1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-15 02:01:15 +00:00
hashcat/deps/unrar/unpack50.cpp
2020-09-08 10:34:21 +02:00

688 lines
19 KiB
C++

void Unpack::Unpack5(bool Solid)
{
FileExtracted=true;
if (!Suspended)
{
UnpInitData(Solid);
if (!UnpReadBuf())
return;
// Check TablesRead5 to be sure that we read tables at least once
// regardless of current block header TablePresent flag.
// So we can safefly use these tables below.
if (!ReadBlockHeader(Inp,BlockHeader) ||
!ReadTables(Inp,BlockHeader,BlockTables) || !TablesRead5)
return;
}
while (true)
{
UnpPtr&=MaxWinMask;
if (Inp.InAddr>=ReadBorder)
{
bool FileDone=false;
// We use 'while', because for empty block containing only Huffman table,
// we'll be on the block border once again just after reading the table.
while (Inp.InAddr>BlockHeader.BlockStart+BlockHeader.BlockSize-1 ||
Inp.InAddr==BlockHeader.BlockStart+BlockHeader.BlockSize-1 &&
Inp.InBit>=BlockHeader.BlockBitSize)
{
if (BlockHeader.LastBlockInFile)
{
FileDone=true;
break;
}
if (!ReadBlockHeader(Inp,BlockHeader) || !ReadTables(Inp,BlockHeader,BlockTables))
return;
}
if (FileDone || !UnpReadBuf())
break;
}
if (((WriteBorder-UnpPtr) & MaxWinMask)<MAX_INC_LZ_MATCH && WriteBorder!=UnpPtr)
{
UnpWriteBuf();
if (WrittenFileSize>DestUnpSize)
return;
if (Suspended)
{
FileExtracted=false;
return;
}
}
uint MainSlot=DecodeNumber(Inp,&BlockTables.LD);
if (MainSlot<256)
{
if (Fragmented)
FragWindow[UnpPtr++]=(byte)MainSlot;
else
Window[UnpPtr++]=(byte)MainSlot;
continue;
}
if (MainSlot>=262)
{
uint Length=SlotToLength(Inp,MainSlot-262);
uint DBits,Distance=1,DistSlot=DecodeNumber(Inp,&BlockTables.DD);
if (DistSlot<4)
{
DBits=0;
Distance+=DistSlot;
}
else
{
DBits=DistSlot/2 - 1;
Distance+=(2 | (DistSlot & 1)) << DBits;
}
if (DBits>0)
{
if (DBits>=4)
{
if (DBits>4)
{
Distance+=((Inp.getbits32()>>(36-DBits))<<4);
Inp.addbits(DBits-4);
}
uint LowDist=DecodeNumber(Inp,&BlockTables.LDD);
Distance+=LowDist;
}
else
{
Distance+=Inp.getbits32()>>(32-DBits);
Inp.addbits(DBits);
}
}
if (Distance>0x100)
{
Length++;
if (Distance>0x2000)
{
Length++;
if (Distance>0x40000)
Length++;
}
}
InsertOldDist(Distance);
LastLength=Length;
if (Fragmented)
FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
else
CopyString(Length,Distance);
continue;
}
if (MainSlot==256)
{
UnpackFilter Filter;
if (!ReadFilter(Inp,Filter) || !AddFilter(Filter))
break;
continue;
}
if (MainSlot==257)
{
if (LastLength!=0)
if (Fragmented)
FragWindow.CopyString(LastLength,OldDist[0],UnpPtr,MaxWinMask);
else
CopyString(LastLength,OldDist[0]);
continue;
}
if (MainSlot<262)
{
uint DistNum=MainSlot-258;
uint Distance=OldDist[DistNum];
for (uint I=DistNum;I>0;I--)
OldDist[I]=OldDist[I-1];
OldDist[0]=Distance;
uint LengthSlot=DecodeNumber(Inp,&BlockTables.RD);
uint Length=SlotToLength(Inp,LengthSlot);
LastLength=Length;
if (Fragmented)
FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
else
CopyString(Length,Distance);
continue;
}
}
UnpWriteBuf();
}
uint Unpack::ReadFilterData(BitInput &Inp)
{
