->program_amp, device_param->device, CL_PROGRAM_BUILD_LOG, build_log_size, build_log, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramBuildInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
puts (build_log);
myfree (build_log);
}
if (CL_err != CL_SUCCESS)
{
device_param->skipped = true;
log_info ("- Device #%u: Kernel %s build failure. Proceed without this device.", device_id + 1, source_file);
continue;
}
size_t binary_size;
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program_amp, CL_PROGRAM_BINARY_SIZES, sizeof (size_t), &binary_size, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
u8 *binary = (u8 *) mymalloc (binary_size);
CL_err = hc_clGetProgramInfo (data.ocl, device_param->program_amp, CL_PROGRAM_BINARIES, sizeof (binary), &binary, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetProgramInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
writeProgramBin (cached_file, binary, binary_size);
local_free (binary);
}
else
{
#if defined (DEBUG)
if (quiet == 0) log_info ("- Device #%u: Kernel %s (%ld bytes)", device_id + 1, cached_file, cst.st_size);
#endif
load_kernel (cached_file, 1, kernel_lengths, kernel_sources);
CL_err = hc_clCreateProgramWithBinary (data.ocl, device_param->context, 1, &device_param->device, kernel_lengths, (const u8 **) kernel_sources, NULL, &device_param->program_amp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateProgramWithBinary(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clBuildProgram (data.ocl, device_param->program_amp, 1, &device_param->device, build_opts, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clBuildProgram(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
local_free (kernel_lengths);
local_free (kernel_sources[0]);
local_free (kernel_sources);
}
// return back to the folder we came from initially (workaround)
if (chdir (cwd) == -1)
{
log_error ("ERROR: %s: %s", cwd, strerror (errno));
return -1;
}
// some algorithm collide too fast, make that impossible
if (benchmark == 1)
{
((uint *) digests_buf)[0] = -1u;
((uint *) digests_buf)[1] = -1u;
((uint *) digests_buf)[2] = -1u;
((uint *) digests_buf)[3] = -1u;
}
/**
* global buffers
*/
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_pws, NULL, &device_param->d_pws_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_pws, NULL, &device_param->d_pws_amp_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_tmps, NULL, &device_param->d_tmps);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_hooks, NULL, &device_param->d_hooks);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s1_a);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s1_b);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s1_c);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s1_d);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s2_a);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s2_b);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s2_c);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, bitmap_size, NULL, &device_param->d_bitmap_s2_d);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_plains, NULL, &device_param->d_plain_bufs);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_digests, NULL, &device_param->d_digests_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_shown, NULL, &device_param->d_digests_shown);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_salts, NULL, &device_param->d_salt_bufs);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_results, NULL, &device_param->d_result);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_scrypt4, NULL, &device_param->d_scryptV0_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_scrypt4, NULL, &device_param->d_scryptV1_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_scrypt4, NULL, &device_param->d_scryptV2_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_WRITE, size_scrypt4, NULL, &device_param->d_scryptV3_buf);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s1_a, CL_TRUE, 0, bitmap_size, bitmap_s1_a, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s1_b, CL_TRUE, 0, bitmap_size, bitmap_s1_b, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s1_c, CL_TRUE, 0, bitmap_size, bitmap_s1_c, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s1_d, CL_TRUE, 0, bitmap_size, bitmap_s1_d, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s2_a, CL_TRUE, 0, bitmap_size, bitmap_s2_a, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s2_b, CL_TRUE, 0, bitmap_size, bitmap_s2_b, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s2_c, CL_TRUE, 0, bitmap_size, bitmap_s2_c, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_bitmap_s2_d, CL_TRUE, 0, bitmap_size, bitmap_s2_d, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_digests_buf, CL_TRUE, 0, size_digests, data.digests_buf, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_digests_shown, CL_TRUE, 0, size_shown, data.digests_shown, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_salt_bufs, CL_TRUE, 0, size_salts, data.salts_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
/**
* special buffers
*/
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_rules, NULL, &device_param->d_rules);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_rules_c, NULL, &device_param->d_rules_c);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_rules, CL_TRUE, 0, size_rules, kernel_rules_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_combs, NULL, &device_param->d_combs);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_combs, NULL, &device_param->d_combs_c);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_root_css, NULL, &device_param->d_root_css_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_markov_css, NULL, &device_param->d_markov_css_buf);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (attack_kern == ATTACK_KERN_BF)
{
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_bfs, NULL, &device_param->d_bfs);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_bfs, NULL, &device_param->d_bfs_c);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_tm, NULL, &device_param->d_tm_c);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_root_css, NULL, &device_param->d_root_css_buf);
CL_err |= hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_markov_css, NULL, &device_param->d_markov_css_buf);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (size_esalts)
{
CL_err = hc_clCreateBuffer (data.ocl, device_param->context, CL_MEM_READ_ONLY, size_esalts, NULL, &device_param->d_esalt_bufs);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_esalt_bufs, CL_TRUE, 0, size_esalts, data.esalts_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
/**
* main host data
*/
pw_t *pws_buf = (pw_t *) mymalloc (size_pws);
device_param->pws_buf = pws_buf;
comb_t *combs_buf = (comb_t *) mycalloc (KERNEL_COMBS, sizeof (comb_t));
device_param->combs_buf = combs_buf;
void *hooks_buf = mymalloc (size_hooks);
device_param->hooks_buf = hooks_buf;
/**
* kernel args
*/
device_param->kernel_params_buf32[24] = bitmap_mask;
device_param->kernel_params_buf32[25] = bitmap_shift1;
device_param->kernel_params_buf32[26] = bitmap_shift2;
device_param->kernel_params_buf32[27] = 0; // salt_pos
device_param->kernel_params_buf32[28] = 0; // loop_pos
device_param->kernel_params_buf32[29] = 0; // loop_cnt
device_param->kernel_params_buf32[30] = 0; // kernel_rules_cnt
device_param->kernel_params_buf32[31] = 0; // digests_cnt
device_param->kernel_params_buf32[32] = 0; // digests_offset
device_param->kernel_params_buf32[33] = 0; // combs_mode
device_param->kernel_params_buf32[34] = 0; // gid_max
device_param->kernel_params[ 0] = (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
? &device_param->d_pws_buf
: &device_param->d_pws_amp_buf;
device_param->kernel_params[ 1] = &device_param->d_rules_c;
device_param->kernel_params[ 2] = &device_param->d_combs_c;
device_param->kernel_params[ 3] = &device_param->d_bfs_c;
device_param->kernel_params[ 4] = &device_param->d_tmps;
device_param->kernel_params[ 5] = &device_param->d_hooks;
device_param->kernel_params[ 6] = &device_param->d_bitmap_s1_a;
device_param->kernel_params[ 7] = &device_param->d_bitmap_s1_b;
device_param->kernel_params[ 8] = &device_param->d_bitmap_s1_c;
device_param->kernel_params[ 9] = &device_param->d_bitmap_s1_d;
device_param->kernel_params[10] = &device_param->d_bitmap_s2_a;
device_param->kernel_params[11] = &device_param->d_bitmap_s2_b;
device_param->kernel_params[12] = &device_param->d_bitmap_s2_c;
device_param->kernel_params[13] = &device_param->d_bitmap_s2_d;
device_param->kernel_params[14] = &device_param->d_plain_bufs;
device_param->kernel_params[15] = &device_param->d_digests_buf;
device_param->kernel_params[16] = &device_param->d_digests_shown;
device_param->kernel_params[17] = &device_param->d_salt_bufs;
device_param->kernel_params[18] = &device_param->d_esalt_bufs;
device_param->kernel_params[19] = &device_param->d_result;
device_param->kernel_params[20] = &device_param->d_scryptV0_buf;
device_param->kernel_params[21] = &device_param->d_scryptV1_buf;
device_param->kernel_params[22] = &device_param->d_scryptV2_buf;
device_param->kernel_params[23] = &device_param->d_scryptV3_buf;
device_param->kernel_params[24] = &device_param->kernel_params_buf32[24];
device_param->kernel_params[25] = &device_param->kernel_params_buf32[25];
device_param->kernel_params[26] = &device_param->kernel_params_buf32[26];
device_param->kernel_params[27] = &device_param->kernel_params_buf32[27];
device_param->kernel_params[28] = &device_param->kernel_params_buf32[28];
device_param->kernel_params[29] = &device_param->kernel_params_buf32[29];
device_param->kernel_params[30] = &device_param->kernel_params_buf32[30];
device_param->kernel_params[31] = &device_param->kernel_params_buf32[31];
device_param->kernel_params[32] = &device_param->kernel_params_buf32[32];
device_param->kernel_params[33] = &device_param->kernel_params_buf32[33];
device_param->kernel_params[34] = &device_param->kernel_params_buf32[34];
device_param->kernel_params_mp_buf64[3] = 0;
device_param->kernel_params_mp_buf32[4] = 0;
device_param->kernel_params_mp_buf32[5] = 0;
device_param->kernel_params_mp_buf32[6] = 0;
device_param->kernel_params_mp_buf32[7] = 0;
device_param->kernel_params_mp_buf32[8] = 0;
device_param->kernel_params_mp[0] = NULL;
device_param->kernel_params_mp[1] = NULL;
device_param->kernel_params_mp[2] = NULL;
device_param->kernel_params_mp[3] = &device_param->kernel_params_mp_buf64[3];
device_param->kernel_params_mp[4] = &device_param->kernel_params_mp_buf32[4];
device_param->kernel_params_mp[5] = &device_param->kernel_params_mp_buf32[5];
device_param->kernel_params_mp[6] = &device_param->kernel_params_mp_buf32[6];
device_param->kernel_params_mp[7] = &device_param->kernel_params_mp_buf32[7];
device_param->kernel_params_mp[8] = &device_param->kernel_params_mp_buf32[8];
device_param->kernel_params_mp_l_buf64[3] = 0;
device_param->kernel_params_mp_l_buf32[4] = 0;
device_param->kernel_params_mp_l_buf32[5] = 0;
device_param->kernel_params_mp_l_buf32[6] = 0;
device_param->kernel_params_mp_l_buf32[7] = 0;
device_param->kernel_params_mp_l_buf32[8] = 0;
device_param->kernel_params_mp_l_buf32[9] = 0;
device_param->kernel_params_mp_l[0] = NULL;
device_param->kernel_params_mp_l[1] = NULL;
device_param->kernel_params_mp_l[2] = NULL;
device_param->kernel_params_mp_l[3] = &device_param->kernel_params_mp_l_buf64[3];
device_param->kernel_params_mp_l[4] = &device_param->kernel_params_mp_l_buf32[4];
