mirror of
https://github.com/hashcat/hashcat.git
synced 2024-11-01 13:09:11 +00:00
04d5e5a119
stage. See hashcat Forum for detailed writeup.
663 lines
17 KiB
Common Lisp
663 lines
17 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
#define NEW_SIMD_CODE
|
|
|
|
#ifdef KERNEL_STATIC
|
|
#include "inc_vendor.h"
|
|
#include "inc_types.h"
|
|
#include "inc_platform.cl"
|
|
#include "inc_common.cl"
|
|
#include "inc_simd.cl"
|
|
#include "inc_hash_sha1.cl"
|
|
#include "inc_cipher_aes.cl"
|
|
#endif
|
|
|
|
typedef struct krb5pa_18
|
|
{
|
|
u32 user[128];
|
|
u32 domain[128];
|
|
u32 account_info[512];
|
|
u32 account_info_len;
|
|
|
|
u32 checksum[3];
|
|
u32 enc_timestamp[32];
|
|
u32 enc_timestamp_len;
|
|
|
|
} krb5pa_18_t;
|
|
|
|
typedef struct krb5pa_18_tmp
|
|
{
|
|
u32 ipad[5];
|
|
u32 opad[5];
|
|
u32 dgst[16];
|
|
u32 out[16];
|
|
|
|
} krb5pa_18_tmp_t;
|
|
|
|
DECLSPEC void aes256_encrypt_cbc (const u32 *aes_ks, u32 *aes_iv, const u32 *in, u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
|
|
{
|
|
u32 data[4];
|
|
|
|
data[0] = hc_swap32_S (in[0]);
|
|
data[1] = hc_swap32_S (in[1]);
|
|
data[2] = hc_swap32_S (in[2]);
|
|
data[3] = hc_swap32_S (in[3]);
|
|
|
|
data[0] ^= aes_iv[0];
|
|
data[1] ^= aes_iv[1];
|
|
data[2] ^= aes_iv[2];
|
|
data[3] ^= aes_iv[3];
|
|
|
|
aes256_encrypt (aes_ks, data, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
aes_iv[0] = out[0];
|
|
aes_iv[1] = out[1];
|
|
aes_iv[2] = out[2];
|
|
aes_iv[3] = out[3];
|
|
|
|
out[0] = hc_swap32_S (out[0]);
|
|
out[1] = hc_swap32_S (out[1]);
|
|
out[2] = hc_swap32_S (out[2]);
|
|
out[3] = hc_swap32_S (out[3]);
|
|
}
|
|
|
|
DECLSPEC void aes256_decrypt_cbc (const u32 *ks1, const u32 *in, u32 *out, u32 *essiv, SHM_TYPE u32 *s_td0, SHM_TYPE u32 *s_td1, SHM_TYPE u32 *s_td2, SHM_TYPE u32 *s_td3, SHM_TYPE u32 *s_td4)
|
|
{
|
|
aes256_decrypt (ks1, in, out, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
out[0] ^= essiv[0];
|
|
out[1] ^= essiv[1];
|
|
out[2] ^= essiv[2];
|
|
out[3] ^= essiv[3];
|
|
|
|
essiv[0] = in[0];
|
|
essiv[1] = in[1];
|
|
essiv[2] = in[2];
|
|
essiv[3] = in[3];
|
|
}
|
|
|
|
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
|
|
{
|
|
digest[0] = ipad[0];
|
|
digest[1] = ipad[1];
|
|
digest[2] = ipad[2];
|
|
digest[3] = ipad[3];
|
|
digest[4] = ipad[4];
|
|
|
|
sha1_transform_vector (w0, w1, w2, w3, digest);
|
|
|
|
w0[0] = digest[0];
|
|
w0[1] = digest[1];
|
|
w0[2] = digest[2];
|
|
w0[3] = digest[3];
|
|
w1[0] = digest[4];
|
|
w1[1] = 0x80000000;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = (64 + 20) * 8;
|
|
|
|
digest[0] = opad[0];
|
|
digest[1] = opad[1];
|
|
digest[2] = opad[2];
|
|
digest[3] = opad[3];
|
|
digest[4] = opad[4];
|
|
|
|
sha1_transform_vector (w0, w1, w2, w3, digest);
|
|
}
|
|
|
|
KERNEL_FQ void m19900_init (KERN_ATTR_TMPS_ESALT (krb5pa_18_tmp_t, krb5pa_18_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
/**
|
|
* main
|
|
*/
|
|
|
|
