1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-10 15:51:10 +00:00
hashcat/deps/LZMA-SDK/C/LzFindMt.c
2023-05-17 19:03:13 +02:00

1401 lines
35 KiB
C

/* LzFindMt.c -- multithreaded Match finder for LZ algorithms
2021-12-21 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #include <stdio.h>
#include "CpuArch.h"
#include "LzHash.h"
#include "LzFindMt.h"
// #define LOG_ITERS
// #define LOG_THREAD
#ifdef LOG_THREAD
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
#ifdef LOG_ITERS
#include <stdio.h>
extern UInt64 g_NumIters_Tree;
extern UInt64 g_NumIters_Loop;
extern UInt64 g_NumIters_Bytes;
#define LOG_ITER(x) x
#else
#define LOG_ITER(x)
#endif
#define kMtHashBlockSize ((UInt32)1 << 17)
#define kMtHashNumBlocks (1 << 1)
#define GET_HASH_BLOCK_OFFSET(i) (((i) & (kMtHashNumBlocks - 1)) * kMtHashBlockSize)
#define kMtBtBlockSize ((UInt32)1 << 16)
#define kMtBtNumBlocks (1 << 4)
#define GET_BT_BLOCK_OFFSET(i) (((i) & (kMtBtNumBlocks - 1)) * (size_t)kMtBtBlockSize)
/*
HASH functions:
We use raw 8/16 bits from a[1] and a[2],
xored with crc(a[0]) and crc(a[3]).
We check a[0], a[3] only. We don't need to compare a[1] and a[2] in matches.
our crc() function provides one-to-one correspondence for low 8-bit values:
(crc[0...0xFF] & 0xFF) <-> [0...0xFF]
*/
#define MF(mt) ((mt)->MatchFinder)
#define MF_CRC (p->crc)
// #define MF(mt) (&(mt)->MatchFinder)
// #define MF_CRC (p->MatchFinder.crc)
#define MT_HASH2_CALC \
h2 = (MF_CRC[cur[0]] ^ cur[1]) & (kHash2Size - 1);
#define MT_HASH3_CALC { \
UInt32 temp = MF_CRC[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
/*
#define MT_HASH3_CALC__NO_2 { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h3 = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
#define __MT_HASH4_CALC { \
UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
h2 = temp & (kHash2Size - 1); \
temp ^= ((UInt32)cur[2] << 8); \
h3 = temp & (kHash3Size - 1); \
h4 = (temp ^ (p->crc[cur[3]] << kLzHash_CrcShift_1)) & p->hash4Mask; }
// (kHash4Size - 1);
*/
MY_NO_INLINE
static void MtSync_Construct(CMtSync *p)
{
p->affinity = 0;
p->wasCreated = False;
p->csWasInitialized = False;
p->csWasEntered = False;
Thread_Construct(&p->thread);
Event_Construct(&p->canStart);
Event_Construct(&p->wasStopped);
Semaphore_Construct(&p->freeSemaphore);
Semaphore_Construct(&p->filledSemaphore);
}
#define DEBUG_BUFFER_LOCK // define it to debug lock state
#ifdef DEBUG_BUFFER_LOCK
#include <stdlib.h>
#define BUFFER_MUST_BE_LOCKED(p) if (!(p)->csWasEntered) exit(1);
#define BUFFER_MUST_BE_UNLOCKED(p) if ( (p)->csWasEntered) exit(1);
#else
#define BUFFER_MUST_BE_LOCKED(p)
#define BUFFER_MUST_BE_UNLOCKED(p)
#endif
#define LOCK_BUFFER(p) { \
BUFFER_MUST_BE_UNLOCKED(p); \
CriticalSection_Enter(&(p)->cs); \
(p)->csWasEntered = True; }
#define UNLOCK_BUFFER(p) { \
BUFFER_MUST_BE_LOCKED(p); \
CriticalSection_Leave(&(p)->cs); \
(p)->csWasEntered = False; }
MY_NO_INLINE
static UInt32 MtSync_GetNextBlock(CMtSync *p)
{
UInt32 numBlocks = 0;
if (p->needStart)
{
BUFFER_MUST_BE_UNLOCKED(p)
p->numProcessedBlocks = 1;
p->needStart = False;
p->stopWriting = False;
p->exit = False;
Event_Reset(&p->wasStopped);
Event_Set(&p->canStart);
}
else
{
UNLOCK_BUFFER(p)
// we free current block
numBlocks = p->numProcessedBlocks++;
Semaphore_Release1(&p->freeSemaphore);
}
// buffer is UNLOCKED here
Semaphore_Wait(&p->filledSemaphore);
LOCK_BUFFER(p);
return numBlocks;
}
/* if Writing (Processing) thread was started, we must call MtSync_StopWriting() */
MY_NO_INLINE
static void MtSync_StopWriting(CMtSync *p)
{
if (!Thread_WasCreated(&p->thread) || p->needStart)
return;
PRF(printf("\nMtSync_StopWriting %p\n", p));
if (p->csWasEntered)
{
/* we don't use buffer in this thread after StopWriting().
So we UNLOCK buffer.
And we restore default UNLOCKED state for stopped thread */
UNLOCK_BUFFER(p)
}
/* We send (p->stopWriting) message and release freeSemaphore
to free current block.
