1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-28 10:58:26 +00:00
hashcat/OpenCL/m17040-pure.cl

405 lines
12 KiB
Common Lisp

/**
* Author......: Netherlands Forensic Institute
* based upon 17010
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_cipher_cast.cl)
#endif
typedef struct gpg
{
u32 cipher_algo;
u32 iv[4]; // make this dynamic based on the input hash.. iv_size can be 8 bytes or 16 bytes
u32 modulus_size;
u32 encrypted_data[384];
u32 encrypted_data_size;
} gpg_t;
typedef struct gpg_tmp
{
// buffer for a maximum of 256 + 8 characters, we extend it to 320 characters so it's always 64 byte aligned
u32 salted_pw_block[80];
// actual number of bytes in 'salted_pwd' that are used since salt and password are copied multiple times into the buffer
u32 salted_pw_block_len;
u32 h[10];
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 len;
} gpg_tmp_t;
DECLSPEC u32 hc_bytealign_le_S (const u32 a, const u32 b, const int c)
{
const int c_mod_4 = c & 3;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
const u32 r = l32_from_64_S ((v64_from_v32ab_S (b, a) >> (c_mod_4 * 8)));
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> (c_mod_4 * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S (0x0706050403020100UL >> (c_mod_4 * 8));
#endif
const u32 r = hc_byte_perm (b, a, selector);
#endif
return r;
}
DECLSPEC void memcat_le_S (PRIVATE_AS u32 *block, const u32 offset, PRIVATE_AS const u32 *append, u32 len)
{
const u32 start_index = (offset - 1) >> 2;
const u32 count = ((offset + len + 3) >> 2) - start_index;
const int off_mod_4 = offset & 3;
const int off_minus_4 = 4 - off_mod_4;
block[start_index] |= hc_bytealign_le_S (append[0], 0, off_minus_4);
for (u32 idx = 1; idx < count; idx++)
{
block[start_index + idx] = hc_bytealign_le_S (append[idx], append[idx - 1], off_minus_4);
}
}
DECLSPEC void memzero_le_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff << ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void memzero_be_S (PRIVATE_AS u32 *block, const u32 start_offset, const u32 end_offset)
{
const u32 start_idx = start_offset / 4;
// zero out bytes in the first u32 starting from 'start_offset'
// math is a bit complex to avoid shifting by 32 bits, which is not possible on some architectures
block[start_idx] &= ~(0xffffffff >> ((start_offset & 3) * 8));
const u32 end_idx = (end_offset + 3) / 4;
// zero out bytes in u32 units -- note that the last u32 is completely zeroed!
for (u32 i = start_idx + 1; i < end_idx; i++)
{
block[i] = 0;
}
}
DECLSPEC void cast128_decrypt_cfb (GLOBAL_AS const u32 *encrypted_data, int data_len, PRIVATE_AS const u32 *iv, PRIVATE_AS const u32 *key, PRIVATE_AS u32 *decrypted_data, SHM_TYPE u32 (*s_S)[256])
{
u8 essiv[8];
for (int j=0; j<8; j++) { essiv[j] = 0; }
// TODO remove this casting, would speedup the attack
// We need to do this casting to get values in local memory and have them not be constant.
u32 lencrypted_data[384]; // I'd prefer not to hardcode to 384, but rest of kernel uses the same value
for (u32 i = 0; i < (data_len + 3) / 4; i += 4)
{
lencrypted_data[i + 0] = encrypted_data[i + 0];
lencrypted_data[i + 1] = encrypted_data[i + 1];
lencrypted_data[i + 2] = encrypted_data[i + 2];
lencrypted_data[i + 3] = encrypted_data[i + 3];
}
PRIVATE_AS u8 *lencrypted_data8 = (PRIVATE_AS u8*)lencrypted_data;
PRIVATE_AS u8 *decrypted_data8 = (PRIVATE_AS u8*)decrypted_data;
PRIVATE_AS u8 *key8 = (PRIVATE_AS u8*)key;
// Copy the IV, since this will be modified
// essiv[0] = iv[0]; // IV is zero for our example, but we load it dynamically..
// essiv[1] = iv[1]; // IV is zero for our example, but we load it dynamically..