device_param->kernel_params_mp_l[5] = &device_param->kernel_params_mp_l_buf32[5];
device_param->kernel_params_mp_l[6] = &device_param->kernel_params_mp_l_buf32[6];
device_param->kernel_params_mp_l[7] = &device_param->kernel_params_mp_l_buf32[7];
device_param->kernel_params_mp_l[8] = &device_param->kernel_params_mp_l_buf32[8];
device_param->kernel_params_mp_l[9] = &device_param->kernel_params_mp_l_buf32[9];
device_param->kernel_params_mp_r_buf64[3] = 0;
device_param->kernel_params_mp_r_buf32[4] = 0;
device_param->kernel_params_mp_r_buf32[5] = 0;
device_param->kernel_params_mp_r_buf32[6] = 0;
device_param->kernel_params_mp_r_buf32[7] = 0;
device_param->kernel_params_mp_r_buf32[8] = 0;
device_param->kernel_params_mp_r[0] = NULL;
device_param->kernel_params_mp_r[1] = NULL;
device_param->kernel_params_mp_r[2] = NULL;
device_param->kernel_params_mp_r[3] = &device_param->kernel_params_mp_r_buf64[3];
device_param->kernel_params_mp_r[4] = &device_param->kernel_params_mp_r_buf32[4];
device_param->kernel_params_mp_r[5] = &device_param->kernel_params_mp_r_buf32[5];
device_param->kernel_params_mp_r[6] = &device_param->kernel_params_mp_r_buf32[6];
device_param->kernel_params_mp_r[7] = &device_param->kernel_params_mp_r_buf32[7];
device_param->kernel_params_mp_r[8] = &device_param->kernel_params_mp_r_buf32[8];
device_param->kernel_params_amp_buf32[5] = 0; // combs_mode
device_param->kernel_params_amp_buf32[6] = 0; // gid_max
device_param->kernel_params_amp[0] = &device_param->d_pws_buf;
device_param->kernel_params_amp[1] = &device_param->d_pws_amp_buf;
device_param->kernel_params_amp[2] = &device_param->d_rules_c;
device_param->kernel_params_amp[3] = &device_param->d_combs_c;
device_param->kernel_params_amp[4] = &device_param->d_bfs_c;
device_param->kernel_params_amp[5] = &device_param->kernel_params_amp_buf32[5];
device_param->kernel_params_amp[6] = &device_param->kernel_params_amp_buf32[6];
device_param->kernel_params_tm[0] = &device_param->d_bfs_c;
device_param->kernel_params_tm[1] = &device_param->d_tm_c;
device_param->kernel_params_memset_buf32[1] = 0; // value
device_param->kernel_params_memset_buf32[2] = 0; // gid_max
device_param->kernel_params_memset[0] = NULL;
device_param->kernel_params_memset[1] = &device_param->kernel_params_memset_buf32[1];
device_param->kernel_params_memset[2] = &device_param->kernel_params_memset_buf32[2];
/**
* kernel name
*/
size_t kernel_wgs_tmp;
char kernel_name[64] = { 0 };
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_s%02d", hashconfig->kern_type, 4);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel1);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_s%02d", hashconfig->kern_type, 8);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel2);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_s%02d", hashconfig->kern_type, 16);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel3);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_m%02d", hashconfig->kern_type, 4);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel1);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_m%02d", hashconfig->kern_type, 8);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel2);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_m%02d", hashconfig->kern_type, 16);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel3);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (attack_mode == ATTACK_MODE_BF)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_BITSLICE)
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_tm", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel_tm);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_tm, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
}
else
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_init", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel1);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_loop", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel2);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_comp", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel3);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (hashconfig->opts_type & OPTS_TYPE_HOOK12)
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_hook12", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel12);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel12, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (hashconfig->opts_type & OPTS_TYPE_HOOK23)
{
snprintf (kernel_name, sizeof (kernel_name) - 1, "m%05d_hook23", hashconfig->kern_type);
CL_err = hc_clCreateKernel (data.ocl, device_param->program, kernel_name, &device_param->kernel23);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel23, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
CL_err |= hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel1, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
CL_err |= hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel2, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
CL_err |= hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel3, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
for (uint i = 0; i <= 23; i++)
{
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel1, i, sizeof (cl_mem), device_param->kernel_params[i]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel2, i, sizeof (cl_mem), device_param->kernel_params[i]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel3, i, sizeof (cl_mem), device_param->kernel_params[i]);
if (hashconfig->opts_type & OPTS_TYPE_HOOK12) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel12, i, sizeof (cl_mem), device_param->kernel_params[i]);
if (hashconfig->opts_type & OPTS_TYPE_HOOK23) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel23, i, sizeof (cl_mem), device_param->kernel_params[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
for (uint i = 24; i <= 34; i++)
{
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel1, i, sizeof (cl_uint), device_param->kernel_params[i]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel2, i, sizeof (cl_uint), device_param->kernel_params[i]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel3, i, sizeof (cl_uint), device_param->kernel_params[i]);
if (hashconfig->opts_type & OPTS_TYPE_HOOK12) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel12, i, sizeof (cl_uint), device_param->kernel_params[i]);
if (hashconfig->opts_type & OPTS_TYPE_HOOK23) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel23, i, sizeof (cl_uint), device_param->kernel_params[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
// GPU memset
CL_err = hc_clCreateKernel (data.ocl, device_param->program, "gpu_memset", &device_param->kernel_memset);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_memset, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_memset, 0, sizeof (cl_mem), device_param->kernel_params_memset[0]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_memset, 1, sizeof (cl_uint), device_param->kernel_params_memset[1]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_memset, 2, sizeof (cl_uint), device_param->kernel_params_memset[2]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
// MP start
if (attack_mode == ATTACK_MODE_BF)
{
CL_err |= hc_clCreateKernel (data.ocl, device_param->program_mp, "l_markov", &device_param->kernel_mp_l);
CL_err |= hc_clCreateKernel (data.ocl, device_param->program_mp, "r_markov", &device_param->kernel_mp_r);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_mp_l, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
CL_err |= hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_mp_r, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (hashconfig->opts_type & OPTS_TYPE_PT_BITSLICE)
{
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_tm, 0, sizeof (cl_mem), device_param->kernel_params_tm[0]);
CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_tm, 1, sizeof (cl_mem), device_param->kernel_params_tm[1]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else if (attack_mode == ATTACK_MODE_HYBRID1)
{
CL_err = hc_clCreateKernel (data.ocl, device_param->program_mp, "C_markov", &device_param->kernel_mp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_mp, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
else if (attack_mode == ATTACK_MODE_HYBRID2)
{
CL_err = hc_clCreateKernel (data.ocl, device_param->program_mp, "C_markov", &device_param->kernel_mp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_mp, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
// nothing to do
}
else
{
CL_err = hc_clCreateKernel (data.ocl, device_param->program_amp, "amp", &device_param->kernel_amp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clCreateKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err = hc_clGetKernelWorkGroupInfo (data.ocl, device_param->kernel_amp, device_param->device, CL_KERNEL_WORK_GROUP_SIZE, sizeof (size_t), &kernel_wgs_tmp, NULL); kernel_threads = MIN (kernel_threads, kernel_wgs_tmp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clGetKernelWorkGroupInfo(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
// nothing to do
}
else
{
for (uint i = 0; i < 5; i++)
{
CL_err = hc_clSetKernelArg (data.ocl, device_param->kernel_amp, i, sizeof (cl_mem), device_param->kernel_params_amp[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
for (uint i = 5; i < 7; i++)
{
CL_err = hc_clSetKernelArg (data.ocl, device_param->kernel_amp, i, sizeof (cl_uint), device_param->kernel_params_amp[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
// maybe this has been updated by clGetKernelWorkGroupInfo()
// value can only be decreased, so we don't need to reallocate buffers
device_param->kernel_threads = kernel_threads;
// zero some data buffers
run_kernel_bzero (device_param, device_param->d_pws_buf, size_pws);
run_kernel_bzero (device_param, device_param->d_pws_amp_buf, size_pws);
run_kernel_bzero (device_param, device_param->d_tmps, size_tmps);
run_kernel_bzero (device_param, device_param->d_hooks, size_hooks);
run_kernel_bzero (device_param, device_param->d_plain_bufs, size_plains);
run_kernel_bzero (device_param, device_param->d_result, size_results);
/**
* special buffers
*/
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
run_kernel_bzero (device_param, device_param->d_rules_c, size_rules_c);
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
run_kernel_bzero (device_param, device_param->d_combs, size_combs);
run_kernel_bzero (device_param, device_param->d_combs_c, size_combs);
run_kernel_bzero (device_param, device_param->d_root_css_buf, size_root_css);
run_kernel_bzero (device_param, device_param->d_markov_css_buf, size_markov_css);
}
else if (attack_kern == ATTACK_KERN_BF)
{
run_kernel_bzero (device_param, device_param->d_bfs, size_bfs);
run_kernel_bzero (device_param, device_param->d_bfs_c, size_bfs);
run_kernel_bzero (device_param, device_param->d_tm_c, size_tm);
run_kernel_bzero (device_param, device_param->d_root_css_buf, size_root_css);
run_kernel_bzero (device_param, device_param->d_markov_css_buf, size_markov_css);
}
#if defined(HAVE_HWMON)
/**
* Store initial fanspeed if gpu_temp_retain is enabled
*/
if (gpu_temp_disable == 0)
{
if (gpu_temp_retain != 0)
{
hc_thread_mutex_lock (mux_hwmon);
if (data.hm_device[device_id].fan_get_supported == 1)
{
const int fanspeed = hm_get_fanspeed_with_device_id (device_id);
const int fanpolicy = hm_get_fanpolicy_with_device_id (device_id);
// we also set it to tell the OS we take control over the fan and it's automatic controller
// if it was set to automatic. we do not control user-defined fanspeeds.
