1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-12 16:51:00 +00:00
hashcat/deps/LZMA-SDK/C/Lzma2DecMt.c

1091 lines
24 KiB
C

/* Lzma2DecMt.c -- LZMA2 Decoder Multi-thread
2021-04-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #define SHOW_DEBUG_INFO
// #define _7ZIP_ST
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#ifndef _7ZIP_ST
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
#define PRF_STR(s) PRF(printf("\n" s "\n"))
#define PRF_STR_INT_2(s, d1, d2) PRF(printf("\n" s " %d %d\n", (unsigned)d1, (unsigned)d2))
#endif
#include "Alloc.h"
#include "Lzma2Dec.h"
#include "Lzma2DecMt.h"
#ifndef _7ZIP_ST
#include "MtDec.h"
#define LZMA2DECMT_OUT_BLOCK_MAX_DEFAULT (1 << 28)
#endif
void Lzma2DecMtProps_Init(CLzma2DecMtProps *p)
{
p->inBufSize_ST = 1 << 20;
p->outStep_ST = 1 << 20;
#ifndef _7ZIP_ST
p->numThreads = 1;
p->inBufSize_MT = 1 << 18;
p->outBlockMax = LZMA2DECMT_OUT_BLOCK_MAX_DEFAULT;
p->inBlockMax = p->outBlockMax + p->outBlockMax / 16;
#endif
}
#ifndef _7ZIP_ST
/* ---------- CLzma2DecMtThread ---------- */
typedef struct
{
CLzma2Dec dec;
Byte dec_created;
Byte needInit;
Byte *outBuf;
size_t outBufSize;
EMtDecParseState state;
ELzma2ParseStatus parseStatus;
size_t inPreSize;
size_t outPreSize;
size_t inCodeSize;
size_t outCodeSize;
SRes codeRes;
CAlignOffsetAlloc alloc;
Byte mtPad[1 << 7];
} CLzma2DecMtThread;
#endif
/* ---------- CLzma2DecMt ---------- */
typedef struct
{
// ISzAllocPtr alloc;
ISzAllocPtr allocMid;
CAlignOffsetAlloc alignOffsetAlloc;
CLzma2DecMtProps props;
Byte prop;
ISeqInStream *inStream;
ISeqOutStream *outStream;
ICompressProgress *progress;
BoolInt finishMode;
BoolInt outSize_Defined;
UInt64 outSize;
UInt64 outProcessed;
UInt64 inProcessed;
BoolInt readWasFinished;
SRes readRes;
Byte *inBuf;
size_t inBufSize;
Byte dec_created;
CLzma2Dec dec;
size_t inPos;
size_t inLim;
#ifndef _7ZIP_ST
UInt64 outProcessed_Parse;
BoolInt mtc_WasConstructed;
CMtDec mtc;
CLzma2DecMtThread coders[MTDEC__THREADS_MAX];
#endif
} CLzma2DecMt;
CLzma2DecMtHandle Lzma2DecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid)
{
CLzma2DecMt *p = (CLzma2DecMt *)ISzAlloc_Alloc(alloc, sizeof(CLzma2DecMt));
if (!p)
return NULL;
// p->alloc = alloc;
p->allocMid = allocMid;
AlignOffsetAlloc_CreateVTable(&p->alignOffsetAlloc);
p->alignOffsetAlloc.numAlignBits = 7;
p->alignOffsetAlloc.offset = 0;
p->alignOffsetAlloc.baseAlloc = alloc;
p->inBuf = NULL;
p->inBufSize = 0;
p->dec_created = False;
// Lzma2DecMtProps_Init(&p->props);
#ifndef _7ZIP_ST
p->mtc_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CLzma2DecMtThread *t = &p->coders[i];
t->dec_created = False;
t->outBuf = NULL;
t->outBufSize = 0;
}
}
#endif
return p;
}