/* initialize hmac-sha1 for pbkdf2(password, account, 4096, account_len) */
|
|
|
|
sha1_hmac_ctx_t sha1_hmac_ctx;
|
|
|
|
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
|
|
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
|
|
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
|
|
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
|
|
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
|
|
|
|
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
|
|
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
|
|
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
|
|
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
|
|
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
|
|
|
|
sha1_hmac_update_global_swap (&sha1_hmac_ctx, esalt_bufs[DIGESTS_OFFSET].account_info, esalt_bufs[DIGESTS_OFFSET].account_info_len);
|
|
|
|
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
|
|
{
|
|
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
w0[0] = j;
|
|
w0[1] = 0;
|
|
w0[2] = 0;
|
|
w0[3] = 0;
|
|
w1[0] = 0;
|
|
w1[1] = 0;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
|
|
|
|
sha1_hmac_final (&sha1_hmac_ctx2);
|
|
|
|
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
|
|
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
|
|
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
|
|
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
|
|
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
|
|
|
|
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
|
|
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
|
|
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
|
|
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
|
|
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m19900_loop (KERN_ATTR_TMPS_ESALT (krb5pa_18_tmp_t, krb5pa_18_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if ((gid * VECT_SIZE) >= gid_max) return;
|
|
|
|
u32x ipad[5];
|
|
u32x opad[5];
|
|
|
|
ipad[0] = packv (tmps, ipad, gid, 0);
|
|
ipad[1] = packv (tmps, ipad, gid, 1);
|
|
ipad[2] = packv (tmps, ipad, gid, 2);
|
|
ipad[3] = packv (tmps, ipad, gid, 3);
|
|
ipad[4] = packv (tmps, ipad, gid, 4);
|
|
|
|
opad[0] = packv (tmps, opad, gid, 0);
|
|
opad[1] = packv (tmps, opad, gid, 1);
|
|
opad[2] = packv (tmps, opad, gid, 2);
|
|
opad[3] = packv (tmps, opad, gid, 3);
|
|
opad[4] = packv (tmps, opad, gid, 4);
|
|
|
|
for (u32 i = 0; i < 8; i += 5)
|
|
{
|
|
u32x dgst[5];
|
|
u32x out[5];
|
|
|
|
dgst[0] = packv (tmps, dgst, gid, i + 0);
|
|
dgst[1] = packv (tmps, dgst, gid, i + 1);
|
|
dgst[2] = packv (tmps, dgst, gid, i + 2);
|
|
dgst[3] = packv (tmps, dgst, gid, i + 3);
|
|
dgst[4] = packv (tmps, dgst, gid, i + 4);
|
|
|
|
out[0] = packv (tmps, out, gid, i + 0);
|
|
out[1] = packv (tmps, out, gid, i + 1);
|
|
out[2] = packv (tmps, out, gid, i + 2);
|
|
out[3] = packv (tmps, out, gid, i + 3);
|
|
out[4] = packv (tmps, out, gid, i + 4);
|
|
|
|
for (u32 j = 0; j < loop_cnt; j++)
|
|
{
|
|
u32x w0[4];
|
|
u32x w1[4];
|
|