// essiv[2] = 0;
// essiv[3] = 0; //TODO load IV dynamically, code doesn't make any sense currently as essiv is now a u8
CAST_KEY ck;
Cast5SetKey(&ck, 16, key8, s_S);
// Decrypt an CAST5 encrypted block
for (u32 i = 0; i < (data_len + 3) ; i += 8)
{
Cast5Encrypt(essiv, &decrypted_data8[i], &ck, s_S);
for (int j=0; j<8; j++) { decrypted_data8[i+j] ^= lencrypted_data8[i + j]; }
// Note: Not necessary if you are only decrypting a single block!
for (int j=0; j<8; j++) {
essiv[j] = lencrypted_data8[i + j];
}
}
}
DECLSPEC int check_decoded_data (PRIVATE_AS u32 *decoded_data, const u32 decoded_data_size)
{
// Check the SHA-1 of the decrypted data which is stored at the end of the decrypted data
const u32 sha1_byte_off = (decoded_data_size - 20);
const u32 sha1_u32_off = sha1_byte_off / 4;
u32 expected_sha1[5];
expected_sha1[0] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 1], decoded_data[sha1_u32_off + 0], sha1_byte_off);
expected_sha1[1] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 2], decoded_data[sha1_u32_off + 1], sha1_byte_off);
expected_sha1[2] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 3], decoded_data[sha1_u32_off + 2], sha1_byte_off);
expected_sha1[3] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 4], decoded_data[sha1_u32_off + 3], sha1_byte_off);
expected_sha1[4] = hc_bytealign_le_S (decoded_data[sha1_u32_off + 5], decoded_data[sha1_u32_off + 4], sha1_byte_off);
memzero_le_S (decoded_data, sha1_byte_off, 384 * sizeof(u32));
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_swap (&ctx, decoded_data, sha1_byte_off);
sha1_final (&ctx);
return (expected_sha1[0] == hc_swap32_S (ctx.h[0]))
&& (expected_sha1[1] == hc_swap32_S (ctx.h[1]))
&& (expected_sha1[2] == hc_swap32_S (ctx.h[2]))
&& (expected_sha1[3] == hc_swap32_S (ctx.h[3]))
&& (expected_sha1[4] == hc_swap32_S (ctx.h[4]));
}
KERNEL_FQ void m17040_init (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
const u32 pw_len = pws[gid].pw_len;
const u32 salted_pw_len = (salt_bufs[SALT_POS_HOST].salt_len + pw_len);
u32 salted_pw_block[80];
// concatenate salt and password -- the salt is always 8 bytes
salted_pw_block[0] = salt_bufs[SALT_POS_HOST].salt_buf[0];
salted_pw_block[1] = salt_bufs[SALT_POS_HOST].salt_buf[1];
for (u32 idx = 0; idx < 64; idx++) salted_pw_block[idx + 2] = pws[gid].i[idx];
// zero remainder of buffer
for (u32 idx = 66; idx < 80; idx++) salted_pw_block[idx] = 0;
// create a number of copies for efficiency
const u32 copies = 80 * sizeof(u32) / salted_pw_len;
for (u32 idx = 1; idx < copies; idx++)
{
memcat_le_S (salted_pw_block, idx * salted_pw_len, salted_pw_block, salted_pw_len);
}
for (u32 idx = 0; idx < 80; idx++)
{
tmps[gid].salted_pw_block[idx] = hc_swap32_S (salted_pw_block[idx]);
}
tmps[gid].salted_pw_block_len = (copies * salted_pw_len);
tmps[gid].h[0] = SHA1M_A;
tmps[gid].h[1] = SHA1M_B;
tmps[gid].h[2] = SHA1M_C;
tmps[gid].h[3] = SHA1M_D;
tmps[gid].h[4] = SHA1M_E;
tmps[gid].h[5] = SHA1M_A;
tmps[gid].h[6] = SHA1M_B;
tmps[gid].h[7] = SHA1M_C;
tmps[gid].h[8] = SHA1M_D;
tmps[gid].h[9] = SHA1M_E;
tmps[gid].len = 0;
}
KERNEL_FQ void m17040_loop_prepare (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
tmps[gid].h[0] = SHA1M_A;
tmps[gid].h[1] = SHA1M_B;
tmps[gid].h[2] = SHA1M_C;
tmps[gid].h[3] = SHA1M_D;
tmps[gid].h[4] = SHA1M_E;
tmps[gid].h[5] = SHA1M_A;
tmps[gid].h[6] = SHA1M_B;
tmps[gid].h[7] = SHA1M_C;
tmps[gid].h[8] = SHA1M_D;
tmps[gid].h[9] = SHA1M_E;
tmps[gid].w0[0] = 0;
tmps[gid].w0[1] = 0;
tmps[gid].w0[2] = 0;
tmps[gid].w0[3] = 0;
tmps[gid].w1[0] = 0;
tmps[gid].w1[1] = 0;
tmps[gid].w1[2] = 0;
tmps[gid].w1[3] = 0;
tmps[gid].w2[0] = 0;
tmps[gid].w2[1] = 0;
tmps[gid].w2[2] = 0;
tmps[gid].w2[3] = 0;
tmps[gid].w3[0] = 0;
tmps[gid].w3[1] = 0;
tmps[gid].w3[2] = 0;
tmps[gid].w3[3] = 0;
tmps[gid].len = 0;
}
KERNEL_FQ void m17040_loop (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= GID_CNT) return;
// get the prepared buffer from the gpg_tmp_t struct into a local buffer
u32 salted_pw_block[80];
for (int i = 0; i < 80; i++) salted_pw_block[i] = tmps[gid].salted_pw_block[i];
const u32 salted_pw_block_len = tmps[gid].salted_pw_block_len;
// do we really need this, since the salt is always length 8?