#ifndef _7ZIP_ST
static void Lzma2DecMt_FreeOutBufs(CLzma2DecMt *p)
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CLzma2DecMtThread *t = &p->coders[i];
if (t->outBuf)
{
ISzAlloc_Free(p->allocMid, t->outBuf);
t->outBuf = NULL;
t->outBufSize = 0;
}
}
}
#endif
static void Lzma2DecMt_FreeSt(CLzma2DecMt *p)
{
if (p->dec_created)
{
Lzma2Dec_Free(&p->dec, &p->alignOffsetAlloc.vt);
p->dec_created = False;
}
if (p->inBuf)
{
ISzAlloc_Free(p->allocMid, p->inBuf);
p->inBuf = NULL;
}
p->inBufSize = 0;
}
void Lzma2DecMt_Destroy(CLzma2DecMtHandle pp)
{
CLzma2DecMt *p = (CLzma2DecMt *)pp;
Lzma2DecMt_FreeSt(p);
#ifndef _7ZIP_ST
if (p->mtc_WasConstructed)
{
MtDec_Destruct(&p->mtc);
p->mtc_WasConstructed = False;
}
{
unsigned i;
for (i = 0; i < MTDEC__THREADS_MAX; i++)
{
CLzma2DecMtThread *t = &p->coders[i];
if (t->dec_created)
{
// we don't need to free dict here
Lzma2Dec_FreeProbs(&t->dec, &t->alloc.vt); // p->alloc !!!
t->dec_created = False;
}
}
}
Lzma2DecMt_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alignOffsetAlloc.baseAlloc, pp);
}
#ifndef _7ZIP_ST
static void Lzma2DecMt_MtCallback_Parse(void *obj, unsigned coderIndex, CMtDecCallbackInfo *cc)
{
CLzma2DecMt *me = (CLzma2DecMt *)obj;
CLzma2DecMtThread *t = &me->coders[coderIndex];
PRF_STR_INT_2("Parse", coderIndex, cc->srcSize);
cc->state = MTDEC_PARSE_CONTINUE;
if (cc->startCall)
{
if (!t->dec_created)
{
Lzma2Dec_Construct(&t->dec);
t->dec_created = True;
AlignOffsetAlloc_CreateVTable(&t->alloc);
{
/* (1 << 12) is expected size of one way in data cache.
We optimize alignment for cache line size of 128 bytes and smaller */
const unsigned kNumAlignBits = 12;
const unsigned kNumCacheLineBits = 7; /* <= kNumAlignBits */
t->alloc.numAlignBits = kNumAlignBits;
t->alloc.offset = ((UInt32)coderIndex * (((unsigned)1 << 11) + (1 << 8) + (1 << 6))) & (((unsigned)1 << kNumAlignBits) - ((unsigned)1 << kNumCacheLineBits));
t->alloc.baseAlloc = me->alignOffsetAlloc.baseAlloc;
}
}
Lzma2Dec_Init(&t->dec);
t->inPreSize = 0;
t->outPreSize = 0;
// t->blockWasFinished = False;
// t->finishedWithMark = False;
t->parseStatus = (ELzma2ParseStatus)LZMA_STATUS_NOT_SPECIFIED;
t->state = MTDEC_PARSE_CONTINUE;
t->inCodeSize = 0;
t->outCodeSize = 0;
t->codeRes = SZ_OK;
// (cc->srcSize == 0) is allowed
}
{
ELzma2ParseStatus status;
BoolInt overflow;
UInt32 unpackRem = 0;
int checkFinishBlock = True;
size_t limit = me->props.outBlockMax;
if (me->outSize_Defined)
{
UInt64 rem = me->outSize - me->outProcessed_Parse;
if (limit >= rem)
{
limit = (size_t)rem;
if (!me->finishMode)
checkFinishBlock = False;
}
}
// checkFinishBlock = False, if we want to decode partial data
// that must be finished at position <= outBlockMax.