uint ByteCount=(Inp.fgetbits()>>14)+1;
Inp.addbits(2);
uint Data=0;
for (uint I=0;I<ByteCount;I++)
{
Data+=(Inp.fgetbits()>>8)<<(I*8);
Inp.addbits(8);
}
return Data;
}
bool Unpack::ReadFilter(BitInput &Inp,UnpackFilter &Filter)
{
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-16)
if (!UnpReadBuf())
return false;
Filter.BlockStart=ReadFilterData(Inp);
Filter.BlockLength=ReadFilterData(Inp);
if (Filter.BlockLength>MAX_FILTER_BLOCK_SIZE)
Filter.BlockLength=0;
Filter.Type=Inp.fgetbits()>>13;
Inp.faddbits(3);
if (Filter.Type==FILTER_DELTA)
{
Filter.Channels=(Inp.fgetbits()>>11)+1;
Inp.faddbits(5);
}
return true;
}
bool Unpack::AddFilter(UnpackFilter &Filter)
{
if (Filters.Size()>=MAX_UNPACK_FILTERS)
{
UnpWriteBuf(); // Write data, apply and flush filters.
if (Filters.Size()>=MAX_UNPACK_FILTERS)
InitFilters(); // Still too many filters, prevent excessive memory use.
}
// If distance to filter start is that large that due to circular dictionary
// mode now it points to old not written yet data, then we set 'NextWindow'
// flag and process this filter only after processing that older data.
Filter.NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<=Filter.BlockStart;
Filter.BlockStart=uint((Filter.BlockStart+UnpPtr)&MaxWinMask);
Filters.Push(Filter);
return true;
}
bool Unpack::UnpReadBuf()
{
int DataSize=ReadTop-Inp.InAddr; // Data left to process.
if (DataSize<0)
return false;
BlockHeader.BlockSize-=Inp.InAddr-BlockHeader.BlockStart;
if (Inp.InAddr>BitInput::MAX_SIZE/2)
{
// If we already processed more than half of buffer, let's move
// remaining data into beginning to free more space for new data
// and ensure that calling function does not cross the buffer border
// even if we did not read anything here. Also it ensures that read size
// is not less than CRYPT_BLOCK_SIZE, so we can align it without risk
// to make it zero.
if (DataSize>0)
memmove(Inp.InBuf,Inp.InBuf+Inp.InAddr,DataSize);
Inp.InAddr=0;
ReadTop=DataSize;
}
else
DataSize=ReadTop;
int ReadCode=0;
if (BitInput::MAX_SIZE!=DataSize)
ReadCode=UnpIO->UnpRead(Inp.InBuf+DataSize,BitInput::MAX_SIZE-DataSize);
if (ReadCode>0) // Can be also -1.
ReadTop+=ReadCode;
ReadBorder=ReadTop-30;
BlockHeader.BlockStart=Inp.InAddr;
if (BlockHeader.BlockSize!=-1) // '-1' means not defined yet.
{
// We may need to quit from main extraction loop and read new block header
// and trees earlier than data in input buffer ends.
ReadBorder=Min(ReadBorder,BlockHeader.BlockStart+BlockHeader.BlockSize-1);
}
return ReadCode!=-1;
}
void Unpack::UnpWriteBuf()
{
size_t WrittenBorder=WrPtr;
size_t FullWriteSize=(UnpPtr-WrittenBorder)&MaxWinMask;
size_t WriteSizeLeft=FullWriteSize;
bool NotAllFiltersProcessed=false;
for (size_t I=0;I<Filters.Size();I++)
{
// Here we apply filters to data which we need to write.
// We always copy data to another memory block before processing.
// We cannot process them just in place in Window buffer, because
// these data can be used for future string matches, so we must
// preserve them in original form.
