mirror of
https://github.com/hashcat/hashcat.git
synced 2024-11-30 03:48:17 +00:00
267 lines
4.8 KiB
Perl
267 lines
4.8 KiB
Perl
#!/usr/bin/env perl
|
|
|
|
##
|
|
## Author......: See docs/credits.txt
|
|
## License.....: MIT
|
|
##
|
|
|
|
use strict;
|
|
use warnings;
|
|
|
|
use Digest::SHA qw (sha256);
|
|
|
|
sub module_constraints { [[0, 256], [20, 20], [0, 15], [20, 20], [-1, -1]] }
|
|
|
|
my $ITERATION_MULTIPLIER = 1000;
|
|
|
|
sub module_generate_hash
|
|
{
|
|
my $word = shift;
|
|
my $salt = shift;
|
|
my $cost = shift // 5; # => cost * $ITERATION_MULTIPLIER
|
|
my $lower = shift // 0;
|
|
|
|
my $dgst = sha_crypts (\&sha256, 256, $word, $salt, $cost * $ITERATION_MULTIPLIER);
|
|
|
|
my $salt_hex = unpack ("H*", $salt);
|
|
my $dgst_hex = unpack ("H*", $dgst);
|
|
|
|
# default for MySQL is upper-case hexadecimals:
|
|
|
|
if ($lower == 0)
|
|
{
|
|
$salt_hex = uc ($salt_hex);
|
|
$dgst_hex = uc ($dgst_hex);
|
|
}
|
|
|
|
my $hash = sprintf ("\$mysql\$A\$%03i*%s*%s",
|
|
$cost,
|
|
$salt_hex,
|
|
$dgst_hex);
|
|
|
|
return $hash;
|
|
}
|
|
|
|
sub module_verify_hash
|
|
{
|
|
my $line = shift;
|
|
|
|
my $idx = index ($line, ':');
|
|
|
|
return unless ($idx >= 0);
|
|
|
|
my $hash = substr ($line, 0, $idx);
|
|
my $word = substr ($line, $idx + 1);
|
|
|
|
return unless defined $hash;
|
|
return unless defined $word;
|
|
|
|
return unless (substr ($hash, 0, 9) eq '$mysql$A$');
|
|
|
|
$idx = index ($hash, '*');
|
|
|
|
return unless ($idx == 12);
|
|
|
|
# iter:
|
|
|
|
my $cost_factor = substr ($hash, 9, 3);
|
|
|
|
$cost_factor = int ($cost_factor);
|
|
|
|
return unless ($cost_factor > 0);
|
|
|
|
# salt:
|
|
|
|
$idx = index ($hash, '*', 13);
|
|
|
|
return unless ($idx == 53);
|
|
|
|
my $salt = substr ($hash, 13, 40);
|
|
|
|
$salt = pack ("H*", $salt);
|
|
|
|
# check for lower/upper case:
|
|
|
|
my $digest = substr ($hash, 54);
|
|
|
|
my $is_lower = 0;
|
|
|
|
$is_lower = 1 if (uc ($digest) ne $digest);
|
|
|
|
# verify:
|
|
|
|
$word = pack_if_HEX_notation ($word);
|
|
|
|
my $new_hash = module_generate_hash ($word, $salt, $cost_factor, $is_lower);
|
|
|
|
return ($new_hash, $word);
|
|
}
|
|
|
|
# This is a modified sha_crypts () function of pass_gen.pl from
|
|
# https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/run/pass_gen.pl
|
|
|
|
# Copyright: https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/doc/pass_gen.Manifest
|
|
# public domain
|
|
# written by Jim Fougeron
|
|
|
|
# updated for new MySQL hashes by philsmd
|
|
# modified date: February 2020
|
|
# license: public domain
|
|
|
|
my @i64 = ('.', '/', '0'..'9', 'A'..'Z', 'a'..'z');
|
|
|
|
sub to64
|
|
{
|
|
my $v = shift;
|
|
my $n = shift;
|
|
|
|
my $str;
|
|
|
|
while (--$n >= 0)
|
|
{
|
|
$str .= $i64[$v & 0x3F];
|
|
|
|
$v >>= 6;
|
|
}
|
|
|
|
return $str;
|
|
}
|
|
|
|
sub sha_crypts
|
|
{
|
|
my ($func, $bits, $key, $salt, $loops) = @_;
|
|
|
|
my $bytes = $bits / 8;
|
|
|
|
my $b = $func->($key . $salt . $key);
|
|
|
|
# Add for any character in the key one byte of the alternate sum.
|
|
|
|
my $tmp = $key . $salt;
|
|
|
|
for (my $i = length ($key); $i > 0; $i -= $bytes)
|
|
{
|
|
if ($i > $bytes)
|
|
{
|
|
$tmp .= $b;
|
|
}
|
|
else
|
|
{
|
|
$tmp .= substr ($b, 0, $i);
|
|
}
|
|
}
|
|
|
|
# Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 the key.