u32x w2[4];
|
|
u32x w3[4];
|
|
|
|
w0[0] = dgst[0];
|
|
w0[1] = dgst[1];
|
|
w0[2] = dgst[2];
|
|
w0[3] = dgst[3];
|
|
w1[0] = dgst[4];
|
|
w1[1] = 0x80000000;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = (64 + 20) * 8;
|
|
|
|
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
|
|
|
|
out[0] ^= dgst[0];
|
|
out[1] ^= dgst[1];
|
|
out[2] ^= dgst[2];
|
|
out[3] ^= dgst[3];
|
|
out[4] ^= dgst[4];
|
|
}
|
|
|
|
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
|
|
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
|
|
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
|
|
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
|
|
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
|
|
|
|
unpackv (tmps, out, gid, i + 0, out[0]);
|
|
unpackv (tmps, out, gid, i + 1, out[1]);
|
|
unpackv (tmps, out, gid, i + 2, out[2]);
|
|
unpackv (tmps, out, gid, i + 3, out[3]);
|
|
unpackv (tmps, out, gid, i + 4, out[4]);
|
|
}
|
|
}
|
|
|
|
KERNEL_FQ void m19900_comp (KERN_ATTR_TMPS_ESALT (krb5pa_18_tmp_t, krb5pa_18_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
LOCAL_VK u32 s_td0[256];
|
|
LOCAL_VK u32 s_td1[256];
|
|
LOCAL_VK u32 s_td2[256];
|
|
LOCAL_VK u32 s_td3[256];
|
|
LOCAL_VK u32 s_td4[256];
|
|
|
|
LOCAL_VK u32 s_te0[256];
|
|
LOCAL_VK u32 s_te1[256];
|
|
LOCAL_VK u32 s_te2[256];
|
|
LOCAL_VK u32 s_te3[256];
|
|
LOCAL_VK u32 s_te4[256];
|
|
|
|
for (u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
SYNC_THREADS ();
|
|
|
|
#else
|
|
|
|
CONSTANT_AS u32a *s_td0 = td0;
|
|
CONSTANT_AS u32a *s_td1 = td1;
|
|
CONSTANT_AS u32a *s_td2 = td2;
|
|
CONSTANT_AS u32a *s_td3 = td3;
|
|
CONSTANT_AS u32a *s_td4 = td4;
|
|
|
|
CONSTANT_AS u32a *s_te0 = te0;
|
|
CONSTANT_AS u32a *s_te1 = te1;
|
|
CONSTANT_AS u32a *s_te2 = te2;
|
|
CONSTANT_AS u32a *s_te3 = te3;
|
|
CONSTANT_AS u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
/*
|
|
at this point, the output ('seed') will be used to generate AES keys:
|
|
|
|
key_bytes = derive(seed, 'kerberos'.encode(), seedsize)
|
|
|
|
'key_bytes' will be the AES key used to generate 'ke' and 'ki'
|
|
'ke' will be the AES key to decrypt the ticket
|
|
'ki' will be the key to compute the final HMAC
|
|
*/
|
|
|
|
u32 nfolded[4];
|
|
|
|
// we can precompute _nfold('kerberos', 16)
|
|
nfolded[0] = 0x6b657262;
|
|
nfolded[1] = 0x65726f73;
|
|
nfolded[2] = 0x7b9b5b2b;
|
|
nfolded[3] = 0x93132b93;
|
|
|
|
// then aes_cbc encrypt this nfolded value with 'seed' as key along with a null IV
|
|
u32 aes_key[8];
|
|
|
|
aes_key[0] = hc_swap32_S (tmps[gid].out[0]);
|
|
aes_key[1] = hc_swap32_S (tmps[gid].out[1]);
|
|
aes_key[2] = hc_swap32_S (tmps[gid].out[2]);
|
|
aes_key[3] = hc_swap32_S (tmps[gid].out[3]);
|
|
aes_key[4] = hc_swap32_S (tmps[gid].out[4]);
|
|
aes_key[5] = hc_swap32_S (tmps[gid].out[5]);
|
|
aes_key[6] = hc_swap32_S (tmps[gid].out[6]);
|
|
aes_key[7] = hc_swap32_S (tmps[gid].out[7]);
|
|
|
|
u32 aes_iv[4];
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