UnpackFilter *flt=&Filters[I];
if (flt->Type==FILTER_NONE)
continue;
if (flt->NextWindow)
{
// Here we skip filters which have block start in current data range
// due to address wrap around in circular dictionary, but actually
// belong to next dictionary block. If such filter start position
// is included to current write range, then we reset 'NextWindow' flag.
// In fact we can reset it even without such check, because current
// implementation seems to guarantee 'NextWindow' flag reset after
// buffer writing for all existing filters. But let's keep this check
// just in case. Compressor guarantees that distance between
// filter block start and filter storing position cannot exceed
// the dictionary size. So if we covered the filter block start with
// our write here, we can safely assume that filter is applicable
// to next block on no further wrap arounds is possible.
if (((flt->BlockStart-WrPtr)&MaxWinMask)<=FullWriteSize)
flt->NextWindow=false;
continue;
}
uint BlockStart=flt->BlockStart;
uint BlockLength=flt->BlockLength;
if (((BlockStart-WrittenBorder)&MaxWinMask)<WriteSizeLeft)
{
if (WrittenBorder!=BlockStart)
{
UnpWriteArea(WrittenBorder,BlockStart);
WrittenBorder=BlockStart;
WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
}
if (BlockLength<=WriteSizeLeft)
{
if (BlockLength>0) // We set it to 0 also for invalid filters.
{
uint BlockEnd=(BlockStart+BlockLength)&MaxWinMask;
FilterSrcMemory.Alloc(BlockLength);
byte *Mem=&FilterSrcMemory[0];
if (BlockStart<BlockEnd || BlockEnd==0)
{
if (Fragmented)
FragWindow.CopyData(Mem,BlockStart,BlockLength);
else
memcpy(Mem,Window+BlockStart,BlockLength);
}
else
{
size_t FirstPartLength=size_t(MaxWinSize-BlockStart);
if (Fragmented)
{
FragWindow.CopyData(Mem,BlockStart,FirstPartLength);
FragWindow.CopyData(Mem+FirstPartLength,0,BlockEnd);
}
else
{
memcpy(Mem,Window+BlockStart,FirstPartLength);
memcpy(Mem+FirstPartLength,Window,BlockEnd);
}
}
byte *OutMem=ApplyFilter(Mem,BlockLength,flt);
Filters[I].Type=FILTER_NONE;
if (OutMem!=NULL)
UnpIO->UnpWrite(OutMem,BlockLength);
UnpSomeRead=true;
WrittenFileSize+=BlockLength;
WrittenBorder=BlockEnd;
WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
}
}
else
{
// Current filter intersects the window write border, so we adjust
// the window border to process this filter next time, not now.
WrPtr=WrittenBorder;
// Since Filter start position can only increase, we quit processing
// all following filters for this data block and reset 'NextWindow'
// flag for them.
for (size_t J=I;J<Filters.Size();J++)
{
UnpackFilter *flt=&Filters[J];
if (flt->Type!=FILTER_NONE)
flt->NextWindow=false;
}
// Do not write data left after current filter now.
NotAllFiltersProcessed=true;
break;
}
}
}
// Remove processed filters from queue.
size_t EmptyCount=0;
for (size_t I=0;I<Filters.Size();I++)
{
if (EmptyCount>0)
Filters[I-EmptyCount]=Filters[I];
if (Filters[I].Type==FILTER_NONE)
EmptyCount++;
}
if (EmptyCount>0)
Filters.Alloc(Filters.Size()-EmptyCount);
if (!NotAllFiltersProcessed) // Only if all filters are processed.
{
// Write data left after last filter.
UnpWriteArea(WrittenBorder,UnpPtr);
WrPtr=UnpPtr;
}
// We prefer to write data in blocks not exceeding UNPACK_MAX_WRITE
// instead of potentially huge MaxWinSize blocks. It also allows us
// to keep the size of Filters array reasonable.
WriteBorder=(UnpPtr+Min(MaxWinSize,UNPACK_MAX_WRITE))&MaxWinMask;
// Choose the nearest among WriteBorder and WrPtr actual written border.