{
const SizeT srcOrig = cc->srcSize;
SizeT srcSize_Point = 0;
SizeT dicPos_Point = 0;
cc->srcSize = 0;
overflow = False;
for (;;)
{
SizeT srcCur = srcOrig - cc->srcSize;
status = Lzma2Dec_Parse(&t->dec,
limit - t->dec.decoder.dicPos,
cc->src + cc->srcSize, &srcCur,
checkFinishBlock);
cc->srcSize += srcCur;
if (status == LZMA2_PARSE_STATUS_NEW_CHUNK)
{
if (t->dec.unpackSize > me->props.outBlockMax - t->dec.decoder.dicPos)
{
overflow = True;
break;
}
continue;
}
if (status == LZMA2_PARSE_STATUS_NEW_BLOCK)
{
if (t->dec.decoder.dicPos == 0)
continue;
// we decode small blocks in one thread
if (t->dec.decoder.dicPos >= (1 << 14))
break;
dicPos_Point = t->dec.decoder.dicPos;
srcSize_Point = cc->srcSize;
continue;
}
if ((int)status == LZMA_STATUS_NOT_FINISHED && checkFinishBlock
// && limit == t->dec.decoder.dicPos
// && limit == me->props.outBlockMax
)
{
overflow = True;
break;
}
unpackRem = Lzma2Dec_GetUnpackExtra(&t->dec);
break;
}
if (dicPos_Point != 0
&& (int)status != LZMA2_PARSE_STATUS_NEW_BLOCK
&& (int)status != LZMA_STATUS_FINISHED_WITH_MARK
&& (int)status != LZMA_STATUS_NOT_SPECIFIED)
{
// we revert to latest newBlock state
status = LZMA2_PARSE_STATUS_NEW_BLOCK;
unpackRem = 0;
t->dec.decoder.dicPos = dicPos_Point;
cc->srcSize = srcSize_Point;
overflow = False;
}
}
t->inPreSize += cc->srcSize;
t->parseStatus = status;
if (overflow)
cc->state = MTDEC_PARSE_OVERFLOW;
else
{
size_t dicPos = t->dec.decoder.dicPos;
if ((int)status != LZMA_STATUS_NEEDS_MORE_INPUT)
{
if (status == LZMA2_PARSE_STATUS_NEW_BLOCK)
{
cc->state = MTDEC_PARSE_NEW;
cc->srcSize--; // we don't need control byte of next block
t->inPreSize--;
}
else
{
cc->state = MTDEC_PARSE_END;
if ((int)status != LZMA_STATUS_FINISHED_WITH_MARK)
{
// (status == LZMA_STATUS_NOT_SPECIFIED)
// (status == LZMA_STATUS_NOT_FINISHED)
if (unpackRem != 0)
{
/* we also reserve space for max possible number of output bytes of current LZMA chunk */
SizeT rem = limit - dicPos;
if (rem > unpackRem)
rem = unpackRem;
dicPos += rem;
}
}
}
me->outProcessed_Parse += dicPos;
}
cc->outPos = dicPos;
t->outPreSize = (size_t)dicPos;
}
t->state = cc->state;
return;
}
}
static SRes Lzma2DecMt_MtCallback_PreCode(void *pp, unsigned coderIndex)
{
CLzma2DecMt *me = (CLzma2DecMt *)pp;
CLzma2DecMtThread *t = &me->coders[coderIndex];
Byte *dest = t->outBuf;
if (t->inPreSize == 0)
{
t->codeRes = SZ_ERROR_DATA;
return t->codeRes;
}
if (!dest || t->outBufSize < t->outPreSize)
{
if (dest)
{
ISzAlloc_Free(me->allocMid, dest);
t->outBuf = NULL;
t->outBufSize = 0;
}
dest = (Byte *)ISzAlloc_Alloc(me->allocMid, t->outPreSize
// + (1 << 28)
);
// Sleep(200);
if (!dest)
return SZ_ERROR_MEM;
t->outBuf = dest;
t->outBufSize = t->outPreSize;
}
t->dec.decoder.dic = dest;
t->dec.decoder.dicBufSize = t->outPreSize;
t->needInit = True;
return Lzma2Dec_AllocateProbs(&t->dec, me->prop, &t->alloc.vt); // alloc.vt