if (fanpolicy == 1)
{
data.hm_device[device_id].fan_set_supported = 1;
int rc = -1;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
rc = hm_set_fanspeed_with_device_id_adl (device_id, fanspeed, 1);
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
#if defined (__linux__)
rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_TRUE);
#endif
#if defined (_WIN)
rc = hm_set_fanspeed_with_device_id_nvapi (device_id, fanspeed, 1);
#endif
}
if (rc == 0)
{
data.hm_device[device_id].fan_set_supported = 1;
}
else
{
log_info ("WARNING: Failed to set initial fan speed for device #%u", device_id + 1);
data.hm_device[device_id].fan_set_supported = 0;
}
}
else
{
data.hm_device[device_id].fan_set_supported = 0;
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
}
#endif // HAVE_HWMON
}
if (data.quiet == 0) log_info_nn ("");
/**
* In benchmark-mode, inform user which algorithm is checked
*/
if (benchmark == 1)
{
if (machine_readable == 0)
{
quiet = 0;
data.quiet = quiet;
char *hash_type = strhashtype (hashconfig->hash_mode); // not a bug
log_info ("Hashtype: %s", hash_type);
log_info ("");
}
}
/**
* keep track of the progress
*/
data.words_progress_done = (u64 *) mycalloc (data.salts_cnt, sizeof (u64));
data.words_progress_rejected = (u64 *) mycalloc (data.salts_cnt, sizeof (u64));
data.words_progress_restored = (u64 *) mycalloc (data.salts_cnt, sizeof (u64));
/**
* open filehandles
*/
#if defined (_WIN)
if (_setmode (_fileno (stdin), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stdin", strerror (errno));
return -1;
}
if (_setmode (_fileno (stdout), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stdout", strerror (errno));
return -1;
}
if (_setmode (_fileno (stderr), _O_BINARY) == -1)
{
log_error ("ERROR: %s: %s", "stderr", strerror (errno));
return -1;
}
#endif
/**
* dictionary pad
*/
segment_size *= (1024 * 1024);
data.segment_size = segment_size;
wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t));
wl_data->buf = (char *) mymalloc (segment_size);
wl_data->avail = segment_size;
wl_data->incr = segment_size;
wl_data->cnt = 0;
wl_data->pos = 0;
cs_t *css_buf = NULL;
uint css_cnt = 0;
uint dictcnt = 0;
uint maskcnt = 1;
char **masks = NULL;
char **dictfiles = NULL;
uint mask_from_file = 0;
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
if (wordlist_mode == WL_MODE_FILE)
{
int wls_left = myargc - (optind + 1);
for (int i = 0; i < wls_left; i++)
{
char *l0_filename = myargv[optind + 1 + i];
struct stat l0_stat;
if (stat (l0_filename, &l0_stat) == -1)
{
log_error ("ERROR: %s: %s", l0_filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (l0_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = l0_filename;
}
else
{
// do not allow --keyspace w/ a directory
if (keyspace == 1)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (l0_filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
}
else if (wordlist_mode == WL_MODE_STDIN)
{
dictcnt = 1;
}
}
else if (attack_mode == ATTACK_MODE_COMBI)
{
// display
char *dictfile1 = myargv[optind + 1 + 0];
char *dictfile2 = myargv[optind + 1 + 1];
// find the bigger dictionary and use as base
FILE *fp1 = NULL;
FILE *fp2 = NULL;
struct stat tmp_stat;
if ((fp1 = fopen (dictfile1, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", dictfile1, strerror (errno));
return -1;
}
if (stat (dictfile1, &tmp_stat) == -1)
{
log_error ("ERROR: %s: %s", dictfile1, strerror (errno));
fclose (fp1);
return -1;
}
if (S_ISDIR (tmp_stat.st_mode))
{
log_error ("ERROR: %s must be a regular file", dictfile1, strerror (errno));
fclose (fp1);
return -1;
}
if ((fp2 = fopen (dictfile2, "rb")) == NULL)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
fclose (fp1);
return -1;
}
if (stat (dictfile2, &tmp_stat) == -1)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
fclose (fp1);
fclose (fp2);
return -1;
}
if (S_ISDIR (tmp_stat.st_mode))
{
log_error ("ERROR: %s must be a regular file", dictfile2, strerror (errno));
fclose (fp1);
fclose (fp2);
return -1;
}
data.combs_cnt = 1;
data.quiet = 1;
const u64 words1_cnt = count_words (wl_data, fp1, dictfile1, dictstat_ctx);
data.quiet = quiet;
if (words1_cnt == 0)
{
log_error ("ERROR: %s: empty file", dictfile1);
fclose (fp1);
fclose (fp2);
return -1;
}
data.combs_cnt = 1;
data.quiet = 1;
const u64 words2_cnt = count_words (wl_data, fp2, dictfile2, dictstat_ctx);
data.quiet = quiet;
if (words2_cnt == 0)
{
log_error ("ERROR: %s: empty file", dictfile2);
fclose (fp1);
fclose (fp2);
return -1;
}
fclose (fp1);
fclose (fp2);
data.dictfile = dictfile1;
data.dictfile2 = dictfile2;
if (words1_cnt >= words2_cnt)
{
data.combs_cnt = words2_cnt;
data.combs_mode = COMBINATOR_MODE_BASE_LEFT;
dictfiles = &data.dictfile;
dictcnt = 1;
}
else
{
data.combs_cnt = words1_cnt;
data.combs_mode = COMBINATOR_MODE_BASE_RIGHT;
dictfiles = &data.dictfile2;
dictcnt = 1;
// we also have to switch wordlist related rules!