if (salted_pw_block_len == 0) return;
/**
* context load
*/
sha1_ctx_t ctx;
for (int i = 0; i < 5; i++) ctx.h[i] = tmps[gid].h[i];
for (int i = 0; i < 4; i++) ctx.w0[i] = tmps[gid].w0[i];
for (int i = 0; i < 4; i++) ctx.w1[i] = tmps[gid].w1[i];
for (int i = 0; i < 4; i++) ctx.w2[i] = tmps[gid].w2[i];
for (int i = 0; i < 4; i++) ctx.w3[i] = tmps[gid].w3[i];
const u32 pw_len = pws[gid].pw_len;
const u32 salted_pw_len = (salt_bufs[SALT_POS_HOST].salt_len + pw_len);
const u32 remaining_bytes = salted_pw_len % 4;
ctx.len = tmps[gid].len;
memzero_be_S (salted_pw_block, salted_pw_len, salted_pw_block_len);
// zero out last bytes of password if not a multiple of 4
// TODO do we need this wo don't feed the remainder to the hashing algorithm anyway..??
sha1_update (&ctx, salted_pw_block, salted_pw_len);
sha1_final (&ctx);
/**
* context save
*/
for (int i = 0; i < 5; i++) tmps[gid].h[i] = ctx.h[i];
// this is the sha1 hash of the salt+password:
for (int i = 0; i < 4; i++) tmps[gid].w0[i] = ctx.w0[i];
for (int i = 0; i < 4; i++) tmps[gid].w1[i] = ctx.w1[i];
for (int i = 0; i < 4; i++) tmps[gid].w2[i] = ctx.w2[i];
for (int i = 0; i < 4; i++) tmps[gid].w3[i] = ctx.w3[i];
tmps[gid].len = ctx.len;
}
KERNEL_FQ void m17040_comp (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
// not in use here, special case...
}
KERNEL_FQ void m17040_aux1 (KERN_ATTR_TMPS_ESALT (gpg_tmp_t, gpg_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_S[8][256];
for (u32 i = lid; i < 256; i += lsz)
{
s_S[0][i] = S[0][i];
s_S[1][i] = S[1][i];
s_S[2][i] = S[2][i];
s_S[3][i] = S[3][i];
s_S[4][i] = S[4][i];
s_S[5][i] = S[5][i];
s_S[6][i] = S[6][i];
s_S[7][i] = S[7][i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a (*s_S)[256] = S;
#endif
if (gid >= GID_CNT) return;
// retrieve and use the SHA-1 as the key for CAST5
u32 cast_key[5];
for (int i = 0; i < 5; i++) cast_key[i] = hc_swap32_S (tmps[gid].h[i]);
u32 iv[4] = {0};
for (int idx = 0; idx < 4; idx++) iv[idx] = esalt_bufs[DIGESTS_OFFSET_HOST].iv[idx];
u32 decoded_data[384];
const u32 enc_data_size = esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data_size;
cast128_decrypt_cfb (esalt_bufs[DIGESTS_OFFSET_HOST].encrypted_data, enc_data_size, iv, cast_key, decoded_data, s_S);
if (check_decoded_data (decoded_data, enc_data_size))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET_HOST]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS_HOST, DIGESTS_CNT, 0, DIGESTS_OFFSET_HOST + 0, gid, 0, 0, 0);
}
}
}