}
static SRes Lzma2DecMt_MtCallback_Code(void *pp, unsigned coderIndex,
const Byte *src, size_t srcSize, int srcFinished,
// int finished, int blockFinished,
UInt64 *inCodePos, UInt64 *outCodePos, int *stop)
{
CLzma2DecMt *me = (CLzma2DecMt *)pp;
CLzma2DecMtThread *t = &me->coders[coderIndex];
UNUSED_VAR(srcFinished)
PRF_STR_INT_2("Code", coderIndex, srcSize);
*inCodePos = t->inCodeSize;
*outCodePos = 0;
*stop = True;
if (t->needInit)
{
Lzma2Dec_Init(&t->dec);
t->needInit = False;
}
{
ELzmaStatus status;
size_t srcProcessed = srcSize;
BoolInt blockWasFinished =
((int)t->parseStatus == LZMA_STATUS_FINISHED_WITH_MARK
|| t->parseStatus == LZMA2_PARSE_STATUS_NEW_BLOCK);
SRes res = Lzma2Dec_DecodeToDic(&t->dec,
t->outPreSize,
src, &srcProcessed,
blockWasFinished ? LZMA_FINISH_END : LZMA_FINISH_ANY,
&status);
t->codeRes = res;
t->inCodeSize += srcProcessed;
*inCodePos = t->inCodeSize;
t->outCodeSize = t->dec.decoder.dicPos;
*outCodePos = t->dec.decoder.dicPos;
if (res != SZ_OK)
return res;
if (srcProcessed == srcSize)
*stop = False;
if (blockWasFinished)
{
if (srcSize != srcProcessed)
return SZ_ERROR_FAIL;
if (t->inPreSize == t->inCodeSize)
{
if (t->outPreSize != t->outCodeSize)
return SZ_ERROR_FAIL;
*stop = True;
}
}
else
{
if (t->outPreSize == t->outCodeSize)
*stop = True;
}
return SZ_OK;
}
}
#define LZMA2DECMT_STREAM_WRITE_STEP (1 << 24)
static SRes Lzma2DecMt_MtCallback_Write(void *pp, unsigned coderIndex,
BoolInt needWriteToStream,
const Byte *src, size_t srcSize, BoolInt isCross,
BoolInt *needContinue, BoolInt *canRecode)
{
CLzma2DecMt *me = (CLzma2DecMt *)pp;
const CLzma2DecMtThread *t = &me->coders[coderIndex];
size_t size = t->outCodeSize;
const Byte *data = t->outBuf;
BoolInt needContinue2 = True;
UNUSED_VAR(src)
UNUSED_VAR(srcSize)
UNUSED_VAR(isCross)
PRF_STR_INT_2("Write", coderIndex, srcSize);
*needContinue = False;
*canRecode = True;
if (
// t->parseStatus == LZMA_STATUS_FINISHED_WITH_MARK
t->state == MTDEC_PARSE_OVERFLOW
|| t->state == MTDEC_PARSE_END)
needContinue2 = False;
if (!needWriteToStream)
return SZ_OK;
me->mtc.inProcessed += t->inCodeSize;
if (t->codeRes == SZ_OK)
if ((int)t->parseStatus == LZMA_STATUS_FINISHED_WITH_MARK
|| t->parseStatus == LZMA2_PARSE_STATUS_NEW_BLOCK)
if (t->outPreSize != t->outCodeSize
|| t->inPreSize != t->inCodeSize)
return SZ_ERROR_FAIL;
*canRecode = False;
if (me->outStream)
{
for (;;)
{
size_t cur = size;
size_t written;
if (cur > LZMA2DECMT_STREAM_WRITE_STEP)
cur = LZMA2DECMT_STREAM_WRITE_STEP;
written = ISeqOutStream_Write(me->outStream, data, cur);
me->outProcessed += written;
// me->mtc.writtenTotal += written;
if (written != cur)
return SZ_ERROR_WRITE;
data += cur;
size -= cur;
if (size == 0)
{
*needContinue = needContinue2;
return SZ_OK;
}
RINOK(MtProgress_ProgressAdd(&me->mtc.mtProgress, 0, 0));
}
}
return SZ_ERROR_FAIL;