char *tmpc = data.rule_buf_l;
data.rule_buf_l = data.rule_buf_r;
data.rule_buf_r = tmpc;
int tmpi = data.rule_len_l;
data.rule_len_l = data.rule_len_r;
data.rule_len_r = tmpi;
}
}
else if (attack_mode == ATTACK_MODE_BF)
{
char *mask = NULL;
maskcnt = 0;
if (benchmark == 0)
{
mask = myargv[optind + 1];
masks = (char **) mymalloc (INCR_MASKS * sizeof (char *));
if ((optind + 2) <= myargc)
{
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
int wls_left = myargc - (optind + 1);
uint masks_avail = INCR_MASKS;
for (int i = 0; i < wls_left; i++)
{
if (i != 0)
{
mask = myargv[optind + 1 + i];
if (stat (mask, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
}
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
}
else
{
log_error ("ERROR: %s: unsupported file-type", mask);
return -1;
}
}
mask_from_file = 1;
}
}
else
{
custom_charset_1 = (char *) "?l?d?u";
custom_charset_2 = (char *) "?l?d";
custom_charset_3 = (char *) "?l?d*!$@_";
mp_setup_usr (mp_sys, mp_usr, custom_charset_1, 0, hashconfig);
mp_setup_usr (mp_sys, mp_usr, custom_charset_2, 1, hashconfig);
mp_setup_usr (mp_sys, mp_usr, custom_charset_3, 2, hashconfig);
masks[maskcnt] = mystrdup ("?1?2?2?2?2?2?2?3?3?3?3?d?d?d?d");
wordlist_mode = WL_MODE_MASK;
data.wordlist_mode = wordlist_mode;
increment = 1;
maskcnt = 1;
}
}
else
{
/**
* generate full masks and charsets
*/
masks = (char **) mymalloc (sizeof (char *));
switch (hashconfig->hash_mode)
{
case 1731: pw_min = 5;
pw_max = 5;
mask = mystrdup ("?b?b?b?b?b");
break;
case 12500: pw_min = 5;
pw_max = 5;
mask = mystrdup ("?b?b?b?b?b");
break;
default: pw_min = 7;
pw_max = 7;
mask = mystrdup ("?b?b?b?b?b?b?b");
break;
}
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
wordlist_mode = WL_MODE_MASK;
data.wordlist_mode = wordlist_mode;
increment = 1;
}
dictfiles = (char **) mycalloc (pw_max, sizeof (char *));
if (increment)
{
if (increment_min > pw_min) pw_min = increment_min;
if (increment_max < pw_max) pw_max = increment_max;
}
}
else if (attack_mode == ATTACK_MODE_HYBRID1)
{
data.combs_mode = COMBINATOR_MODE_BASE_LEFT;
// display
char *mask = myargv[myargc - 1];
maskcnt = 0;
masks = (char **) mymalloc (1 * sizeof (char *));
// mod
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
uint masks_avail = 1;
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
mask_from_file = 1;
}
else
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
}
// base
int wls_left = myargc - (optind + 2);
for (int i = 0; i < wls_left; i++)
{
char *filename = myargv[optind + 1 + i];
struct stat file_stat;
if (stat (filename, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (file_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = filename;
}
else
{
// do not allow --keyspace w/ a directory
if (keyspace == 1)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
if (increment)
{
maskcnt = 0;
uint mask_min = increment_min; // we can't reject smaller masks here
uint mask_max = (increment_max < pw_max) ? increment_max : pw_max;
for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++)
{
char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur);
if (cur_mask == NULL) break;
masks[maskcnt] = cur_mask;
maskcnt++;
masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *));
}
}
}
else if (attack_mode == ATTACK_MODE_HYBRID2)
{
data.combs_mode = COMBINATOR_MODE_BASE_RIGHT;
// display
char *mask = myargv[optind + 1 + 0];
maskcnt = 0;
masks = (char **) mymalloc (1 * sizeof (char *));
// mod
struct stat file_stat;
if (stat (mask, &file_stat) == -1)
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
else
{
uint is_file = S_ISREG (file_stat.st_mode);
if (is_file == 1)
{
FILE *mask_fp;
if ((mask_fp = fopen (mask, "r")) == NULL)
{
log_error ("ERROR: %s: %s", mask, strerror (errno));
return -1;
}
char *line_buf = (char *) mymalloc (HCBUFSIZ_LARGE);
uint masks_avail = 1;
while (!feof (mask_fp))
{
memset (line_buf, 0, HCBUFSIZ_LARGE);
int line_len = fgetl (mask_fp, line_buf);
if (line_len == 0) continue;
if (line_buf[0] == '#') continue;
if (masks_avail == maskcnt)
{
masks = (char **) myrealloc (masks, masks_avail * sizeof (char *), INCR_MASKS * sizeof (char *));
masks_avail += INCR_MASKS;
}
masks[maskcnt] = mystrdup (line_buf);
maskcnt++;
}
myfree (line_buf);
fclose (mask_fp);
mask_from_file = 1;
}
else
{
maskcnt = 1;
masks[maskcnt - 1] = mystrdup (mask);
}
}
// base
int wls_left = myargc - (optind + 2);
for (int i = 0; i < wls_left; i++)
{
char *filename = myargv[optind + 2 + i];
struct stat file_stat;
if (stat (filename, &file_stat) == -1)
{
log_error ("ERROR: %s: %s", filename, strerror (errno));
return -1;
}
uint is_dir = S_ISDIR (file_stat.st_mode);
if (is_dir == 0)
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = filename;
}
else
{
// do not allow --keyspace w/ a directory
if (keyspace == 1)
{
log_error ("ERROR: Keyspace parameter is not allowed together with a directory");
return -1;
}
char **dictionary_files = NULL;
dictionary_files = scan_directory (filename);
if (dictionary_files != NULL)
{
qsort (dictionary_files, count_dictionaries (dictionary_files), sizeof (char *), sort_by_stringptr);
for (int d = 0; dictionary_files[d] != NULL; d++)
{
char *l1_filename = dictionary_files[d];
struct stat l1_stat;
if (stat (l1_filename, &l1_stat) == -1)
{
log_error ("ERROR: %s: %s", l1_filename, strerror (errno));
return -1;
}
if (S_ISREG (l1_stat.st_mode))
{
dictfiles = (char **) myrealloc (dictfiles, dictcnt * sizeof (char *), sizeof (char *));
dictcnt++;
dictfiles[dictcnt - 1] = mystrdup (l1_filename);
}
}
}
local_free (dictionary_files);
}
}
if (dictcnt < 1)
{
log_error ("ERROR: No usable dictionary file found.");
return -1;
}
if (increment)
{
maskcnt = 0;
uint mask_min = increment_min; // we can't reject smaller masks here
uint mask_max = (increment_max < pw_max) ? increment_max : pw_max;
for (uint mask_cur = mask_min; mask_cur <= mask_max; mask_cur++)
{
char *cur_mask = mp_get_truncated_mask (mask, strlen (mask), mask_cur);
if (cur_mask == NULL) break;
masks[maskcnt] = cur_mask;
maskcnt++;
masks = (char **) myrealloc (masks, maskcnt * sizeof (char *), sizeof (char *));
}
}
}
data.pw_min = pw_min;
data.pw_max = pw_max;
/**
* weak hash check
*/
if (weak_hash_threshold >= salts_cnt)
{
hc_device_param_t *device_param = NULL;
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
break;
}
if (data.quiet == 0) log_info_nn ("Checking for weak hashes...");
for (uint salt_pos = 0; salt_pos < salts_cnt; salt_pos++)
{
weak_hash_check (device_param, hashconfig, salt_pos);
}
// Display hack, guarantee that there is at least one \r before real start
//if (data.quiet == 0) log_info ("");
}
/**
* status and monitor threads
*/
if ((data.devices_status != STATUS_BYPASS) && (data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
data.devices_status = STATUS_STARTING;
}
uint inner_threads_cnt = 0;
hc_thread_t *inner_threads = (hc_thread_t *) mycalloc (10, sizeof (hc_thread_t));
data.shutdown_inner = 0;
/**
* Outfile remove
*/
if (keyspace == 0 && benchmark == 0 && stdout_flag == 0)
{
hc_thread_create (inner_threads[inner_threads_cnt], thread_monitor, NULL);
inner_threads_cnt++;
if (outfile_check_timer != 0)
{
if (data.outfile_check_directory != NULL)
{
if ((hashconfig->hash_mode != 5200) &&
!((hashconfig->hash_mode >= 6200) && (hashconfig->hash_mode <= 6299)) &&
!((hashconfig->hash_mode >= 13700) && (hashconfig->hash_mode <= 13799)) &&
(hashconfig->hash_mode != 9000))
{
hc_thread_create (inner_threads[inner_threads_cnt], thread_outfile_remove, NULL);
inner_threads_cnt++;
}
else
{
outfile_check_timer = 0;
}
}
else
{
outfile_check_timer = 0;
}
}
}
data.outfile_check_timer = outfile_check_timer;
/**
* main loop
*/
if (data.quiet == 0)
{
if (potfile_remove_cracks > 0)
{
if (potfile_remove_cracks == 1) log_info ("INFO: Removed 1 hash found in potfile\n");
else log_info ("INFO: Removed %d hashes found in potfile\n", potfile_remove_cracks);
}
}
potfile_write_open (potfile_ctx);
char **induction_dictionaries = NULL;
int induction_dictionaries_cnt = 0;
hcstat_table_t *root_table_buf = NULL;
hcstat_table_t *markov_table_buf = NULL;
uint initial_restore_done = 0;
data.maskcnt = maskcnt;
for (uint maskpos = rd->maskpos; maskpos < maskcnt; maskpos++)
{
if (data.devices_status == STATUS_CRACKED) continue;
if (data.devices_status == STATUS_ABORTED) continue;
if (data.devices_status == STATUS_QUIT) continue;
if (maskpos > rd->maskpos)
{
rd->dictpos = 0;
}
rd->maskpos = maskpos;
data.maskpos = maskpos;
if (attack_mode == ATTACK_MODE_HYBRID1 || attack_mode == ATTACK_MODE_HYBRID2 || attack_mode == ATTACK_MODE_BF)
{
char *mask = masks[maskpos];
if (mask_from_file == 1)
{
if (mask[0] == '\\' && mask[1] == '#') mask++; // escaped comment sign (sharp) "\#"
char *str_ptr;
uint str_pos;
uint mask_offset = 0;
uint separator_cnt;
for (separator_cnt = 0; separator_cnt < 4; separator_cnt++)
{
str_ptr = strstr (mask + mask_offset, ",");
if (str_ptr == NULL) break;
str_pos = str_ptr - mask;
// escaped separator, i.e. "\,"
if (str_pos > 0)
{
if (mask[str_pos - 1] == '\\')
{
separator_cnt --;
mask_offset = str_pos + 1;
continue;
}
}
// reset the offset
mask_offset = 0;
mask[str_pos] = '\0';
switch (separator_cnt)
{
case 0:
mp_reset_usr (mp_usr, 0);
custom_charset_1 = mask;
mp_setup_usr (mp_sys, mp_usr, custom_charset_1, 0, hashconfig);
break;
case 1:
mp_reset_usr (mp_usr, 1);
custom_charset_2 = mask;
mp_setup_usr (mp_sys, mp_usr, custom_charset_2, 1, hashconfig);
break;
case 2:
mp_reset_usr (mp_usr, 2);
custom_charset_3 = mask;
mp_setup_usr (mp_sys, mp_usr, custom_charset_3, 2, hashconfig);
break;
case 3:
mp_reset_usr (mp_usr, 3);
custom_charset_4 = mask;
mp_setup_usr (mp_sys, mp_usr, custom_charset_4, 3, hashconfig);
break;
}
mask = mask + str_pos + 1;
}
/**
* What follows is a very special case where "\," is within the mask field of a line in a .hcmask file only because otherwise (without the "\")
* it would be interpreted as a custom charset definition.