// If border is equal to UnpPtr, it means that we have MaxWinSize data ahead.
if (WriteBorder==UnpPtr ||
WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<((WriteBorder-UnpPtr)&MaxWinMask))
WriteBorder=WrPtr;
}
byte* Unpack::ApplyFilter(byte *Data,uint DataSize,UnpackFilter *Flt)
{
byte *SrcData=Data;
switch(Flt->Type)
{
case FILTER_E8:
case FILTER_E8E9:
{
uint FileOffset=(uint)WrittenFileSize;
const uint FileSize=0x1000000;
byte CmpByte2=Flt->Type==FILTER_E8E9 ? 0xe9:0xe8;
// DataSize is unsigned, so we use "CurPos+4" and not "DataSize-4"
// to avoid overflow for DataSize<4.
for (uint CurPos=0;CurPos+4<DataSize;)
{
byte CurByte=*(Data++);
CurPos++;
if (CurByte==0xe8 || CurByte==CmpByte2)
{
uint Offset=(CurPos+FileOffset)%FileSize;
uint Addr=RawGet4(Data);
// We check 0x80000000 bit instead of '< 0' comparison
// not assuming int32 presence or uint size and endianness.
if ((Addr & 0x80000000)!=0) // Addr<0
{
if (((Addr+Offset) & 0x80000000)==0) // Addr+Offset>=0
RawPut4(Addr+FileSize,Data);
}
else
if (((Addr-FileSize) & 0x80000000)!=0) // Addr<FileSize
RawPut4(Addr-Offset,Data);
Data+=4;
CurPos+=4;
}
}
}
return SrcData;
case FILTER_ARM:
// 2019-11-15: we turned off ARM filter by default when compressing,
// mostly because it is inefficient for modern 64 bit ARM binaries.
// It was turned on by default in 5.0 - 5.80b3 , so we still need it
// here for compatibility with some of previously created archives.
{
uint FileOffset=(uint)WrittenFileSize;
// DataSize is unsigned, so we use "CurPos+3" and not "DataSize-3"
// to avoid overflow for DataSize<3.
for (uint CurPos=0;CurPos+3<DataSize;CurPos+=4)
{
byte *D=Data+CurPos;
if (D[3]==0xeb) // BL command with '1110' (Always) condition.
{
uint Offset=D[0]+uint(D[1])*0x100+uint(D[2])*0x10000;
Offset-=(FileOffset+CurPos)/4;
D[0]=(byte)Offset;
D[1]=(byte)(Offset>>8);
D[2]=(byte)(Offset>>16);
}
}
}
return SrcData;
case FILTER_DELTA:
{
// Unlike RAR3, we do not need to reject excessive channel
// values here, since RAR5 uses only 5 bits to store channel.
uint Channels=Flt->Channels,SrcPos=0;
FilterDstMemory.Alloc(DataSize);
byte *DstData=&FilterDstMemory[0];
// Bytes from same channels are grouped to continual data blocks,
// so we need to place them back to their interleaving positions.