u32 aes_ks[60];
|
|
|
|
aes256_set_encrypt_key (aes_ks, aes_key, s_te0, s_te1, s_te2, s_te3);
|
|
|
|
u32 out[4];
|
|
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, nfolded, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
u32 key_bytes[8];
|
|
|
|
key_bytes[0] = hc_swap32_S (out[0]);
|
|
key_bytes[1] = hc_swap32_S (out[1]);
|
|
key_bytes[2] = hc_swap32_S (out[2]);
|
|
key_bytes[3] = hc_swap32_S (out[3]);
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, out, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
key_bytes[4] = hc_swap32_S (out[0]);
|
|
key_bytes[5] = hc_swap32_S (out[1]);
|
|
key_bytes[6] = hc_swap32_S (out[2]);
|
|
key_bytes[7] = hc_swap32_S (out[3]);
|
|
|
|
// then aes_cbc encrypt this nfolded value with 'key_bytes' as key along with a null IV
|
|
aes256_set_encrypt_key (aes_ks, key_bytes, s_te0, s_te1, s_te2, s_te3);
|
|
|
|
/* we will now compute 'ke' */
|
|
|
|
u32 ke[8];
|
|
|
|
// we can precompute _nfold(pack('>IB', 1, 0xAA), 16)
|
|
nfolded[0] = 0xae2c160b;
|
|
nfolded[1] = 0x04ad5006;
|
|
nfolded[2] = 0xab55aad5;
|
|
nfolded[3] = 0x6a80355a;
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
// then aes_cbc encrypt this nfolded value with 'key_bytes' as key along with a null IV
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, nfolded, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
ke[0] = out[0];
|
|
ke[1] = out[1];
|
|
ke[2] = out[2];
|
|
ke[3] = out[3];
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, out, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
ke[4] = out[0];
|
|
ke[5] = out[1];
|
|
ke[6] = out[2];
|
|
ke[7] = out[3];
|
|
|
|
// Decode the CTS mode encryption by decrypting c_n-1 and swapping it with c_n
|
|
u32 enc_blocks[12];
|
|
|
|
u32 decrypted_block[4];
|
|
|
|
// c_0
|
|
enc_blocks[0] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[0];
|
|
enc_blocks[1] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[1];
|
|
enc_blocks[2] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[2];
|
|
enc_blocks[3] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[3];
|
|
|
|
// c_1 aka c_n-1 since there are guaranteed to be exactly 3 blocks
|
|
enc_blocks[4] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[4];
|
|
enc_blocks[5] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[5];
|
|
enc_blocks[6] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[6];
|
|
enc_blocks[7] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[7];
|
|
|
|
u32 w0[4];
|
|
u32 w1[4];
|
|
u32 w2[4];
|
|
u32 w3[4];
|
|
|
|
u32 aes_cts_decrypt_ks[60];
|
|
|
|
AES256_set_decrypt_key (aes_cts_decrypt_ks, ke, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
|
|
|
|
// Our first decryption is the last block (currently in c_n-1) using the first portion of (c_n) as our IV, this allows us to get plaintext in one crypto operation
|
|
aes_iv[0] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[8];
|
|
aes_iv[1] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[9];