*
* We need to replace all "\," with just "," within the mask (but allow the special case "\\," which means "\" followed by ",")
* Note: "\\" is not needed to replace all "\" within the mask! The meaning of "\\" within a line containing the string "\\," is just to allow "\" followed by ","
*/
uint mask_len_cur = strlen (mask);
uint mask_out_pos = 0;
char mask_prev = 0;
for (uint mask_iter = 0; mask_iter < mask_len_cur; mask_iter++, mask_out_pos++)
{
if (mask[mask_iter] == ',')
{
if (mask_prev == '\\')
{
mask_out_pos -= 1; // this means: skip the previous "\"
}
}
mask_prev = mask[mask_iter];
mask[mask_out_pos] = mask[mask_iter];
}
mask[mask_out_pos] = '\0';
}
if ((attack_mode == ATTACK_MODE_HYBRID1) || (attack_mode == ATTACK_MODE_HYBRID2))
{
if (maskpos > 0)
{
local_free (css_buf);
local_free (data.root_css_buf);
local_free (data.markov_css_buf);
local_free (masks[maskpos - 1]);
}
css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig);
data.mask = mask;
data.css_cnt = css_cnt;
data.css_buf = css_buf;
uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } };
mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls);
if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t));
if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t));
sp_setup_tbl (shared_dir, markov_hcstat, markov_disable, markov_classic, root_table_buf, markov_table_buf);
markov_threshold = (markov_threshold != 0) ? markov_threshold : CHARSIZ;
cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t));
cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t));
data.root_css_buf = root_css_buf;
data.markov_css_buf = markov_css_buf;
sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, markov_threshold, uniq_tbls);
data.combs_cnt = sp_get_sum (0, css_cnt, root_css_buf);
local_free (root_table_buf);
local_free (markov_table_buf);
// args
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
device_param->kernel_params_mp[0] = &device_param->d_combs;
device_param->kernel_params_mp[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_buf64[3] = 0;
device_param->kernel_params_mp_buf32[4] = css_cnt;
device_param->kernel_params_mp_buf32[5] = 0;
device_param->kernel_params_mp_buf32[6] = 0;
device_param->kernel_params_mp_buf32[7] = 0;
if (attack_mode == ATTACK_MODE_HYBRID1)
{
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_buf32[5] = full01;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_buf32[5] = full80;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_buf32[6] = 1;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_buf32[7] = 1;
}
else if (attack_mode == ATTACK_MODE_HYBRID2)
{
device_param->kernel_params_mp_buf32[5] = 0;
device_param->kernel_params_mp_buf32[6] = 0;
device_param->kernel_params_mp_buf32[7] = 0;
}
cl_int CL_err = CL_SUCCESS;
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp[i]);
for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
else if (attack_mode == ATTACK_MODE_BF)
{
dictcnt = 0; // number of "sub-masks", i.e. when using incremental mode
if (increment)
{
for (uint i = 0; i < dictcnt; i++)
{
local_free (dictfiles[i]);
}
for (uint pw_len = MAX (1, pw_min); pw_len <= pw_max; pw_len++)
{
char *l1_filename = mp_get_truncated_mask (mask, strlen (mask), pw_len);
if (l1_filename == NULL) break;
dictcnt++;
dictfiles[dictcnt - 1] = l1_filename;
}
}
else
{
dictcnt++;
dictfiles[dictcnt - 1] = mask;
}
if (dictcnt == 0)
{
log_error ("ERROR: Mask is too small");
return -1;
}
}
}
free (induction_dictionaries);
// induction_dictionaries_cnt = 0; // implied
if (attack_mode != ATTACK_MODE_BF)
{
if (keyspace == 0)
{
induction_dictionaries = scan_directory (induction_directory);
induction_dictionaries_cnt = count_dictionaries (induction_dictionaries);
}
}
if (induction_dictionaries_cnt)
{
qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime);
}
/**
* prevent the user from using --skip/--limit together w/ maskfile and or dictfile
*/
if (skip != 0 || limit != 0)
{
if ((maskcnt > 1) || (dictcnt > 1))
{
log_error ("ERROR: --skip/--limit are not supported with --increment or mask files");
return -1;
}
}
/**
* prevent the user from using --keyspace together w/ maskfile and or dictfile
*/
if (keyspace == 1)
{
if ((maskcnt > 1) || (dictcnt > 1))
{
log_error ("ERROR: --keyspace is not supported with --increment or mask files");
return -1;
}
}
for (uint dictpos = rd->dictpos; dictpos < dictcnt; dictpos++)
{
if (data.devices_status == STATUS_CRACKED) continue;
if (data.devices_status == STATUS_ABORTED) continue;
if (data.devices_status == STATUS_QUIT) continue;
rd->dictpos = dictpos;
char *subid = logfile_generate_subid ();
data.subid = subid;
logfile_sub_msg ("START");
if ((data.devices_status != STATUS_BYPASS) && (data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
data.devices_status = STATUS_INIT;
}
memset (data.words_progress_done, 0, data.salts_cnt * sizeof (u64));
memset (data.words_progress_rejected, 0, data.salts_cnt * sizeof (u64));
memset (data.words_progress_restored, 0, data.salts_cnt * sizeof (u64));
memset (data.cpt_buf, 0, CPT_BUF * sizeof (cpt_t));
data.cpt_pos = 0;
data.cpt_start = time (NULL);
data.cpt_total = 0;
if (data.restore == 0)
{
rd->words_cur = skip;
skip = 0;
data.skip = 0;
}
data.ms_paused = 0;
data.kernel_power_final = 0;
data.words_cur = rd->words_cur;
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
device_param->speed_pos = 0;
memset (device_param->speed_cnt, 0, SPEED_CACHE * sizeof (u64));
memset (device_param->speed_ms, 0, SPEED_CACHE * sizeof (double));
device_param->exec_pos = 0;
memset (device_param->exec_ms, 0, EXEC_CACHE * sizeof (double));
device_param->outerloop_pos = 0;
device_param->outerloop_left = 0;
device_param->innerloop_pos = 0;
device_param->innerloop_left = 0;
// some more resets:
if (device_param->pws_buf) memset (device_param->pws_buf, 0, device_param->size_pws);
device_param->pws_cnt = 0;
device_param->words_off = 0;
device_param->words_done = 0;
}
// figure out some workload
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
if (data.wordlist_mode == WL_MODE_FILE)
{
char *dictfile = NULL;
if (induction_dictionaries_cnt)
{
dictfile = induction_dictionaries[0];
}
else
{
dictfile = dictfiles[dictpos];
}
data.dictfile = dictfile;
logfile_sub_string (dictfile);
for (uint i = 0; i < rp_files_cnt; i++)
{
logfile_sub_var_string ("rulefile", rp_files[i]);
}
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, fd2, dictfile, dictstat_ctx);
fclose (fd2);
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
}
else if (attack_mode == ATTACK_MODE_COMBI)
{
char *dictfile = data.dictfile;
char *dictfile2 = data.dictfile2;
logfile_sub_string (dictfile);
logfile_sub_string (dictfile2);
if (data.combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, fd2, dictfile, dictstat_ctx);
fclose (fd2);
}
else if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
FILE *fd2 = fopen (dictfile2, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile2, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, fd2, dictfile2, dictstat_ctx);
fclose (fd2);
}
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
else if ((attack_mode == ATTACK_MODE_HYBRID1) || (attack_mode == ATTACK_MODE_HYBRID2))
{
char *dictfile = NULL;
if (induction_dictionaries_cnt)
{
dictfile = induction_dictionaries[0];
}
else
{
dictfile = dictfiles[dictpos];
}
data.dictfile = dictfile;
char *mask = data.mask;
logfile_sub_string (dictfile);
logfile_sub_string (mask);
FILE *fd2 = fopen (dictfile, "rb");
if (fd2 == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return -1;
}
data.words_cnt = count_words (wl_data, fd2, dictfile, dictstat_ctx);
fclose (fd2);
if (data.words_cnt == 0)
{
logfile_sub_msg ("STOP");
continue;
}
}
else if (attack_mode == ATTACK_MODE_BF)
{
local_free (css_buf);
local_free (data.root_css_buf);
local_free (data.markov_css_buf);
char *mask = dictfiles[dictpos];
logfile_sub_string (mask);
// base
css_buf = mp_gen_css (mask, strlen (mask), mp_sys, mp_usr, &css_cnt, hashconfig);
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
uint css_cnt_unicode = css_cnt * 2;
cs_t *css_buf_unicode = (cs_t *) mycalloc (css_cnt_unicode, sizeof (cs_t));
for (uint i = 0, j = 0; i < css_cnt; i += 1, j += 2)
{
memcpy (&css_buf_unicode[j + 0], &css_buf[i], sizeof (cs_t));
css_buf_unicode[j + 1].cs_buf[0] = 0;
css_buf_unicode[j + 1].cs_len = 1;
}
free (css_buf);
css_buf = css_buf_unicode;