So the thread will see (p->stopWriting) at some
iteration after Wait(freeSemaphore).
The thread doesn't need to fill all avail free blocks,
so we can get fast thread stop.
*/
p->stopWriting = True;
Semaphore_Release1(&p->freeSemaphore); // check semaphore count !!!
PRF(printf("\nMtSync_StopWriting %p : Event_Wait(&p->wasStopped)\n", p));
Event_Wait(&p->wasStopped);
PRF(printf("\nMtSync_StopWriting %p : Event_Wait() finsihed\n", p));
/* 21.03 : we don't restore samaphore counters here.
We will recreate and reinit samaphores in next start */
p->needStart = True;
}
MY_NO_INLINE
static void MtSync_Destruct(CMtSync *p)
{
PRF(printf("\nMtSync_Destruct %p\n", p));
if (Thread_WasCreated(&p->thread))
{
/* we want thread to be in Stopped state before sending EXIT command.
note: stop(btSync) will stop (htSync) also */
MtSync_StopWriting(p);
/* thread in Stopped state here : (p->needStart == true) */
p->exit = True;
// if (p->needStart) // it's (true)
Event_Set(&p->canStart); // we send EXIT command to thread
Thread_Wait_Close(&p->thread); // we wait thread finishing
}
if (p->csWasInitialized)
{
CriticalSection_Delete(&p->cs);
p->csWasInitialized = False;
}
p->csWasEntered = False;
Event_Close(&p->canStart);
Event_Close(&p->wasStopped);
Semaphore_Close(&p->freeSemaphore);
Semaphore_Close(&p->filledSemaphore);
p->wasCreated = False;
}
// #define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
// we want to get real system error codes here instead of SZ_ERROR_THREAD
#define RINOK_THREAD(x) RINOK(x)
// call it before each new file (when new starting is required):
MY_NO_INLINE
static SRes MtSync_Init(CMtSync *p, UInt32 numBlocks)
{
WRes wres;
// BUFFER_MUST_BE_UNLOCKED(p)
if (!p->needStart || p->csWasEntered)
return SZ_ERROR_FAIL;
wres = Semaphore_OptCreateInit(&p->freeSemaphore, numBlocks, numBlocks);
if (wres == 0)
wres = Semaphore_OptCreateInit(&p->filledSemaphore, 0, numBlocks);
return MY_SRes_HRESULT_FROM_WRes(wres);
}
static WRes MtSync_Create_WRes(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj)
{
WRes wres;
if (p->wasCreated)
return SZ_OK;
RINOK_THREAD(CriticalSection_Init(&p->cs));
p->csWasInitialized = True;
p->csWasEntered = False;
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->canStart));
RINOK_THREAD(AutoResetEvent_CreateNotSignaled(&p->wasStopped));
p->needStart = True;
p->exit = True; /* p->exit is unused before (canStart) Event.
But in case of some unexpected code failure we will get fast exit from thread */
// return ERROR_TOO_MANY_POSTS; // for debug
// return EINVAL; // for debug
if (p->affinity != 0)
wres = Thread_Create_With_Affinity(&p->thread, startAddress, obj, (CAffinityMask)p->affinity);
else
wres = Thread_Create(&p->thread, startAddress, obj);
RINOK_THREAD(wres);
p->wasCreated = True;
return SZ_OK;
}
MY_NO_INLINE
static SRes MtSync_Create(CMtSync *p, THREAD_FUNC_TYPE startAddress, void *obj)
{
const WRes wres = MtSync_Create_WRes(p, startAddress, obj);
if (wres == 0)
return 0;
MtSync_Destruct(p);
return MY_SRes_HRESULT_FROM_WRes(wres);
}
// ---------- HASH THREAD ----------
#define kMtMaxValForNormalize 0xFFFFFFFF
// #define kMtMaxValForNormalize ((1 << 21)) // for debug
// #define kNormalizeAlign (1 << 7) // alignment for speculated accesses
#ifdef MY_CPU_LE_UNALIGN
#define GetUi24hi_from32(p) ((UInt32)GetUi32(p) >> 8)
#else
#define GetUi24hi_from32(p) ((p)[1] ^ ((UInt32)(p)[2] << 8) ^ ((UInt32)(p)[3] << 16))
#endif
#define GetHeads_DECL(name) \
static void GetHeads ## name(const Byte *p, UInt32 pos, \
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc)
#define GetHeads_LOOP(v) \
for (; numHeads != 0; numHeads--) { \
const UInt32 value = (v); \
p++; \
*heads++ = pos - hash[value]; \
hash[value] = pos++; }
#define DEF_GetHeads2(name, v, action) \
GetHeads_DECL(name) { action \
GetHeads_LOOP(v) }
#define DEF_GetHeads(name, v) DEF_GetHeads2(name, v, ;)
DEF_GetHeads2(2, GetUi16(p), UNUSED_VAR(hashMask); UNUSED_VAR(crc); )
DEF_GetHeads(3, (crc[p[0]] ^ GetUi16(p + 1)) & hashMask)
DEF_GetHeads2(3b, GetUi16(p) ^ ((UInt32)(p)[2] << 16), UNUSED_VAR(hashMask); UNUSED_VAR(crc); )
// BT3 is not good for crc collisions for big hashMask values.