|
|
aes_iv[2] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[10];
|
|
aes_iv[3] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[11];
|
|
|
|
aes256_decrypt_cbc (aes_cts_decrypt_ks, enc_blocks + 4, decrypted_block, aes_iv, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
w0[0] = hc_swap32_S (decrypted_block[0]);
|
|
w0[1] = hc_swap32_S (decrypted_block[1]);
|
|
w0[2] = hc_swap32_S (decrypted_block[2]);
|
|
w0[3] = hc_swap32_S (decrypted_block[3]);
|
|
|
|
// Move as much code as possible after this branch to avoid unnecessary computation on misses
|
|
if (((w0[0] & 0xf0f0f0f0) == 0x30303030) && ((w0[1] & 0xffff0000) == 0x5aa10000))
|
|
{
|
|
// Decrypt c_n-1 without an IV for the padding blocks on c_n
|
|
aes256_decrypt (aes_cts_decrypt_ks, enc_blocks + 4, decrypted_block, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
w0[0] = decrypted_block[0];
|
|
w0[1] = decrypted_block[1];
|
|
w0[2] = decrypted_block[2];
|
|
w0[3] = decrypted_block[3];
|
|
|
|
int enc_timestamp_len = esalt_bufs[DIGESTS_OFFSET].enc_timestamp_len;
|
|
int last_word_position = enc_timestamp_len / 4;
|
|
|
|
// New c_1, join c_n with result of the decrypted c_n-1
|
|
int last_block_iter;
|
|
|
|
for (last_block_iter = 4; last_block_iter < 8; last_block_iter++)
|
|
{
|
|
if (last_word_position > last_block_iter + 4)
|
|
{
|
|
enc_blocks[last_block_iter] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[last_block_iter + 4];
|
|
}
|
|
else if (last_word_position == last_block_iter + 4)
|
|
{
|
|
// Handle case when the split lands in the middle of a WORD
|
|
switch (enc_timestamp_len % 4)
|
|
{
|
|
case 1:
|
|
enc_blocks[last_block_iter] = (esalt_bufs[DIGESTS_OFFSET].enc_timestamp[last_block_iter + 4] & 0x000000ff) | (w0[last_block_iter - 4] & 0xffffff00);
|
|
break;
|
|
case 2:
|
|
enc_blocks[last_block_iter] = (esalt_bufs[DIGESTS_OFFSET].enc_timestamp[last_block_iter + 4] & 0x0000ffff) | (w0[last_block_iter - 4] & 0xffff0000);
|
|
break;
|
|
case 3:
|
|
enc_blocks[last_block_iter] = (esalt_bufs[DIGESTS_OFFSET].enc_timestamp[last_block_iter + 4] & 0x00ffffff) | (w0[last_block_iter - 4] & 0xff000000);
|
|
break;
|
|
default:
|
|
enc_blocks[last_block_iter] = w0[last_block_iter - 4];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
enc_blocks[last_block_iter] = w0[last_block_iter - 4];
|
|
}
|
|
}
|
|
|
|
// c_2 aka c_n which is now equal to the old c_n-1
|
|
enc_blocks[ 8] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[4];
|
|
enc_blocks[ 9] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[5];
|
|
enc_blocks[10] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[6];
|
|
enc_blocks[11] = esalt_bufs[DIGESTS_OFFSET].enc_timestamp[7];
|
|
|
|
// Go ahead and decrypt all blocks now as a normal AES CBC operation
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
aes256_decrypt_cbc (aes_cts_decrypt_ks, enc_blocks + 0, decrypted_block, aes_iv, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