css_cnt = css_cnt_unicode;
}
// check if mask is not too large or too small for pw_min/pw_max (*2 if unicode)
uint mask_min = pw_min;
uint mask_max = pw_max;
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
mask_min *= 2;
mask_max *= 2;
}
if ((css_cnt < mask_min) || (css_cnt > mask_max))
{
if (css_cnt < mask_min)
{
log_info ("WARNING: Skipping mask '%s' because it is smaller than the minimum password length", mask);
}
if (css_cnt > mask_max)
{
log_info ("WARNING: Skipping mask '%s' because it is larger than the maximum password length", mask);
}
// skip to next mask
logfile_sub_msg ("STOP");
continue;
}
uint save_css_cnt = css_cnt;
if (hashconfig->opti_type & OPTI_TYPE_SINGLE_HASH)
{
if (hashconfig->opti_type & OPTI_TYPE_APPENDED_SALT)
{
uint salt_len = (uint) data.salts_buf[0].salt_len;
char *salt_buf = (char *) data.salts_buf[0].salt_buf;
uint css_cnt_salt = css_cnt + salt_len;
cs_t *css_buf_salt = (cs_t *) mycalloc (css_cnt_salt, sizeof (cs_t));
memcpy (css_buf_salt, css_buf, css_cnt * sizeof (cs_t));
for (uint i = 0, j = css_cnt; i < salt_len; i++, j++)
{
css_buf_salt[j].cs_buf[0] = salt_buf[i];
css_buf_salt[j].cs_len = 1;
}
free (css_buf);
css_buf = css_buf_salt;
css_cnt = css_cnt_salt;
}
}
data.mask = mask;
data.css_cnt = css_cnt;
data.css_buf = css_buf;
if (maskpos > 0 && dictpos == 0) free (masks[maskpos - 1]);
uint uniq_tbls[SP_PW_MAX][CHARSIZ] = { { 0 } };
mp_css_to_uniq_tbl (css_cnt, css_buf, uniq_tbls);
if (root_table_buf == NULL) root_table_buf = (hcstat_table_t *) mycalloc (SP_ROOT_CNT, sizeof (hcstat_table_t));
if (markov_table_buf == NULL) markov_table_buf = (hcstat_table_t *) mycalloc (SP_MARKOV_CNT, sizeof (hcstat_table_t));
sp_setup_tbl (shared_dir, markov_hcstat, markov_disable, markov_classic, root_table_buf, markov_table_buf);
markov_threshold = (markov_threshold != 0) ? markov_threshold : CHARSIZ;
cs_t *root_css_buf = (cs_t *) mycalloc (SP_PW_MAX, sizeof (cs_t));
cs_t *markov_css_buf = (cs_t *) mycalloc (SP_PW_MAX * CHARSIZ, sizeof (cs_t));
data.root_css_buf = root_css_buf;
data.markov_css_buf = markov_css_buf;
sp_tbl_to_css (root_table_buf, markov_table_buf, root_css_buf, markov_css_buf, markov_threshold, uniq_tbls);
data.words_cnt = sp_get_sum (0, css_cnt, root_css_buf);
local_free (root_table_buf);
local_free (markov_table_buf);
// copy + args
uint css_cnt_l = css_cnt;
uint css_cnt_r;
if (hashconfig->attack_exec == ATTACK_EXEC_INSIDE_KERNEL)
{
if (save_css_cnt < 6)
{
css_cnt_r = 1;
}
else if (save_css_cnt == 6)
{
css_cnt_r = 2;
}
else
{
if (hashconfig->opts_type & OPTS_TYPE_PT_UNICODE)
{
if (save_css_cnt == 8 || save_css_cnt == 10)
{
css_cnt_r = 2;
}
else
{
css_cnt_r = 4;
}
}
else
{
if ((css_buf[0].cs_len * css_buf[1].cs_len * css_buf[2].cs_len) > 256)
{
css_cnt_r = 3;
}
else
{
css_cnt_r = 4;
}
}
}
}
else
{
css_cnt_r = 1;
/* unfinished code?
int sum = css_buf[css_cnt_r - 1].cs_len;
for (uint i = 1; i < 4 && i < css_cnt; i++)
{
if (sum > 1) break; // we really don't need alot of amplifier them for slow hashes
css_cnt_r++;
sum *= css_buf[css_cnt_r - 1].cs_len;
}
*/
}
css_cnt_l -= css_cnt_r;
data.bfs_cnt = sp_get_sum (0, css_cnt_r, root_css_buf);
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
device_param->kernel_params_mp_l[0] = &device_param->d_pws_buf;
device_param->kernel_params_mp_l[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp_l[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_l_buf64[3] = 0;
device_param->kernel_params_mp_l_buf32[4] = css_cnt_l;
device_param->kernel_params_mp_l_buf32[5] = css_cnt_r;
device_param->kernel_params_mp_l_buf32[6] = 0;
device_param->kernel_params_mp_l_buf32[7] = 0;
device_param->kernel_params_mp_l_buf32[8] = 0;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD01) device_param->kernel_params_mp_l_buf32[6] = full01;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADD80) device_param->kernel_params_mp_l_buf32[6] = full80;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS14) device_param->kernel_params_mp_l_buf32[7] = 1;
if (hashconfig->opts_type & OPTS_TYPE_PT_ADDBITS15) device_param->kernel_params_mp_l_buf32[8] = 1;
device_param->kernel_params_mp_r[0] = &device_param->d_bfs;
device_param->kernel_params_mp_r[1] = &device_param->d_root_css_buf;
device_param->kernel_params_mp_r[2] = &device_param->d_markov_css_buf;
device_param->kernel_params_mp_r_buf64[3] = 0;
device_param->kernel_params_mp_r_buf32[4] = css_cnt_r;
device_param->kernel_params_mp_r_buf32[5] = 0;
device_param->kernel_params_mp_r_buf32[6] = 0;
device_param->kernel_params_mp_r_buf32[7] = 0;
cl_int CL_err = CL_SUCCESS;
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_l, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_l, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 4; i < 9; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_l, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_l[i]);
for (uint i = 0; i < 3; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_r, i, sizeof (cl_mem), (void *) device_param->kernel_params_mp_r[i]);
for (uint i = 3; i < 4; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_r, i, sizeof (cl_ulong), (void *) device_param->kernel_params_mp_r[i]);
for (uint i = 4; i < 8; i++) CL_err |= hc_clSetKernelArg (data.ocl, device_param->kernel_mp_r, i, sizeof (cl_uint), (void *) device_param->kernel_params_mp_r[i]);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clSetKernelArg(): %s\n", val2cstr_cl (CL_err));
return -1;
}
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_root_css_buf, CL_TRUE, 0, device_param->size_root_css, root_css_buf, 0, NULL, NULL);
CL_err |= hc_clEnqueueWriteBuffer (data.ocl, device_param->command_queue, device_param->d_markov_css_buf, CL_TRUE, 0, device_param->size_markov_css, markov_css_buf, 0, NULL, NULL);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clEnqueueWriteBuffer(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
}
u64 words_base = data.words_cnt;
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
if (data.kernel_rules_cnt)
{
words_base /= data.kernel_rules_cnt;
}
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
if (data.combs_cnt)
{
words_base /= data.combs_cnt;
}
}
else if (data.attack_kern == ATTACK_KERN_BF)
{
if (data.bfs_cnt)
{
words_base /= data.bfs_cnt;
}
}
data.words_base = words_base;
if (keyspace == 1)
{
log_info ("%" PRIu64 "", words_base);
return 0;
}
if (data.words_cur > data.words_base)
{
log_error ("ERROR: Restore value greater keyspace");
return -1;
}
if (data.words_cur)
{
if (data.attack_kern == ATTACK_KERN_STRAIGHT)
{
for (uint i = 0; i < data.salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.kernel_rules_cnt;
}
}
else if (data.attack_kern == ATTACK_KERN_COMBI)
{
for (uint i = 0; i < data.salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.combs_cnt;
}
}
else if (data.attack_kern == ATTACK_KERN_BF)
{
for (uint i = 0; i < data.salts_cnt; i++)
{
data.words_progress_restored[i] = data.words_cur * data.bfs_cnt;
}
}
}
/*
* Update loopback file
*/
if (loopback == 1)
{
time_t now;
time (&now);
uint random_num = get_random_num (0, 9999);
snprintf (loopback_file, loopback_size - 1, "%s/%s.%d_%i", induction_directory, LOOPBACK_FILE, (int) now, random_num);
data.loopback_file = loopback_file;
}
/*
* Update dictionary statistic
*/
if (keyspace == 0)
{
dictstat_write (dictstat_ctx);
}
/**
* create autotune threads
*/
hc_thread_t *c_threads = (hc_thread_t *) mycalloc (data.devices_cnt, sizeof (hc_thread_t));
if ((data.devices_status != STATUS_BYPASS) && (data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
data.devices_status = STATUS_AUTOTUNE;
}
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &devices_param[device_id];
hc_thread_create (c_threads[device_id], thread_autotune, device_param);
}
hc_thread_wait (data.devices_cnt, c_threads);
/*
* Inform user about possible slow speeds
*/
uint hardware_power_all = 0;
uint kernel_power_all = 0;
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &devices_param[device_id];
hardware_power_all += device_param->hardware_power;
kernel_power_all += device_param->kernel_power;
}
data.hardware_power_all = hardware_power_all; // hardware_power_all is the same as kernel_power_all but without the influence of kernel_accel on the devices
data.kernel_power_all = kernel_power_all;
if ((wordlist_mode == WL_MODE_FILE) || (wordlist_mode == WL_MODE_MASK))
{
if (data.words_base < kernel_power_all)
{