/*
GetHeads_DECL(3b)
{
UNUSED_VAR(hashMask);
UNUSED_VAR(crc);
{
const Byte *pLim = p + numHeads;
if (numHeads == 0)
return;
pLim--;
while (p < pLim)
{
UInt32 v1 = GetUi32(p);
UInt32 v0 = v1 & 0xFFFFFF;
UInt32 h0, h1;
p += 2;
v1 >>= 8;
h0 = hash[v0]; hash[v0] = pos; heads[0] = pos - h0; pos++;
h1 = hash[v1]; hash[v1] = pos; heads[1] = pos - h1; pos++;
heads += 2;
}
if (p == pLim)
{
UInt32 v0 = GetUi16(p) ^ ((UInt32)(p)[2] << 16);
*heads = pos - hash[v0];
hash[v0] = pos;
}
}
}
*/
/*
GetHeads_DECL(4)
{
unsigned sh = 0;
UNUSED_VAR(crc)
while ((hashMask & 0x80000000) == 0)
{
hashMask <<= 1;
sh++;
}
GetHeads_LOOP((GetUi32(p) * 0xa54a1) >> sh)
}
#define GetHeads4b GetHeads4
*/
#define USE_GetHeads_LOCAL_CRC
#ifdef USE_GetHeads_LOCAL_CRC
GetHeads_DECL(4)
{
UInt32 crc0[256];
UInt32 crc1[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
// crc1[i] = rotlFixed(v, 8) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[3]] ^ (UInt32)GetUi16(p+1))
}
GetHeads_DECL(4b)
{
UInt32 crc0[256];
{
unsigned i;
for (i = 0; i < 256; i++)
crc0[i] = crc[i] & hashMask;
}
GetHeads_LOOP(crc0[p[0]] ^ GetUi24hi_from32(p))
}
GetHeads_DECL(5)
{
UInt32 crc0[256];
UInt32 crc1[256];
UInt32 crc2[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
crc2[i] = (v << kLzHash_CrcShift_2) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[3]] ^ crc2[p[4]] ^ (UInt32)GetUi16(p+1))
}
GetHeads_DECL(5b)
{
UInt32 crc0[256];
UInt32 crc1[256];
{
unsigned i;
for (i = 0; i < 256; i++)
{
UInt32 v = crc[i];
crc0[i] = v & hashMask;
crc1[i] = (v << kLzHash_CrcShift_1) & hashMask;
}
}
GetHeads_LOOP(crc0[p[0]] ^ crc1[p[4]] ^ GetUi24hi_from32(p))
}
#else
DEF_GetHeads(4, (crc[p[0]] ^ (crc[p[3]] << kLzHash_CrcShift_1) ^ (UInt32)GetUi16(p+1)) & hashMask)
DEF_GetHeads(4b, (crc[p[0]] ^ GetUi24hi_from32(p)) & hashMask)
DEF_GetHeads(5, (crc[p[0]] ^ (crc[p[3]] << kLzHash_CrcShift_1) ^ (crc[p[4]] << kLzHash_CrcShift_2) ^ (UInt32)GetUi16(p + 1)) & hashMask)
DEF_GetHeads(5b, (crc[p[0]] ^ (crc[p[4]] << kLzHash_CrcShift_1) ^ GetUi24hi_from32(p)) & hashMask)
#endif
static void HashThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->hashSync;
PRF(printf("\nHashThreadFunc\n"));
for (;;)
{
UInt32 blockIndex = 0;
PRF(printf("\nHashThreadFunc : Event_Wait(&p->canStart)\n"));
Event_Wait(&p->canStart);
PRF(printf("\nHashThreadFunc : Event_Wait(&p->canStart) : after \n"));
if (p->exit)
{
PRF(printf("\nHashThreadFunc : exit \n"));
return;
}
MatchFinder_Init_HighHash(MF(mt));
for (;;)
{
PRF(printf("Hash thread block = %d pos = %d\n", (unsigned)blockIndex, mt->MatchFinder->pos));
{
CMatchFinder *mf = MF(mt);
if (MatchFinder_NeedMove(mf))
{
CriticalSection_Enter(&mt->btSync.cs);
CriticalSection_Enter(&mt->hashSync.cs);
{
const Byte *beforePtr = Inline_MatchFinder_GetPointerToCurrentPos(mf);
ptrdiff_t offset;
MatchFinder_MoveBlock(mf);
offset = beforePtr - Inline_MatchFinder_GetPointerToCurrentPos(mf);
mt->pointerToCurPos -= offset;
mt->buffer -= offset;
}
CriticalSection_Leave(&mt->hashSync.cs);
CriticalSection_Leave(&mt->btSync.cs);
continue;
}
Semaphore_Wait(&p->freeSemaphore);
if (p->exit) // exit is unexpected here. But we check it here for some failure case
return;
// for faster stop : we check (p->stopWriting) after Wait(freeSemaphore)
if (p->stopWriting)
break;
MatchFinder_ReadIfRequired(mf);
{
UInt32 *heads = mt->hashBuf + GET_HASH_BLOCK_OFFSET(blockIndex++);
UInt32 num = Inline_MatchFinder_GetNumAvailableBytes(mf);
heads[0] = 2;
heads[1] = num;
/* heads[1] contains the number of avail bytes:
if (avail < mf->numHashBytes) :
{
it means that stream was finished
HASH_THREAD and BT_TREAD must move position for heads[1] (avail) bytes.