w0[0] = hc_swap32_S (decrypted_block[0]);
|
|
w0[1] = hc_swap32_S (decrypted_block[1]);
|
|
w0[2] = hc_swap32_S (decrypted_block[2]);
|
|
w0[3] = hc_swap32_S (decrypted_block[3]);
|
|
|
|
aes256_decrypt_cbc (aes_cts_decrypt_ks, enc_blocks + 4, decrypted_block, aes_iv, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
w1[0] = hc_swap32_S (decrypted_block[0]);
|
|
w1[1] = hc_swap32_S (decrypted_block[1]);
|
|
w1[2] = hc_swap32_S (decrypted_block[2]);
|
|
w1[3] = hc_swap32_S (decrypted_block[3]);
|
|
|
|
aes256_decrypt_cbc (aes_cts_decrypt_ks, enc_blocks + 8, decrypted_block, aes_iv, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
w2[0] = hc_swap32_S (decrypted_block[0]);
|
|
w2[1] = hc_swap32_S (decrypted_block[1]);
|
|
w2[2] = hc_swap32_S (decrypted_block[2]);
|
|
w2[3] = hc_swap32_S (decrypted_block[3]);
|
|
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = 0;
|
|
|
|
/* we will now compute 'ki', having 'key_bytes' */
|
|
|
|
u32 ki[8];
|
|
|
|
// we can precompute _nfold(pack('>IB', 1, 0x55), 16)
|
|
nfolded[0] = 0x5b582c16;
|
|
nfolded[1] = 0x0a5aa805;
|
|
nfolded[2] = 0x56ab55aa;
|
|
nfolded[3] = 0xd5402ab5;
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
// then aes_cbc encrypt this nfolded value with 'key_bytes' as key along with a null IV
|
|
aes256_set_encrypt_key (aes_ks, key_bytes, s_te0, s_te1, s_te2, s_te3);
|
|
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, nfolded, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
ki[0] = out[0];
|
|
ki[1] = out[1];
|
|
ki[2] = out[2];
|
|
ki[3] = out[3];
|
|
|
|
aes_iv[0] = 0;
|
|
aes_iv[1] = 0;
|
|
aes_iv[2] = 0;
|
|
aes_iv[3] = 0;
|
|
|
|
aes256_encrypt_cbc (aes_ks, aes_iv, out, out, s_te0, s_te1, s_te2, s_te3, s_te4);
|
|
|
|
ki[4] = out[0];
|
|
ki[5] = out[1];
|
|
ki[6] = out[2];
|
|
ki[7] = out[3];
|
|
|
|
sha1_hmac_ctx_t sha1_hmac_ctx;
|
|
|
|
/*
|
|
hmac message = plaintext
|
|
hmac key = ki
|
|
*/
|
|
|
|
u32 k0[4];
|
|
u32 k1[4];
|
|
u32 k2[4];
|
|
u32 k3[4];
|
|
|
|
k0[0] = ki[0];
|
|
k0[1] = ki[1];
|
|
k0[2] = ki[2];
|
|
k0[3] = ki[3];
|
|
|
|
k1[0] = ki[4];
|
|
k1[1] = ki[5];
|
|
k1[2] = ki[6];
|
|
k1[3] = ki[7];
|
|
|
|
k2[0] = 0;
|
|
k2[1] = 0;
|
|
k2[2] = 0;
|
|
k2[3] = 0;
|
|
|
|
k3[0] = 0;
|
|
k3[1] = 0;
|
|
k3[2] = 0;
|
|
k3[3] = 0;
|
|
|
|
sha1_hmac_init_64 (&sha1_hmac_ctx, k0, k1, k2, k3);
|
|
|
|
sha1_hmac_update_64 (&sha1_hmac_ctx, w0, w1, w2, w3, enc_timestamp_len);
|
|
|
|
sha1_hmac_final (&sha1_hmac_ctx);
|
|
|
|
// Compare checksum
|
|
if ((sha1_hmac_ctx.opad.h[0] == esalt_bufs[DIGESTS_OFFSET].checksum[0])
|
|
&& (sha1_hmac_ctx.opad.h[1] == esalt_bufs[DIGESTS_OFFSET].checksum[1])
|
|
&& (sha1_hmac_ctx.opad.h[2] == esalt_bufs[DIGESTS_OFFSET].checksum[2]))
|
|
{
|
|
if (atomic_inc (&hashes_shown[DIGESTS_OFFSET]) == 0)
|
|
{
|
|
#define il_pos 0
|
|
|
|
mark_hash (plains_buf, d_return_buf, SALT_POS, digests_cnt, 0, DIGESTS_OFFSET + 0, gid, il_pos, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|