if (quiet == 0)
{
clear_prompt ();
log_info ("ATTENTION!");
log_info (" The wordlist or mask you are using is too small.");
log_info (" Therefore, hashcat is unable to utilize the full parallelization power of your device(s).");
log_info (" The cracking speed will drop.");
log_info (" Workaround: https://hashcat.net/wiki/doku.php?id=frequently_asked_questions#how_to_create_more_work_for_full_speed");
log_info ("");
}
}
}
/**
* create cracker threads
*/
if ((data.devices_status != STATUS_BYPASS) && (data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
data.devices_status = STATUS_RUNNING;
}
if (initial_restore_done == 0)
{
if (data.restore_disable == 0) cycle_restore ();
initial_restore_done = 1;
}
hc_timer_set (&data.timer_running);
if ((wordlist_mode == WL_MODE_FILE) || (wordlist_mode == WL_MODE_MASK))
{
if ((quiet == 0) && (status == 0) && (benchmark == 0))
{
if (quiet == 0) fprintf (stdout, "%s", PROMPT);
if (quiet == 0) fflush (stdout);
}
}
else if (wordlist_mode == WL_MODE_STDIN)
{
if (data.quiet == 0) log_info ("Starting attack in stdin mode...");
if (data.quiet == 0) log_info ("");
}
time_t runtime_start;
time (&runtime_start);
data.runtime_start = runtime_start;
data.prepare_time += runtime_start - prepare_start;
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &devices_param[device_id];
if (wordlist_mode == WL_MODE_STDIN)
{
hc_thread_create (c_threads[device_id], thread_calc_stdin, device_param);
}
else
{
hc_thread_create (c_threads[device_id], thread_calc, device_param);
}
}
hc_thread_wait (data.devices_cnt, c_threads);
local_free (c_threads);
if ((data.devices_status != STATUS_BYPASS) && (data.devices_status != STATUS_CRACKED) && (data.devices_status != STATUS_ABORTED) && (data.devices_status != STATUS_QUIT))
{
data.devices_status = STATUS_EXHAUSTED;
}
logfile_sub_var_uint ("status-after-work", data.devices_status);
data.restore = 0;
if (induction_dictionaries_cnt)
{
unlink (induction_dictionaries[0]);
}
free (induction_dictionaries);
if (attack_mode != ATTACK_MODE_BF)
{
induction_dictionaries = scan_directory (induction_directory);
induction_dictionaries_cnt = count_dictionaries (induction_dictionaries);
}
if (benchmark == 1)
{
status_benchmark ();
if (machine_readable == 0)
{
log_info ("");
}
}
else
{
if (quiet == 0)
{
clear_prompt ();
log_info ("");
status_display ();
log_info ("");
}
else
{
if (status == 1)
{
status_display ();
}
}
}
if (induction_dictionaries_cnt)
{
qsort (induction_dictionaries, induction_dictionaries_cnt, sizeof (char *), sort_by_mtime);
// yeah, this next statement is a little hack to make sure that --loopback runs correctly (because with it we guarantee that the loop iterates one more time)
dictpos--;
}
time_t runtime_stop;
time (&runtime_stop);
data.runtime_stop = runtime_stop;
logfile_sub_uint (runtime_start);
logfile_sub_uint (runtime_stop);
time (&prepare_start);
logfile_sub_msg ("STOP");
global_free (subid);
// from this point we handle bypass as running
if (data.devices_status == STATUS_BYPASS)
{
data.devices_status = STATUS_RUNNING;
}
// and overwrite benchmark aborts as well
if (data.benchmark == 1)
{
if (data.devices_status == STATUS_ABORTED)
{
data.devices_status = STATUS_RUNNING;
}
}
// finalize task
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
}
if (data.devices_status == STATUS_CRACKED) break;
if (data.devices_status == STATUS_ABORTED) break;
if (data.devices_status == STATUS_QUIT) break;
}
// problems could occur if already at startup everything was cracked (because of .pot file reading etc), we must set some variables here to avoid NULL pointers
if (attack_mode == ATTACK_MODE_STRAIGHT)
{
if (data.wordlist_mode == WL_MODE_FILE)
{
if (data.dictfile == NULL)
{
if (dictfiles != NULL)
{
data.dictfile = dictfiles[0];
hc_timer_set (&data.timer_running);
}
}
}
}
// NOTE: combi is okay because it is already set beforehand
else if (attack_mode == ATTACK_MODE_HYBRID1 || attack_mode == ATTACK_MODE_HYBRID2)
{
if (data.dictfile == NULL)
{
if (dictfiles != NULL)
{
hc_timer_set (&data.timer_running);
data.dictfile = dictfiles[0];
}
}
}
else if (attack_mode == ATTACK_MODE_BF)
{
if (data.mask == NULL)
{
hc_timer_set (&data.timer_running);
data.mask = masks[0];
}
}
// if cracked / aborted remove last induction dictionary
for (int file_pos = 0; file_pos < induction_dictionaries_cnt; file_pos++)
{
struct stat induct_stat;
if (stat (induction_dictionaries[file_pos], &induct_stat) == 0)
{
unlink (induction_dictionaries[file_pos]);
}
}
// wait for inner threads
data.shutdown_inner = 1;
for (uint thread_idx = 0; thread_idx < inner_threads_cnt; thread_idx++)
{
hc_thread_wait (1, &inner_threads[thread_idx]);
}
local_free (inner_threads);
// we dont need restore file anymore
if (data.restore_disable == 0)
{
if ((data.devices_status == STATUS_EXHAUSTED) || (data.devices_status == STATUS_CRACKED))
{
unlink (eff_restore_file);
unlink (new_restore_file);
}
else
{
cycle_restore ();
}
}
// finally save left hashes
if ((hashlist_mode == HL_MODE_FILE) && (remove == 1) && (data.digests_saved != data.digests_done))
{
save_hash ();
}
/**
* Clean up
*/
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
cl_int CL_err = CL_SUCCESS;
local_free (device_param->combs_buf);
local_free (device_param->hooks_buf);
local_free (device_param->device_name);
local_free (device_param->device_name_chksum);
local_free (device_param->device_version);
local_free (device_param->driver_version);
if (device_param->pws_buf) myfree (device_param->pws_buf);
if (device_param->d_pws_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_pws_buf);
if (device_param->d_pws_amp_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_pws_amp_buf);
if (device_param->d_rules) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_rules);
if (device_param->d_rules_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_rules_c);
if (device_param->d_combs) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_combs);
if (device_param->d_combs_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_combs_c);
if (device_param->d_bfs) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bfs);
if (device_param->d_bfs_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bfs_c);
if (device_param->d_bitmap_s1_a) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s1_a);
if (device_param->d_bitmap_s1_b) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s1_b);
if (device_param->d_bitmap_s1_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s1_c);
if (device_param->d_bitmap_s1_d) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s1_d);
if (device_param->d_bitmap_s2_a) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s2_a);
if (device_param->d_bitmap_s2_b) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s2_b);
if (device_param->d_bitmap_s2_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s2_c);
if (device_param->d_bitmap_s2_d) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_bitmap_s2_d);
if (device_param->d_plain_bufs) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_plain_bufs);
if (device_param->d_digests_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_digests_buf);
if (device_param->d_digests_shown) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_digests_shown);
if (device_param->d_salt_bufs) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_salt_bufs);
if (device_param->d_esalt_bufs) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_esalt_bufs);
if (device_param->d_tmps) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_tmps);
if (device_param->d_hooks) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_hooks);
if (device_param->d_result) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_result);
if (device_param->d_scryptV0_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_scryptV0_buf);
if (device_param->d_scryptV1_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_scryptV1_buf);
if (device_param->d_scryptV2_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_scryptV2_buf);
if (device_param->d_scryptV3_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_scryptV3_buf);
if (device_param->d_root_css_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_root_css_buf);
if (device_param->d_markov_css_buf) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_markov_css_buf);