/*
if (size > me->outBufSize)
return SZ_ERROR_OUTPUT_EOF;
memcpy(me->outBuf, data, size);
me->outBufSize -= size;
me->outBuf += size;
*needContinue = needContinue2;
return SZ_OK;
*/
}
#endif
static SRes Lzma2Dec_Prepare_ST(CLzma2DecMt *p)
{
if (!p->dec_created)
{
Lzma2Dec_Construct(&p->dec);
p->dec_created = True;
}
RINOK(Lzma2Dec_Allocate(&p->dec, p->prop, &p->alignOffsetAlloc.vt));
if (!p->inBuf || p->inBufSize != p->props.inBufSize_ST)
{
ISzAlloc_Free(p->allocMid, p->inBuf);
p->inBufSize = 0;
p->inBuf = (Byte *)ISzAlloc_Alloc(p->allocMid, p->props.inBufSize_ST);
if (!p->inBuf)
return SZ_ERROR_MEM;
p->inBufSize = p->props.inBufSize_ST;
}
Lzma2Dec_Init(&p->dec);
return SZ_OK;
}
static SRes Lzma2Dec_Decode_ST(CLzma2DecMt *p
#ifndef _7ZIP_ST
, BoolInt tMode
#endif
)
{
SizeT wrPos;
size_t inPos, inLim;
const Byte *inData;
UInt64 inPrev, outPrev;
CLzma2Dec *dec;
#ifndef _7ZIP_ST
if (tMode)
{
Lzma2DecMt_FreeOutBufs(p);
tMode = MtDec_PrepareRead(&p->mtc);
}
#endif
RINOK(Lzma2Dec_Prepare_ST(p));
dec = &p->dec;
inPrev = p->inProcessed;
outPrev = p->outProcessed;
inPos = 0;
inLim = 0;
inData = NULL;
wrPos = dec->decoder.dicPos;
for (;;)
{
SizeT dicPos;
SizeT size;
ELzmaFinishMode finishMode;
SizeT inProcessed;
ELzmaStatus status;
SRes res;
SizeT outProcessed;
BoolInt outFinished;
BoolInt needStop;
if (inPos == inLim)
{
#ifndef _7ZIP_ST
if (tMode)
{
inData = MtDec_Read(&p->mtc, &inLim);
inPos = 0;
if (inData)
continue;
tMode = False;
inLim = 0;
}
#endif
if (!p->readWasFinished)
{
inPos = 0;
inLim = p->inBufSize;
inData = p->inBuf;
p->readRes = ISeqInStream_Read(p->inStream, (void *)(p->inBuf), &inLim);
// p->readProcessed += inLim;
// inLim -= 5; p->readWasFinished = True; // for test
if (inLim == 0 || p->readRes != SZ_OK)
p->readWasFinished = True;
}
}
dicPos = dec->decoder.dicPos;
{
SizeT next = dec->decoder.dicBufSize;
if (next - wrPos > p->props.outStep_ST)
next = wrPos + p->props.outStep_ST;
size = next - dicPos;
}
finishMode = LZMA_FINISH_ANY;
if (p->outSize_Defined)
{
const UInt64 rem = p->outSize - p->outProcessed;
if (size >= rem)
{
size = (SizeT)rem;
if (p->finishMode)
finishMode = LZMA_FINISH_END;
}
}
inProcessed = inLim - inPos;
res = Lzma2Dec_DecodeToDic(dec, dicPos + size, inData + inPos, &inProcessed, finishMode, &status);
inPos += inProcessed;
p->inProcessed += inProcessed;
outProcessed = dec->decoder.dicPos - dicPos;
p->outProcessed += outProcessed;
outFinished = (p->outSize_Defined && p->outSize <= p->outProcessed);
needStop = (res != SZ_OK
|| (inProcessed == 0 && outProcessed == 0)
|| status == LZMA_STATUS_FINISHED_WITH_MARK
|| (!p->finishMode && outFinished));
if (needStop || outProcessed >= size)
{
SRes res2;
{
size_t writeSize = dec->decoder.dicPos - wrPos;
size_t written = ISeqOutStream_Write(p->outStream, dec->decoder.dic + wrPos, writeSize);