|
|
|
|
for (my $i = length ($key); $i > 0; $i >>= 1)
|
|
{
|
|
if (($i & 1) != 0)
|
|
{
|
|
$tmp .= $b;
|
|
}
|
|
else
|
|
{
|
|
$tmp .= $key;
|
|
}
|
|
}
|
|
|
|
my $a = $func->($tmp);
|
|
|
|
# NOTE, this will be the 'initial' $c value in the inner loop.
|
|
|
|
# For every character in the password add the entire password. produces DP
|
|
|
|
$tmp = "";
|
|
|
|
for (my $i = 0; $i < length ($key); $i++)
|
|
{
|
|
$tmp .= $key;
|
|
}
|
|
|
|
my $dp = $func->($tmp);
|
|
|
|
# Create byte sequence P
|
|
|
|
my $p = "";
|
|
|
|
for (my $i = length ($key); $i > 0; $i -= $bytes)
|
|
{
|
|
if ($i > $bytes)
|
|
{
|
|
$p .= $dp;
|
|
}
|
|
else
|
|
{
|
|
$p .= substr ($dp, 0, $i);
|
|
}
|
|
}
|
|
|
|
# produce ds
|
|
|
|
$tmp = "";
|
|
|
|
my $til = 16 + ord (substr ($a, 0, 1));
|
|
|
|
for (my $i = 0; $i < $til; $i++)
|
|
{
|
|
$tmp .= $salt;
|
|
}
|
|
|
|
my $ds = $func->($tmp);
|
|
|
|
# Create byte sequence S
|
|
|
|
my $s = "";
|
|
|
|
for (my $i = length ($salt); $i > 0; $i -= $bytes)
|
|
{
|
|
if ($i > $bytes)
|
|
{
|
|
$s .= $ds;
|
|
}
|
|
else
|
|
{
|
|
$s .= substr ($ds, 0, $i);
|
|
}
|
|
}
|
|
|
|
my $c = $a; # Ok, we saved this, which will 'seed' our crypt value here in the loop.
|
|
|
|
# now we do 5000 iterations of SHA2 (256 or 512)
|
|
|
|
for (my $i = 0; $i < $loops; $i++)
|
|
{
|
|
if ($i & 1) { $tmp = $p; }
|
|
else { $tmp = $c; }
|
|
|
|
if ($i % 3) { $tmp .= $s; }
|
|
if ($i % 7) { $tmp .= $p; }
|
|
|
|
if ($i & 1) { $tmp .= $c; }
|
|
else { $tmp .= $p; }
|
|
|
|
$c = $func->($tmp);
|
|
}
|
|
|
|
my $inc1; my $inc2; my $mod; my $end;
|
|
|
|
if ($bits == 256) { $inc1 = 10; $inc2 = 21; $mod = 30; $end = 0; }
|
|
else { $inc1 = 21; $inc2 = 22; $mod = 63; $end = 21; }
|
|
|
|
my $i = 0;
|
|
$tmp = "";
|
|
|
|
do
|
|
{
|
|
$tmp .= to64 ((ord (substr ($c, $i, 1)) << 16) | (ord (substr ($c, ($i + $inc1) % $mod, 1)) << 8) | ord (substr ($c, ($i + $inc1 * 2) % $mod, 1)), 4);
|
|
$i = ($i + $inc2) % $mod;
|
|
} while ($i != $end);
|
|
|
|
if ($bits == 256) { $tmp .= to64 ((ord (substr ($c, 31, 1)) << 8) | ord (substr ($c, 30, 1)), 3); }
|
|
else { $tmp .= to64 (ord (substr ($c, 63, 1)), 2); }
|
|
|
|
return $tmp;
|
|
}
|
|
|
|
1;
|