1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-29 09:58:12 +00:00
hashcat/OpenCL/inc_cipher_kuznyechik.cl
2019-03-24 00:26:10 +01:00

237 lines
5.7 KiB
Common Lisp

/* *
* This is an OpenCL implementation of the encryption algorithm: *
* *
* GOST R 34.12-2015 Kuznyechik by A.S.Kuzmin and A.A.Nechaev *
* *
* Author of the original C implementation: *
* *
* Markku-Juhani O. Saarinen <mjos@iki.fi> *
* https://github.com/mjosaarinen/kuznechik *
* *
* Adapted for GPU use with hashcat by Ruslan Yushaev. *
* *
*/
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_common.h"
#include "inc_cipher_kuznyechik.h"
#define extract_byte(x,n) (((x) >> (8 * (n))) & 0xff)
#define k_lookup(w,sbox) \
for (int i = 0; i < 4; i++) \
w[i] = sbox[extract_byte (w[i], 0)] << 0 \
| sbox[extract_byte (w[i], 1)] << 8 \
| sbox[extract_byte (w[i], 2)] << 16 \
| sbox[extract_byte (w[i], 3)] << 24
#define k_xor(n) \
for (int i = (n); i > 0; i /= 2) \
{ \
z ^= x * (i % 2); \
x = (x << 1) ^ ((x >> 7) * 0xc3); \
x &= 0xff; \
}
DECLSPEC void kuznyechik_linear (u32 *w)
{
// used in k_xor macro
u32 x;
u32 z;
for (int i = 0; i < 16; i++)
{
z = 0;
// k_xor (1) yields the same result as a simple xor
x = extract_byte (w[3], 3); z ^= x;
x = extract_byte (w[3], 2); k_xor (148);
x = extract_byte (w[3], 1); k_xor (32);
x = extract_byte (w[3], 0); k_xor (133);
x = extract_byte (w[2], 3); k_xor (16);
x = extract_byte (w[2], 2); k_xor (194);
x = extract_byte (w[2], 1); k_xor (192);
x = extract_byte (w[2], 0); z ^= x;
x = extract_byte (w[1], 3); k_xor (251);
x = extract_byte (w[1], 2); z ^= x;
x = extract_byte (w[1], 1); k_xor (192);
x = extract_byte (w[1], 0); k_xor (194);
x = extract_byte (w[0], 3); k_xor (16);
x = extract_byte (w[0], 2); k_xor (133);
x = extract_byte (w[0], 1); k_xor (32);
x = extract_byte (w[0], 0); k_xor (148);
// right-shift data block, prepend calculated byte
w[3] = (w[3] << 8) | (w[2] >> 24);
w[2] = (w[2] << 8) | (w[1] >> 24);
w[1] = (w[1] << 8) | (w[0] >> 24);
w[0] = (w[0] << 8) | z;
}
}
DECLSPEC void kuznyechik_linear_inv (u32 *w)
{
// used in k_xor macro
u32 x;
u32 z;
for (int i = 0; i < 16; i++)
{
z = extract_byte (w[0], 0);
//left-shift data block
w[0] = (w[0] >> 8) | (w[1] << 24);
w[1] = (w[1] >> 8) | (w[2] << 24);
w[2] = (w[2] >> 8) | (w[3] << 24);
w[3] = (w[3] >> 8);
x = extract_byte (w[0], 0); k_xor (148);
x = extract_byte (w[0], 1); k_xor (32);
x = extract_byte (w[0], 2); k_xor (133);
x = extract_byte (w[0], 3); k_xor (16);
x = extract_byte (w[1], 0); k_xor (194);
x = extract_byte (w[1], 1); k_xor (192);
x = extract_byte (w[1], 2); z ^= x;
x = extract_byte (w[1], 3); k_xor (251);
x = extract_byte (w[2], 0); z ^= x;
x = extract_byte (w[2], 1); k_xor (192);
x = extract_byte (w[2], 2); k_xor (194);
x = extract_byte (w[2], 3); k_xor (16);
x = extract_byte (w[3], 0); k_xor (133);
x = extract_byte (w[3], 1); k_xor (32);
x = extract_byte (w[3], 2); k_xor (148);
//append calculated byte
w[3] |= (z << 24);
}
}
DECLSPEC void kuznyechik_set_key (u32 *ks, const u32 *ukey)
{
u32 counter[4];
u32 x[4];
u32 y[4];
u32 z[4];
x[0] = ukey[0];
x[1] = ukey[1];
x[2] = ukey[2];
x[3] = ukey[3];
y[0] = ukey[4];
y[1] = ukey[5];
y[2] = ukey[6];
y[3] = ukey[7];
ks[0] = ukey[0];
ks[1] = ukey[1];
ks[2] = ukey[2];
ks[3] = ukey[3];
ks[4] = ukey[4];
ks[5] = ukey[5];
ks[6] = ukey[6];
ks[7] = ukey[7];
for (int i = 1; i <= 32; i++)
{
counter[0] = 0;
counter[1] = 0;
counter[2] = 0;
counter[3] = (i << 24);
kuznyechik_linear (counter);
z[0] = x[0] ^ counter[0];
z[1] = x[1] ^ counter[1];
z[2] = x[2] ^ counter[2];
z[3] = x[3] ^ counter[3];
k_lookup (z, k_sbox);
kuznyechik_linear (z);
z[0] ^= y[0];
z[1] ^= y[1];
z[2] ^= y[2];
z[3] ^= y[3];
y[0] = x[0];
y[1] = x[1];
y[2] = x[2];
y[3] = x[3];
x[0] = z[0];
x[1] = z[1];
x[2] = z[2];
x[3] = z[3];
if ((i & 7) == 0)
{
ks[i + 0] = x[0];
ks[i + 1] = x[1];
ks[i + 2] = x[2];
ks[i + 3] = x[3];
ks[i + 4] = y[0];
ks[i + 5] = y[1];
ks[i + 6] = y[2];
ks[i + 7] = y[3];
}
}
}
DECLSPEC void kuznyechik_encrypt (const u32 *ks, const u32 *in, u32 *out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
for (int i = 0; i < 9; i++)
{
out[0] ^= ks[4 * i + 0];
out[1] ^= ks[4 * i + 1];
out[2] ^= ks[4 * i + 2];
out[3] ^= ks[4 * i + 3];
k_lookup (out, k_sbox);
kuznyechik_linear (out);
}
out[0] ^= ks[4 * 9 + 0];
out[1] ^= ks[4 * 9 + 1];
out[2] ^= ks[4 * 9 + 2];
out[3] ^= ks[4 * 9 + 3];
}
DECLSPEC void kuznyechik_decrypt (const u32 *ks, const u32 *in, u32 *out)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
out[0] ^= ks[4 * 9 + 0];
out[1] ^= ks[4 * 9 + 1];
out[2] ^= ks[4 * 9 + 2];
out[3] ^= ks[4 * 9 + 3];
for (int i = 8; i >= 0; i--)
{
kuznyechik_linear_inv (out);
k_lookup (out, k_sbox_inv);
out[0] ^= ks[4 * i + 0];
out[1] ^= ks[4 * i + 1];
out[2] ^= ks[4 * i + 2];
out[3] ^= ks[4 * i + 3];
}
}
#undef k_xor
#undef k_lookup
#undef extract_byte