res2 = (written == writeSize) ? SZ_OK : SZ_ERROR_WRITE;
}
if (dec->decoder.dicPos == dec->decoder.dicBufSize)
dec->decoder.dicPos = 0;
wrPos = dec->decoder.dicPos;
RINOK(res2);
if (needStop)
{
if (res != SZ_OK)
return res;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
{
if (p->finishMode)
{
if (p->outSize_Defined && p->outSize != p->outProcessed)
return SZ_ERROR_DATA;
}
return SZ_OK;
}
if (!p->finishMode && outFinished)
return SZ_OK;
if (status == LZMA_STATUS_NEEDS_MORE_INPUT)
return SZ_ERROR_INPUT_EOF;
return SZ_ERROR_DATA;
}
}
if (p->progress)
{
UInt64 inDelta = p->inProcessed - inPrev;
UInt64 outDelta = p->outProcessed - outPrev;
if (inDelta >= (1 << 22) || outDelta >= (1 << 22))
{
RINOK(ICompressProgress_Progress(p->progress, p->inProcessed, p->outProcessed));
inPrev = p->inProcessed;
outPrev = p->outProcessed;
}
}
}
}
SRes Lzma2DecMt_Decode(CLzma2DecMtHandle pp,
Byte prop,
const CLzma2DecMtProps *props,
ISeqOutStream *outStream, const UInt64 *outDataSize, int finishMode,
// Byte *outBuf, size_t *outBufSize,
ISeqInStream *inStream,
// const Byte *inData, size_t inDataSize,
UInt64 *inProcessed,
// UInt64 *outProcessed,
int *isMT,
ICompressProgress *progress)
{
CLzma2DecMt *p = (CLzma2DecMt *)pp;
#ifndef _7ZIP_ST
BoolInt tMode;
#endif
*inProcessed = 0;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
p->prop = prop;
p->props = *props;
p->inStream = inStream;
p->outStream = outStream;
p->progress = progress;
p->outSize = 0;
p->outSize_Defined = False;
if (outDataSize)
{
p->outSize_Defined = True;
p->outSize = *outDataSize;
}
p->finishMode = finishMode;
p->outProcessed = 0;
p->inProcessed = 0;
p->readWasFinished = False;
p->readRes = SZ_OK;
*isMT = False;
#ifndef _7ZIP_ST
tMode = False;
// p->mtc.parseRes = SZ_OK;
// p->mtc.numFilledThreads = 0;
// p->mtc.crossStart = 0;
// p->mtc.crossEnd = 0;
// p->mtc.allocError_for_Read_BlockIndex = 0;
// p->mtc.isAllocError = False;
if (p->props.numThreads > 1)
{
IMtDecCallback2 vt;
Lzma2DecMt_FreeSt(p);
p->outProcessed_Parse = 0;
if (!p->mtc_WasConstructed)
{
p->mtc_WasConstructed = True;
MtDec_Construct(&p->mtc);
}
p->mtc.progress = progress;
p->mtc.inStream = inStream;
// p->outBuf = NULL;
// p->outBufSize = 0;
/*
if (!outStream)
{
// p->outBuf = outBuf;
// p->outBufSize = *outBufSize;
// *outBufSize = 0;
return SZ_ERROR_PARAM;
}
*/
// p->mtc.inBlockMax = p->props.inBlockMax;
p->mtc.alloc = &p->alignOffsetAlloc.vt;
// p->alignOffsetAlloc.baseAlloc;
// p->mtc.inData = inData;
// p->mtc.inDataSize = inDataSize;
p->mtc.mtCallback = &vt;
p->mtc.mtCallbackObject = p;
p->mtc.inBufSize = p->props.inBufSize_MT;
p->mtc.numThreadsMax = p->props.numThreads;
*isMT = True;
vt.Parse = Lzma2DecMt_MtCallback_Parse;
vt.PreCode = Lzma2DecMt_MtCallback_PreCode;
vt.Code = Lzma2DecMt_MtCallback_Code;
vt.Write = Lzma2DecMt_MtCallback_Write;
{
BoolInt needContinue = False;