if (device_param->d_tm_c) CL_err |= hc_clReleaseMemObject (data.ocl, device_param->d_tm_c);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clReleaseMemObject(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_param->kernel1) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel1);
if (device_param->kernel12) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel12);
if (device_param->kernel2) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel2);
if (device_param->kernel23) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel23);
if (device_param->kernel3) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel3);
if (device_param->kernel_mp) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_mp);
if (device_param->kernel_mp_l) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_mp_l);
if (device_param->kernel_mp_r) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_mp_r);
if (device_param->kernel_tm) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_tm);
if (device_param->kernel_amp) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_amp);
if (device_param->kernel_memset) CL_err |= hc_clReleaseKernel (data.ocl, device_param->kernel_memset);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clReleaseKernel(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_param->program) CL_err |= hc_clReleaseProgram (data.ocl, device_param->program);
if (device_param->program_mp) CL_err |= hc_clReleaseProgram (data.ocl, device_param->program_mp);
if (device_param->program_amp) CL_err |= hc_clReleaseProgram (data.ocl, device_param->program_amp);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clReleaseProgram(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_param->command_queue) CL_err |= hc_clReleaseCommandQueue (data.ocl, device_param->command_queue);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: clReleaseCommandQueue(): %s\n", val2cstr_cl (CL_err));
return -1;
}
if (device_param->context) CL_err |= hc_clReleaseContext (data.ocl, device_param->context);
if (CL_err != CL_SUCCESS)
{
log_error ("ERROR: hc_clReleaseContext(): %s\n", val2cstr_cl (CL_err));
return -1;
}
}
// reset default fan speed
#if defined (HAVE_HWMON)
if (gpu_temp_disable == 0)
{
if (gpu_temp_retain != 0)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
if (data.hm_device[device_id].fan_set_supported == 1)
{
int rc = -1;
if (device_param->device_vendor_id == VENDOR_ID_AMD)
{
rc = hm_set_fanspeed_with_device_id_adl (device_id, 100, 0);
}
else if (device_param->device_vendor_id == VENDOR_ID_NV)
{
#if defined (__linux__)
rc = set_fan_control (data.hm_xnvctrl, data.hm_device[device_id].xnvctrl, NV_CTRL_GPU_COOLER_MANUAL_CONTROL_FALSE);
#endif
#if defined (_WIN)
rc = hm_set_fanspeed_with_device_id_nvapi (device_id, 100, 0);
#endif
}
if (rc == -1) log_info ("WARNING: Failed to restore default fan speed and policy for device #%", device_id + 1);
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
}
// reset power tuning
if (powertune_enable == 1)
{
hc_thread_mutex_lock (mux_hwmon);
for (uint device_id = 0; device_id < data.devices_cnt; device_id++)
{
hc_device_param_t *device_param = &data.devices_param[device_id];
if (device_param->skipped) continue;
if (data.devices_param[device_id].device_vendor_id == VENDOR_ID_AMD)
{
if (data.hm_device[device_id].od_version == 6)
{
// check powertune capabilities first, if not available then skip device
int powertune_supported = 0;
if ((hm_ADL_Overdrive6_PowerControl_Caps (data.hm_adl, data.hm_device[device_id].adl, &powertune_supported)) != ADL_OK)
{
log_error ("ERROR: Failed to get ADL PowerControl Capabilities");
return -1;
}
if (powertune_supported != 0)
{
// powercontrol settings
if ((hm_ADL_Overdrive_PowerControl_Set (data.hm_adl, data.hm_device[device_id].adl, od_power_control_status[device_id])) != ADL_OK)
{
log_info ("ERROR: Failed to restore the ADL PowerControl values");
return -1;
}
// clocks
ADLOD6StateInfo *performance_state = (ADLOD6StateInfo*) mycalloc (1, sizeof (ADLOD6StateInfo) + sizeof (ADLOD6PerformanceLevel));
performance_state->iNumberOfPerformanceLevels = 2;
performance_state->aLevels[0].iEngineClock = od_clock_mem_status[device_id].state.aLevels[0].iEngineClock;
performance_state->aLevels[1].iEngineClock = od_clock_mem_status[device_id].state.aLevels[1].iEngineClock;
performance_state->aLevels[0].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[0].iMemoryClock;
performance_state->aLevels[1].iMemoryClock = od_clock_mem_status[device_id].state.aLevels[1].iMemoryClock;
if ((hm_ADL_Overdrive_State_Set (data.hm_adl, data.hm_device[device_id].adl, ADL_OD6_SETSTATE_PERFORMANCE, performance_state)) != ADL_OK)
{
log_info ("ERROR: Failed to restore ADL performance state");
return -1;
}
local_free (performance_state);
}
}
}
if (data.devices_param[device_id].device_vendor_id == VENDOR_ID_NV)
{
unsigned int limit = nvml_power_limit[device_id];
if (limit > 0)
{
hm_NVML_nvmlDeviceSetPowerManagementLimit (data.hm_nvml, 0, data.hm_device[device_id].nvml, limit);
}
}
}
hc_thread_mutex_unlock (mux_hwmon);
}
if (gpu_temp_disable == 0)
{
if (data.hm_nvml)
{
hm_NVML_nvmlShutdown (data.hm_nvml);
nvml_close (data.hm_nvml);
data.hm_nvml = NULL;
}
if (data.hm_nvapi)
{
hm_NvAPI_Unload (data.hm_nvapi);
nvapi_close (data.hm_nvapi);
data.hm_nvapi = NULL;
}
if (data.hm_xnvctrl)
{
hm_XNVCTRL_XCloseDisplay (data.hm_xnvctrl);
xnvctrl_close (data.hm_xnvctrl);
data.hm_xnvctrl = NULL;
}
if (data.hm_adl)
{
hm_ADL_Main_Control_Destroy (data.hm_adl);
adl_close (data.hm_adl);
data.hm_adl = NULL;
}
}
#endif // HAVE_HWMON
// free memory
local_free (masks);
potfile_write_close (potfile_ctx);
potfile_destroy (potfile_ctx);
dictstat_destroy (dictstat_ctx);
local_free (all_kernel_rules_cnt);
local_free (all_kernel_rules_buf);
local_free (wl_data->buf);
local_free (wl_data);
local_free (bitmap_s1_a);
local_free (bitmap_s1_b);
local_free (bitmap_s1_c);
local_free (bitmap_s1_d);
local_free (bitmap_s2_a);
local_free (bitmap_s2_b);
local_free (bitmap_s2_c);
local_free (bitmap_s2_d);
#if defined (HAVE_HWMON)
local_free (od_clock_mem_status);
local_free (od_power_control_status);
local_free (nvml_power_limit);
#endif
global_free (devices_param);
global_free (kernel_rules_buf);
global_free (root_css_buf);
global_free (markov_css_buf);
global_free (digests_buf);
global_free (digests_shown);
global_free (digests_shown_tmp);
global_free (salts_buf);
global_free (salts_shown);
global_free (esalts_buf);
global_free (words_progress_done);
global_free (words_progress_rejected);
global_free (words_progress_restored);
if (data.devices_status == STATUS_QUIT) break;
}
// wait for outer threads
data.shutdown_outer = 1;
for (uint thread_idx = 0; thread_idx < outer_threads_cnt; thread_idx++)
{
hc_thread_wait (1, &outer_threads[thread_idx]);
}
local_free (outer_threads);
// destroy others mutex
hc_thread_mutex_delete (mux_dispatcher);
hc_thread_mutex_delete (mux_counter);
hc_thread_mutex_delete (mux_display);
hc_thread_mutex_delete (mux_hwmon);
// free memory
local_free (hashconfig);
local_free (eff_restore_file);
local_free (new_restore_file);
local_free (rd);
// tuning db
tuning_db_destroy (tuning_db);
// loopback
local_free (loopback_file);
if (loopback == 1) unlink (loopback_file);
// induction directory
if (induction_dir == NULL)
{
if (attack_mode != ATTACK_MODE_BF)
{
if (rmdir (induction_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
// good, we can ignore
}
else
{
log_error ("ERROR: %s: %s", induction_directory, strerror (errno));
return -1;
}
}
local_free (induction_directory);
}
}
// outfile-check directory
if (outfile_check_dir == NULL)
{
if (rmdir (outfile_check_directory) == -1)
{
if (errno == ENOENT)
{
// good, we can ignore
}
else if (errno == ENOTEMPTY)
{
// good, we can ignore
}
else
{
log_error ("ERROR: %s: %s", outfile_check_directory, strerror (errno));
return -1;
}
}
local_free (outfile_check_directory);
}
time_t proc_stop;
time (&proc_stop);
logfile_top_uint (proc_start);
logfile_top_uint (proc_stop);
logfile_top_msg ("STOP");
if (quiet == 0) log_info_nn ("Started: %s", ctime (&proc_start));
if (quiet == 0) log_info_nn ("Stopped: %s", ctime (&proc_stop));
if (data.ocl) ocl_close (data.ocl);
if (data.devices_status == STATUS_ABORTED) return 2;
if (data.devices_status == STATUS_QUIT) return 2;
if (data.devices_status == STATUS_STOP_AT_CHECKPOINT) return 2;
if (data.devices_status == STATUS_EXHAUSTED) return 1;
if (data.devices_status == STATUS_CRACKED) return 0;
return -1;
}