HASH_THREAD doesn't stop,
HASH_THREAD fills only the header (2 numbers) for all next blocks:
{2, NumHashBytes - 1}, {2,0}, {2,0}, ... , {2,0}
}
else
{
HASH_THREAD and BT_TREAD must move position for (heads[0] - 2) bytes;
}
*/
if (num >= mf->numHashBytes)
{
num = num - mf->numHashBytes + 1;
if (num > kMtHashBlockSize - 2)
num = kMtHashBlockSize - 2;
if (mf->pos > (UInt32)kMtMaxValForNormalize - num)
{
const UInt32 subValue = (mf->pos - mf->historySize - 1); // & ~(UInt32)(kNormalizeAlign - 1);
Inline_MatchFinder_ReduceOffsets(mf, subValue);
MatchFinder_Normalize3(subValue, mf->hash + mf->fixedHashSize, (size_t)mf->hashMask + 1);
}
heads[0] = 2 + num;
mt->GetHeadsFunc(mf->buffer, mf->pos, mf->hash + mf->fixedHashSize, mf->hashMask, heads + 2, num, mf->crc);
}
mf->pos += num; // wrap over zero is allowed at the end of stream
mf->buffer += num;
}
}
Semaphore_Release1(&p->filledSemaphore);
} // for() processing end
// p->numBlocks_Sent = blockIndex;
Event_Set(&p->wasStopped);
} // for() thread end
}
// ---------- BT THREAD ----------
/* we use one variable instead of two (cyclicBufferPos == pos) before CyclicBuf wrap.
here we define fixed offset of (p->pos) from (p->cyclicBufferPos) */
#define CYC_TO_POS_OFFSET 0
// #define CYC_TO_POS_OFFSET 1 // for debug
#define MFMT_GM_INLINE
#ifdef MFMT_GM_INLINE
/*
we use size_t for (pos) instead of UInt32
to eliminate "movsx" BUG in old MSVC x64 compiler.
*/
UInt32 * MY_FAST_CALL GetMatchesSpecN_2(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes);
#endif
static void BtGetMatches(CMatchFinderMt *p, UInt32 *d)
{
UInt32 numProcessed = 0;
UInt32 curPos = 2;
/* GetMatchesSpec() functions don't create (len = 1)
in [len, dist] match pairs, if (p->numHashBytes >= 2)
Also we suppose here that (matchMaxLen >= 2).
So the following code for (reserve) is not required
UInt32 reserve = (p->matchMaxLen * 2);
const UInt32 kNumHashBytes_Max = 5; // BT_HASH_BYTES_MAX
if (reserve < kNumHashBytes_Max - 1)
reserve = kNumHashBytes_Max - 1;
const UInt32 limit = kMtBtBlockSize - (reserve);
*/
const UInt32 limit = kMtBtBlockSize - (p->matchMaxLen * 2);
d[1] = p->hashNumAvail;
if (p->failure_BT)
{
// printf("\n == 1 BtGetMatches() p->failure_BT\n");
d[0] = 0;
// d[1] = 0;
return;
}
while (curPos < limit)
{
if (p->hashBufPos == p->hashBufPosLimit)
{
// MatchFinderMt_GetNextBlock_Hash(p);
UInt32 avail;
{
const UInt32 bi = MtSync_GetNextBlock(&p->hashSync);
const UInt32 k = GET_HASH_BLOCK_OFFSET(bi);
const UInt32 *h = p->hashBuf + k;
avail = h[1];
p->hashBufPosLimit = k + h[0];
p->hashNumAvail = avail;
p->hashBufPos = k + 2;
}
{
/* we must prevent UInt32 overflow for avail total value,
if avail was increased with new hash block */
UInt32 availSum = numProcessed + avail;
if (availSum < numProcessed)
availSum = (UInt32)(Int32)-1;
d[1] = availSum;
}
if (avail >= p->numHashBytes)
continue;
// if (p->hashBufPos != p->hashBufPosLimit) exit(1);
/* (avail < p->numHashBytes)
It means that stream was finished.
And (avail) - is a number of remaining bytes,
we fill (d) for (avail) bytes for LZ_THREAD (receiver).