for (uint CurChannel=0;CurChannel<Channels;CurChannel++)
{
byte PrevByte=0;
for (uint DestPos=CurChannel;DestPos<DataSize;DestPos+=Channels)
DstData[DestPos]=(PrevByte-=Data[SrcPos++]);
}
return DstData;
}
}
return NULL;
}
void Unpack::UnpWriteArea(size_t StartPtr,size_t EndPtr)
{
if (EndPtr!=StartPtr)
UnpSomeRead=true;
if (EndPtr<StartPtr)
UnpAllBuf=true;
if (Fragmented)
{
size_t SizeToWrite=(EndPtr-StartPtr) & MaxWinMask;
while (SizeToWrite>0)
{
size_t BlockSize=FragWindow.GetBlockSize(StartPtr,SizeToWrite);
UnpWriteData(&FragWindow[StartPtr],BlockSize);
SizeToWrite-=BlockSize;
StartPtr=(StartPtr+BlockSize) & MaxWinMask;
}
}
else
if (EndPtr<StartPtr)
{
UnpWriteData(Window+StartPtr,MaxWinSize-StartPtr);
UnpWriteData(Window,EndPtr);
}
else
UnpWriteData(Window+StartPtr,EndPtr-StartPtr);
}
void Unpack::UnpWriteData(byte *Data,size_t Size)
{
if (WrittenFileSize>=DestUnpSize)
return;
size_t WriteSize=Size;
int64 LeftToWrite=DestUnpSize-WrittenFileSize;
if ((int64)WriteSize>LeftToWrite)
WriteSize=(size_t)LeftToWrite;
UnpIO->UnpWrite(Data,WriteSize);
WrittenFileSize+=Size;
}
void Unpack::UnpInitData50(bool Solid)
{
if (!Solid)
TablesRead5=false;
}
bool Unpack::ReadBlockHeader(BitInput &Inp,UnpackBlockHeader &Header)
{
Header.HeaderSize=0;
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-7)
if (!UnpReadBuf())
return false;
Inp.faddbits((8-Inp.InBit)&7);
byte BlockFlags=Inp.fgetbits()>>8;
Inp.faddbits(8);
uint ByteCount=((BlockFlags>>3)&3)+1; // Block size byte count.
if (ByteCount==4)
return false;
Header.HeaderSize=2+ByteCount;
Header.BlockBitSize=(BlockFlags&7)+1;
byte SavedCheckSum=Inp.fgetbits()>>8;
Inp.faddbits(8);
int BlockSize=0;
for (uint I=0;I<ByteCount;I++)
{
BlockSize+=(Inp.fgetbits()>>8)<<(I*8);
Inp.addbits(8);
}
Header.BlockSize=BlockSize;
byte CheckSum=byte(0x5a^BlockFlags^BlockSize^(BlockSize>>8)^(BlockSize>>16));
if (CheckSum!=SavedCheckSum)
return false;
Header.BlockStart=Inp.InAddr;
ReadBorder=Min(ReadBorder,Header.BlockStart+Header.BlockSize-1);
Header.LastBlockInFile=(BlockFlags & 0x40)!=0;
Header.TablePresent=(BlockFlags & 0x80)!=0;
return true;
}
bool Unpack::ReadTables(BitInput &Inp,UnpackBlockHeader &Header,UnpackBlockTables &Tables)
{
if (!Header.TablePresent)
return true;
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-25)
if (!UnpReadBuf())
return false;
byte BitLength[BC];
for (uint I=0;I<BC;I++)
{
uint Length=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (Length==15)
{
uint ZeroCount=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (ZeroCount==0)
BitLength[I]=15;
else
{
ZeroCount+=2;
while (ZeroCount-- > 0 && I<ASIZE(BitLength))
BitLength[I++]=0;
I--;
}
}
else
BitLength[I]=Length;
}
MakeDecodeTables(BitLength,&Tables.BD,BC);
byte Table[HUFF_TABLE_SIZE];
const uint TableSize=HUFF_TABLE_SIZE;
for (uint I=0;I<TableSize;)
{
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-5)
if (!UnpReadBuf())
return false;
uint Number=DecodeNumber(Inp,&Tables.BD);
if (Number<16)
{
Table[I]=Number;
I++;
}
else
if (Number<18)
{
uint N;
if (Number==16)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
if (I==0)
{
// We cannot have "repeat previous" code at the first position.
// Multiple such codes would shift Inp position without changing I,
// which can lead to reading beyond of Inp boundary in mutithreading
// mode, where Inp.ExternalBuffer disables bounds check and we just
// reserve a lot of buffer space to not need such check normally.
return false;
}
else
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
uint N;
if (Number==18)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
TablesRead5=true;
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop)
return false;
MakeDecodeTables(&Table[0],&Tables.LD,NC);
MakeDecodeTables(&Table[NC],&Tables.DD,DC);
MakeDecodeTables(&Table[NC+DC],&Tables.LDD,LDC);
MakeDecodeTables(&Table[NC+DC+LDC],&Tables.RD,RC);
return true;
}
void Unpack::InitFilters()
{
Filters.SoftReset();
}