SRes res = MtDec_Code(&p->mtc);
/*
if (!outStream)
*outBufSize = p->outBuf - outBuf;
*/
*inProcessed = p->mtc.inProcessed;
needContinue = False;
if (res == SZ_OK)
{
if (p->mtc.mtProgress.res != SZ_OK)
res = p->mtc.mtProgress.res;
else
needContinue = p->mtc.needContinue;
}
if (!needContinue)
{
if (res == SZ_OK)
return p->mtc.readRes;
return res;
}
tMode = True;
p->readRes = p->mtc.readRes;
p->readWasFinished = p->mtc.readWasFinished;
p->inProcessed = p->mtc.inProcessed;
PRF_STR("----- decoding ST -----");
}
}
#endif
*isMT = False;
{
SRes res = Lzma2Dec_Decode_ST(p
#ifndef _7ZIP_ST
, tMode
#endif
);
*inProcessed = p->inProcessed;
// res = SZ_OK; // for test
if (res == SZ_ERROR_INPUT_EOF)
{
if (p->readRes != SZ_OK)
res = p->readRes;
}
else if (res == SZ_OK && p->readRes != SZ_OK)
res = p->readRes;
/*
#ifndef _7ZIP_ST
if (res == SZ_OK && tMode && p->mtc.parseRes != SZ_OK)
res = p->mtc.parseRes;
#endif
*/
return res;
}
}
/* ---------- Read from CLzma2DecMtHandle Interface ---------- */
SRes Lzma2DecMt_Init(CLzma2DecMtHandle pp,
Byte prop,
const CLzma2DecMtProps *props,
const UInt64 *outDataSize, int finishMode,
ISeqInStream *inStream)
{
CLzma2DecMt *p = (CLzma2DecMt *)pp;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
p->prop = prop;
p->props = *props;
p->inStream = inStream;
p->outSize = 0;
p->outSize_Defined = False;
if (outDataSize)
{
p->outSize_Defined = True;
p->outSize = *outDataSize;
}
p->finishMode = finishMode;
p->outProcessed = 0;
p->inProcessed = 0;
p->inPos = 0;
p->inLim = 0;
return Lzma2Dec_Prepare_ST(p);
}
SRes Lzma2DecMt_Read(CLzma2DecMtHandle pp,
Byte *data, size_t *outSize,
UInt64 *inStreamProcessed)
{
CLzma2DecMt *p = (CLzma2DecMt *)pp;
ELzmaFinishMode finishMode;
SRes readRes;
size_t size = *outSize;
*outSize = 0;
*inStreamProcessed = 0;
finishMode = LZMA_FINISH_ANY;
if (p->outSize_Defined)
{
const UInt64 rem = p->outSize - p->outProcessed;
if (size >= rem)
{
size = (size_t)rem;
if (p->finishMode)
finishMode = LZMA_FINISH_END;
}
}
readRes = SZ_OK;
for (;;)
{
SizeT inCur;
SizeT outCur;
ELzmaStatus status;
SRes res;
if (p->inPos == p->inLim && readRes == SZ_OK)
{
p->inPos = 0;
p->inLim = p->props.inBufSize_ST;
readRes = ISeqInStream_Read(p->inStream, p->inBuf, &p->inLim);
}
inCur = p->inLim - p->inPos;
outCur = size;
res = Lzma2Dec_DecodeToBuf(&p->dec, data, &outCur,
p->inBuf + p->inPos, &inCur, finishMode, &status);
p->inPos += inCur;
p->inProcessed += inCur;
*inStreamProcessed += inCur;
p->outProcessed += outCur;
*outSize += outCur;
size -= outCur;
data += outCur;
if (res != 0)
return res;
/*
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
return readRes;
if (size == 0 && status != LZMA_STATUS_NEEDS_MORE_INPUT)
{
if (p->finishMode && p->outSize_Defined && p->outProcessed >= p->outSize)
return SZ_ERROR_DATA;
return readRes;
}
*/
if (inCur == 0 && outCur == 0)
return readRes;
}
}