but we don't update (p->pos) and (p->cyclicBufferPos) here in BT_THREAD */
/* here we suppose that we have space enough:
(kMtBtBlockSize - curPos >= p->hashNumAvail) */
p->hashNumAvail = 0;
d[0] = curPos + avail;
d += curPos;
for (; avail != 0; avail--)
*d++ = 0;
return;
}
{
UInt32 size = p->hashBufPosLimit - p->hashBufPos;
UInt32 pos = p->pos;
UInt32 cyclicBufferPos = p->cyclicBufferPos;
UInt32 lenLimit = p->matchMaxLen;
if (lenLimit >= p->hashNumAvail)
lenLimit = p->hashNumAvail;
{
UInt32 size2 = p->hashNumAvail - lenLimit + 1;
if (size2 < size)
size = size2;
size2 = p->cyclicBufferSize - cyclicBufferPos;
if (size2 < size)
size = size2;
}
if (pos > (UInt32)kMtMaxValForNormalize - size)
{
const UInt32 subValue = (pos - p->cyclicBufferSize); // & ~(UInt32)(kNormalizeAlign - 1);
pos -= subValue;
p->pos = pos;
MatchFinder_Normalize3(subValue, p->son, (size_t)p->cyclicBufferSize * 2);
}
#ifndef MFMT_GM_INLINE
while (curPos < limit && size-- != 0)
{
UInt32 *startDistances = d + curPos;
UInt32 num = (UInt32)(GetMatchesSpec1(lenLimit, pos - p->hashBuf[p->hashBufPos++],
pos, p->buffer, p->son, cyclicBufferPos, p->cyclicBufferSize, p->cutValue,
startDistances + 1, p->numHashBytes - 1) - startDistances);
*startDistances = num - 1;
curPos += num;
cyclicBufferPos++;
pos++;
p->buffer++;
}
#else
{
UInt32 posRes = pos;
const UInt32 *d_end;
{
d_end = GetMatchesSpecN_2(
p->buffer + lenLimit - 1,
pos, p->buffer, p->son, p->cutValue, d + curPos,
p->numHashBytes - 1, p->hashBuf + p->hashBufPos,
d + limit, p->hashBuf + p->hashBufPos + size,
cyclicBufferPos, p->cyclicBufferSize,
&posRes);
}
{
if (!d_end)
{
// printf("\n == 2 BtGetMatches() p->failure_BT\n");
// internal data failure
p->failure_BT = True;
d[0] = 0;
// d[1] = 0;
return;
}
}
curPos = (UInt32)(d_end - d);
{
const UInt32 processed = posRes - pos;
pos = posRes;
p->hashBufPos += processed;
cyclicBufferPos += processed;
p->buffer += processed;
}
}
#endif
{
const UInt32 processed = pos - p->pos;
numProcessed += processed;
p->hashNumAvail -= processed;
p->pos = pos;
}
if (cyclicBufferPos == p->cyclicBufferSize)
cyclicBufferPos = 0;
p->cyclicBufferPos = cyclicBufferPos;
}
}
d[0] = curPos;
}
static void BtFillBlock(CMatchFinderMt *p, UInt32 globalBlockIndex)
{
CMtSync *sync = &p->hashSync;
BUFFER_MUST_BE_UNLOCKED(sync)
if (!sync->needStart)
{
LOCK_BUFFER(sync)
}
BtGetMatches(p, p->btBuf + GET_BT_BLOCK_OFFSET(globalBlockIndex));
/* We suppose that we have called GetNextBlock() from start.
So buffer is LOCKED */
UNLOCK_BUFFER(sync)
}
MY_NO_INLINE
static void BtThreadFunc(CMatchFinderMt *mt)
{
CMtSync *p = &mt->btSync;
for (;;)
{
UInt32 blockIndex = 0;
Event_Wait(&p->canStart);
for (;;)
{
PRF(printf(" BT thread block = %d pos = %d\n", (unsigned)blockIndex, mt->pos));
/* (p->exit == true) is possible after (p->canStart) at first loop iteration
and is unexpected after more Wait(freeSemaphore) iterations */
if (p->exit)
return;
Semaphore_Wait(&p->freeSemaphore);
// for faster stop : we check (p->stopWriting) after Wait(freeSemaphore)
if (p->stopWriting)
break;
BtFillBlock(mt, blockIndex++);
Semaphore_Release1(&p->filledSemaphore);
}
// we stop HASH_THREAD here
MtSync_StopWriting(&mt->hashSync);
// p->numBlocks_Sent = blockIndex;
Event_Set(&p->wasStopped);
}
}
void MatchFinderMt_Construct(CMatchFinderMt *p)
{
p->hashBuf = NULL;
MtSync_Construct(&p->hashSync);
MtSync_Construct(&p->btSync);
}
static void MatchFinderMt_FreeMem(CMatchFinderMt *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->hashBuf);
p->hashBuf = NULL;
}
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAllocPtr alloc)
{
/*
HASH_THREAD can use CriticalSection(s) btSync.cs and hashSync.cs.
So we must be sure that HASH_THREAD will not use CriticalSection(s)
after deleting CriticalSection here.
we call ReleaseStream(p)
that calls StopWriting(btSync)
that calls StopWriting(hashSync), if it's required to stop HASH_THREAD.
