1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-10 15:51:10 +00:00
hashcat/OpenCL/m31400_a3-pure.cl
2023-03-23 18:20:06 +00:00

509 lines
12 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.h)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_rp.h)
#include M2S(INCLUDE_PATH/inc_rp.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_scalar.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.h)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
typedef struct scrtv2
{
u32 ct_buf[64];
int ct_len;
} scrtv2_t;
DECLSPEC void shift_buffer_by_offset (PRIVATE_AS u32 *w0, const u32 offset)
{
const int offset_switch = offset / 4;
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 0) || defined IS_GENERIC
switch (offset_switch)
{
case 0:
w0[3] = hc_bytealign_be_S (w0[2], w0[3], offset);
w0[2] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[1] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[0] = hc_bytealign_be_S ( 0, w0[0], offset);
break;
case 1:
w0[3] = hc_bytealign_be_S (w0[1], w0[2], offset);
w0[2] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[1] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[0] = 0;
break;
case 2:
w0[3] = hc_bytealign_be_S (w0[0], w0[1], offset);
w0[2] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_bytealign_be_S ( 0, w0[0], offset);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
#if ((defined IS_AMD || defined IS_HIP) && HAS_VPERM == 1) || defined IS_NV
#if defined IS_NV
const int selector = (0x76543210 >> ((offset & 3) * 4)) & 0xffff;
#endif
#if (defined IS_AMD || defined IS_HIP)
const int selector = l32_from_64_S(0x0706050403020100UL >> ((offset & 3) * 8));
#endif
switch (offset_switch)
{
case 0:
w0[3] = hc_byte_perm_S (w0[3], w0[2], selector);
w0[2] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[1] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[0] = hc_byte_perm_S (w0[0], 0, selector);
break;
case 1:
w0[3] = hc_byte_perm_S (w0[2], w0[1], selector);
w0[2] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[1] = hc_byte_perm_S (w0[0], 0, selector);
w0[0] = 0;
break;
case 2:
w0[3] = hc_byte_perm_S (w0[1], w0[0], selector);
w0[2] = hc_byte_perm_S (w0[0], 0, selector);
w0[1] = 0;
w0[0] = 0;
break;
case 3:
w0[3] = hc_byte_perm_S (w0[0], 0, selector);
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
default:
w0[3] = 0;
w0[2] = 0;
w0[1] = 0;
w0[0] = 0;
break;
}
#endif
}
DECLSPEC void aes256_scrt_format (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32 *pw, const u32 pw_len, PRIVATE_AS u32 *hash, PRIVATE_AS u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
AES256_set_encrypt_key (aes_ks, hash, s_te0, s_te1, s_te2, s_te3);
shift_buffer_by_offset (hash, pw_len + 4);
hash[0] = hc_swap32_S (pw_len);
hash[1] |= hc_swap32_S (pw[0]);
hash[2] |= hc_swap32_S (pw[1]);
hash[3] |= hc_swap32_S (pw[2]);
AES256_encrypt (aes_ks, hash, out, s_te0, s_te1, s_te2, s_te3, s_te4);
}
DECLSPEC void aes256_scrt_format_VV (PRIVATE_AS u32 *aes_ks, PRIVATE_AS u32x *w, const u32 pw_len, PRIVATE_AS u32x *h, PRIVATE_AS u32x *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
#if VECT_SIZE == 1
aes256_scrt_format (aes_ks, w, pw_len, h, out, s_te0, s_te1, s_te2, s_te3, s_te4);
#endif
#if VECT_SIZE >= 2
u32 tmp_w[64];
u32 tmp_h[8];
u32 tmp_out[4];
//s0
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s0;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s0;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s0 = tmp_out[i];
//s1
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s1;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s1;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s1 = tmp_out[i];
#endif
#if VECT_SIZE >= 4
//s2
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s2;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s2;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s2 = tmp_out[i];
//s3
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s3;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s3;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s3 = tmp_out[i];
#endif
#if VECT_SIZE >= 8
//s4
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s4;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s4;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s4 = tmp_out[i];
//s5
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s5;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s5;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s5 = tmp_out[i];
//s6
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s6;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s6;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s6 = tmp_out[i];
//s7
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s7;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s7;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s7 = tmp_out[i];
#endif
#if VECT_SIZE >= 16
//s8
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s8;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s8;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s8 = tmp_out[i];
//s9
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].s9;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].s9;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].s9 = tmp_out[i];
//sa
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sa;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sa;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].sa = tmp_out[i];
//sb
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sb;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sb;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].sb = tmp_out[i];
//sc
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sc;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sc;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].sc = tmp_out[i];
//sd
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sd;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sd;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].sd = tmp_out[i];
//se
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].se;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].se;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].se = tmp_out[i];
//sf
for (u32 i = 0; i < 64; i++) tmp_w[i] = w[i].sf;
for (u32 i = 0; i < 8; i++) tmp_h[i] = h[i].sf;
aes256_scrt_format (aes_ks, tmp_w, pw_len, tmp_h, tmp_out, s_te0, s_te1, s_te2, s_te3, s_te4);
for (u32 i = 0; i < 4; i++) out[i].sf = tmp_out[i];
#endif
}
KERNEL_FQ void m31400_mxx (KERN_ATTR_VECTOR_ESALT (scrtv2_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = {0};
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha256_ctx_vector_t ctx;
sha256_init_vector (&ctx);
sha256_update_vector_swap (&ctx, w, pw_len);
sha256_final_vector (&ctx);
u32x out[4] = {0};
u32 aes_ks[60];
aes256_scrt_format_VV (aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32x r0 = out[DGST_R0];
const u32x r1 = out[DGST_R1];
const u32x r2 = out[DGST_R2];
const u32x r3 = out[DGST_R3];
COMPARE_M_SIMD (r0, r1, r2, r3);
}
}
KERNEL_FQ void m31400_sxx (KERN_ATTR_VECTOR_ESALT (scrtv2_t))
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
};
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = {0};
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
/**
* loop
*/
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha256_ctx_vector_t ctx;
sha256_init_vector (&ctx);
sha256_update_vector_swap (&ctx, w, pw_len);
sha256_final_vector (&ctx);
u32x out[4] = {0};
u32 aes_ks[60];
aes256_scrt_format_VV (aes_ks, w, pw_len, ctx.h, out, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32x r0 = out[DGST_R0];
const u32x r1 = out[DGST_R1];
const u32x r2 = out[DGST_R2];
const u32x r3 = out[DGST_R3];
COMPARE_S_SIMD (r0, r1, r2, r3);
}
}