after StopWriting() it's safe to destruct MtSync(s) in any order */
MatchFinderMt_ReleaseStream(p);
MtSync_Destruct(&p->btSync);
MtSync_Destruct(&p->hashSync);
LOG_ITER(
printf("\nTree %9d * %7d iter = %9d = sum : bytes = %9d\n",
(UInt32)(g_NumIters_Tree / 1000),
(UInt32)(((UInt64)g_NumIters_Loop * 1000) / (g_NumIters_Tree + 1)),
(UInt32)(g_NumIters_Loop / 1000),
(UInt32)(g_NumIters_Bytes / 1000)
));
MatchFinderMt_FreeMem(p, alloc);
}
#define kHashBufferSize (kMtHashBlockSize * kMtHashNumBlocks)
#define kBtBufferSize (kMtBtBlockSize * kMtBtNumBlocks)
static THREAD_FUNC_DECL HashThreadFunc2(void *p) { HashThreadFunc((CMatchFinderMt *)p); return 0; }
static THREAD_FUNC_DECL BtThreadFunc2(void *p)
{
Byte allocaDummy[0x180];
unsigned i = 0;
for (i = 0; i < 16; i++)
allocaDummy[i] = (Byte)0;
if (allocaDummy[0] == 0)
BtThreadFunc((CMatchFinderMt *)p);
return 0;
}
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAllocPtr alloc)
{
CMatchFinder *mf = MF(p);
p->historySize = historySize;
if (kMtBtBlockSize <= matchMaxLen * 4)
return SZ_ERROR_PARAM;
if (!p->hashBuf)
{
p->hashBuf = (UInt32 *)ISzAlloc_Alloc(alloc, ((size_t)kHashBufferSize + (size_t)kBtBufferSize) * sizeof(UInt32));
if (!p->hashBuf)
return SZ_ERROR_MEM;
p->btBuf = p->hashBuf + kHashBufferSize;
}
keepAddBufferBefore += (kHashBufferSize + kBtBufferSize);
keepAddBufferAfter += kMtHashBlockSize;
if (!MatchFinder_Create(mf, historySize, keepAddBufferBefore, matchMaxLen, keepAddBufferAfter, alloc))
return SZ_ERROR_MEM;
RINOK(MtSync_Create(&p->hashSync, HashThreadFunc2, p));
RINOK(MtSync_Create(&p->btSync, BtThreadFunc2, p));
return SZ_OK;
}
SRes MatchFinderMt_InitMt(CMatchFinderMt *p)
{
RINOK(MtSync_Init(&p->hashSync, kMtHashNumBlocks));
return MtSync_Init(&p->btSync, kMtBtNumBlocks);
}
static void MatchFinderMt_Init(CMatchFinderMt *p)
{
CMatchFinder *mf = MF(p);
p->btBufPos =
p->btBufPosLimit = NULL;
p->hashBufPos =
p->hashBufPosLimit = 0;
p->hashNumAvail = 0; // 21.03
p->failure_BT = False;
/* Init without data reading. We don't want to read data in this thread */
MatchFinder_Init_4(mf);
MatchFinder_Init_LowHash(mf);
p->pointerToCurPos = Inline_MatchFinder_GetPointerToCurrentPos(mf);
p->btNumAvailBytes = 0;
p->failure_LZ_BT = False;
// p->failure_LZ_LZ = False;
p->lzPos =
1; // optimal smallest value
// 0; // for debug: ignores match to start
// kNormalizeAlign; // for debug
p->hash = mf->hash;
p->fixedHashSize = mf->fixedHashSize;
// p->hash4Mask = mf->hash4Mask;
p->crc = mf->crc;
// memcpy(p->crc, mf->crc, sizeof(mf->crc));
p->son = mf->son;
p->matchMaxLen = mf->matchMaxLen;
p->numHashBytes = mf->numHashBytes;
/* (mf->pos) and (mf->streamPos) were already initialized to 1 in MatchFinder_Init_4() */
// mf->streamPos = mf->pos = 1; // optimal smallest value
// 0; // for debug: ignores match to start
// kNormalizeAlign; // for debug
/* we must init (p->pos = mf->pos) for BT, because
BT code needs (p->pos == delta_value_for_empty_hash_record == mf->pos) */
p->pos = mf->pos; // do not change it
p->cyclicBufferPos = (p->pos - CYC_TO_POS_OFFSET);
p->cyclicBufferSize = mf->cyclicBufferSize;
p->buffer = mf->buffer;
p->cutValue = mf->cutValue;
// p->son[0] = p->son[1] = 0; // unused: to init skipped record for speculated accesses.
}
/* ReleaseStream is required to finish multithreading */
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p)
{
// Sleep(1); // for debug
MtSync_StopWriting(&p->btSync);
// Sleep(200); // for debug
/* p->MatchFinder->ReleaseStream(); */
}
MY_NO_INLINE
static UInt32 MatchFinderMt_GetNextBlock_Bt(CMatchFinderMt *p)
{
if (p->failure_LZ_BT)
p->btBufPos = p->failureBuf;
else
{
const UInt32 bi = MtSync_GetNextBlock(&p->btSync);
const UInt32 *bt = p->btBuf + GET_BT_BLOCK_OFFSET(bi);
{
const UInt32 numItems = bt[0];
p->btBufPosLimit = bt + numItems;
p->btNumAvailBytes = bt[1];
p->btBufPos = bt + 2;
if (numItems < 2 || numItems > kMtBtBlockSize)
{
p->failureBuf[0] = 0;
p->btBufPos = p->failureBuf;
p->btBufPosLimit = p->failureBuf + 1;
p->failure_LZ_BT = True;
// p->btNumAvailBytes = 0;
/* we don't want to decrease AvailBytes, that was load before.
that can be unxepected for the code that have loaded anopther value before */
}
}
if (p->lzPos >= (UInt32)kMtMaxValForNormalize - (UInt32)kMtBtBlockSize)
{
/* we don't check (lzPos) over exact avail bytes in (btBuf).
(fixedHashSize) is small, so normalization is fast */
const UInt32 subValue = (p->lzPos - p->historySize - 1); // & ~(UInt32)(kNormalizeAlign - 1);
p->lzPos -= subValue;
MatchFinder_Normalize3(subValue, p->hash, p->fixedHashSize);
}
}
return p->btNumAvailBytes;
}
static const Byte * MatchFinderMt_GetPointerToCurrentPos(CMatchFinderMt *p)
{
return p->pointerToCurPos;
}
#define GET_NEXT_BLOCK_IF_REQUIRED if (p->btBufPos == p->btBufPosLimit) MatchFinderMt_GetNextBlock_Bt(p);
static UInt32 MatchFinderMt_GetNumAvailableBytes(CMatchFinderMt *p)
{
if (p->btBufPos != p->btBufPosLimit)
return p->btNumAvailBytes;
return MatchFinderMt_GetNextBlock_Bt(p);
}
// #define CHECK_FAILURE_LZ(_match_, _pos_) if (_match_ >= _pos_) { p->failure_LZ_LZ = True; return d; }
#define CHECK_FAILURE_LZ(_match_, _pos_)
static UInt32 * MixMatches2(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, c2;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
const UInt32 m = p->lzPos;
MT_HASH2_CALC
c2 = hash[h2];
hash[h2] = m;
if (c2 >= matchMinPos)
{
CHECK_FAILURE_LZ(c2, m)
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
*d++ = 2;
*d++ = m - c2 - 1;
}
}
return d;
}
static UInt32 * MixMatches3(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, h3, c2, c3;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
const UInt32 m = p->lzPos;
MT_HASH3_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
if (c2 >= matchMinPos)
{
CHECK_FAILURE_LZ(c2, m)
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
d[0] = 3;
return d + 2;
}
d[0] = 2;
d += 2;
}
}
if (c3 >= matchMinPos)
{
CHECK_FAILURE_LZ(c3, m)
if (cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
*d++ = 3;
*d++ = m - c3 - 1;
}
}
return d;
}
#define INCREASE_LZ_POS p->lzPos++; p->pointerToCurPos++;
/*
static
UInt32* MatchFinderMt_GetMatches_Bt4(CMatchFinderMt *p, UInt32 *d)
{
const UInt32 *bt = p->btBufPos;
const UInt32 len = *bt++;
const UInt32 *btLim = bt + len;
UInt32 matchMinPos;
UInt32 avail = p->btNumAvailBytes - 1;
p->btBufPos = btLim;
{
p->btNumAvailBytes = avail;
#define BT_HASH_BYTES_MAX 5
matchMinPos = p->lzPos;
if (len != 0)
matchMinPos -= bt[1];
else if (avail < (BT_HASH_BYTES_MAX - 1) - 1)
{
INCREASE_LZ_POS
return d;
}
else
{
const UInt32 hs = p->historySize;
if (matchMinPos > hs)
matchMinPos -= hs;
else
matchMinPos = 1;
}
}
for (;;)
{
UInt32 h2, h3, c2, c3;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
UInt32 m = p->lzPos;
MT_HASH3_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
if (c2 >= matchMinPos && cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
d[0] = 3;
d += 2;
break;
}
// else
{
d[0] = 2;
d += 2;
}
}
if (c3 >= matchMinPos && cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
*d++ = 3;
*d++ = m - c3 - 1;
}
break;
}
if (len != 0)
{
do
{
const UInt32 v0 = bt[0];
const UInt32 v1 = bt[1];
bt += 2;
d[0] = v0;
d[1] = v1;
d += 2;
}
while (bt != btLim);
}
INCREASE_LZ_POS
return d;
}
*/
static UInt32 *MixMatches4(CMatchFinderMt *p, UInt32 matchMinPos, UInt32 *d)
{
UInt32 h2, h3, /* h4, */ c2, c3 /* , c4 */;
UInt32 *hash = p->hash;
const Byte *cur = p->pointerToCurPos;
const UInt32 m = p->lzPos;
MT_HASH3_CALC
// MT_HASH4_CALC
c2 = hash[h2];
c3 = (hash + kFix3HashSize)[h3];
// c4 = (hash + kFix4HashSize)[h4];
hash[h2] = m;
(hash + kFix3HashSize)[h3] = m;
// (hash + kFix4HashSize)[h4] = m;
#define _USE_H2
#ifdef _USE_H2
if (c2 >= matchMinPos && cur[(ptrdiff_t)c2 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c2 - 1;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 2] == cur[2])
{
// d[0] = (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 3] == cur[3]) ? 4 : 3;
// return d + 2;
if (cur[(ptrdiff_t)c2 - (ptrdiff_t)m + 3] == cur[3])
{
d[0] = 4;
return d + 2;
}
d[0] = 3;
d += 2;
#ifdef _USE_H4
if (c4 >= matchMinPos)
if (
cur[(ptrdiff_t)c4 - (ptrdiff_t)m] == cur[0] &&
cur[(ptrdiff_t)c4 - (ptrdiff_t)m + 3] == cur[3]
)
{
*d++ = 4;
*d++ = m - c4 - 1;
}
#endif
return d;
}
d[0] = 2;
d += 2;
}
#endif
if (c3 >= matchMinPos && cur[(ptrdiff_t)c3 - (ptrdiff_t)m] == cur[0])
{
d[1] = m - c3 - 1;
if (cur[(ptrdiff_t)c3 - (ptrdiff_t)m + 3] == cur[3])
{
d[0] = 4;
return d + 2;
}
d[0] = 3;
d += 2;
}
#ifdef _USE_H4
if (c4 >= matchMinPos)
if (
cur[(ptrdiff_t)c4 - (ptrdiff_t)m] == cur[0] &&
cur[(ptrdiff_t)c4 - (ptrdiff_t)m + 3] == cur[3]
)
{
*d++ = 4;
*d++ = m - c4 - 1;
}
#endif
return d;
}
static UInt32* MatchFinderMt2_GetMatches(CMatchFinderMt *p, UInt32 *d)
{
const UInt32 *bt = p->btBufPos;
const UInt32 len = *bt++;
const UInt32 *btLim = bt + len;
p->btBufPos = btLim;
p->btNumAvailBytes--;
INCREASE_LZ_POS
{
while (bt != btLim)
{
const UInt32 v0 = bt[0];
const UInt32 v1 = bt[1];
bt += 2;
d[0] = v0;
d[1] = v1;
d += 2;
}
}
return d;
}
static UInt32* MatchFinderMt_GetMatches(CMatchFinderMt *p, UInt32 *d)
{
const UInt32 *bt = p->btBufPos;
UInt32 len = *bt++;
const UInt32 avail = p->btNumAvailBytes - 1;
p->btNumAvailBytes = avail;
p->btBufPos = bt + len;
if (len == 0)
{
#define BT_HASH_BYTES_MAX 5
if (avail >= (BT_HASH_BYTES_MAX - 1) - 1)
{
UInt32 m = p->lzPos;
if (m > p->historySize)
m -= p->historySize;
else
m = 1;
d = p->MixMatchesFunc(p, m, d);
}
}
else
{
/*
first match pair from BinTree: (match_len, match_dist),
(match_len >= numHashBytes).
MixMatchesFunc() inserts only hash matches that are nearer than (match_dist)
*/
d = p->MixMatchesFunc(p, p->lzPos - bt[1], d);
// if (d) // check for failure
do
{
const UInt32 v0 = bt[0];
const UInt32 v1 = bt[1];
bt += 2;
d[0] = v0;
d[1] = v1;
d += 2;
}
while (len -= 2);
}
INCREASE_LZ_POS
return d;
}
#define SKIP_HEADER2_MT do { GET_NEXT_BLOCK_IF_REQUIRED
#define SKIP_HEADER_MT(n) SKIP_HEADER2_MT if (p->btNumAvailBytes-- >= (n)) { const Byte *cur = p->pointerToCurPos; UInt32 *hash = p->hash;
#define SKIP_FOOTER_MT } INCREASE_LZ_POS p->btBufPos += (size_t)*p->btBufPos + 1; } while (--num != 0);
static void MatchFinderMt0_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER2_MT { p->btNumAvailBytes--;
SKIP_FOOTER_MT
}
static void MatchFinderMt2_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(2)
UInt32 h2;
MT_HASH2_CALC
hash[h2] = p->lzPos;
SKIP_FOOTER_MT
}
static void MatchFinderMt3_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(3)
UInt32 h2, h3;
MT_HASH3_CALC
(hash + kFix3HashSize)[h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
/*
// MatchFinderMt4_Skip() is similar to MatchFinderMt3_Skip().
// The difference is that MatchFinderMt3_Skip() updates hash for last 3 bytes of stream.
static void MatchFinderMt4_Skip(CMatchFinderMt *p, UInt32 num)
{
SKIP_HEADER_MT(4)
UInt32 h2, h3; // h4
MT_HASH3_CALC
// MT_HASH4_CALC
// (hash + kFix4HashSize)[h4] =
(hash + kFix3HashSize)[h3] =
hash[ h2] =
p->lzPos;
SKIP_FOOTER_MT
}
*/
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder2 *vTable)
{
vTable->Init = (Mf_Init_Func)MatchFinderMt_Init;
vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinderMt_GetNumAvailableBytes;
vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinderMt_GetPointerToCurrentPos;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt_GetMatches;
switch (MF(p)->numHashBytes)
{
case 2:
p->GetHeadsFunc = GetHeads2;
p->MixMatchesFunc = (Mf_Mix_Matches)NULL;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt0_Skip;
vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt2_GetMatches;
break;
case 3:
p->GetHeadsFunc = MF(p)->bigHash ? GetHeads3b : GetHeads3;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches2;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt2_Skip;
break;
case 4:
p->GetHeadsFunc = MF(p)->bigHash ? GetHeads4b : GetHeads4;
// it's fast inline version of GetMatches()
// vTable->GetMatches = (Mf_GetMatches_Func)MatchFinderMt_GetMatches_Bt4;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches3;
vTable->Skip = (Mf_Skip_Func)MatchFinderMt3_Skip;
break;
default:
p->GetHeadsFunc = MF(p)->bigHash ? GetHeads5b : GetHeads5;
p->MixMatchesFunc = (Mf_Mix_Matches)MixMatches4;
vTable->Skip =
(Mf_Skip_Func)MatchFinderMt3_Skip;
// (Mf_Skip_Func)MatchFinderMt4_Skip;
break;
}
}