1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-07 14:20:59 +00:00
hashcat/OpenCL/m15700-pure.cl

709 lines
17 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha256.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} scrypt_tmp_t;
typedef struct ethereum_scrypt
{
u32 salt_buf[16];
u32 ciphertext[8];
} ethereum_scrypt_t;
#if defined IS_CUDA || defined IS_HIP
inline __device__ uint4 operator & (const uint4 a, const u32 b) { return make_uint4 ((a.x & b ), (a.y & b ), (a.z & b ), (a.w & b )); }
inline __device__ uint4 operator << (const uint4 a, const u32 b) { return make_uint4 ((a.x << b ), (a.y << b ), (a.z << b ), (a.w << b )); }
inline __device__ uint4 operator >> (const uint4 a, const u32 b) { return make_uint4 ((a.x >> b ), (a.y >> b ), (a.z >> b ), (a.w >> b )); }
inline __device__ uint4 operator + (const uint4 a, const uint4 b) { return make_uint4 ((a.x + b.x), (a.y + b.y), (a.z + b.z), (a.w + b.w)); }
inline __device__ uint4 operator ^ (const uint4 a, const uint4 b) { return make_uint4 ((a.x ^ b.x), (a.y ^ b.y), (a.z ^ b.z), (a.w ^ b.w)); }
inline __device__ uint4 operator | (const uint4 a, const uint4 b) { return make_uint4 ((a.x | b.x), (a.y | b.y), (a.z | b.z), (a.w | b.w)); }
inline __device__ void operator ^= ( uint4 &a, const uint4 b) { a.x ^= b.x; a.y ^= b.y; a.z ^= b.z; a.w ^= b.w; }
inline __device__ uint4 rotate (const uint4 a, const int n)
{
return ((a << n) | ((a >> (32 - n))));
}
#endif
DECLSPEC uint4 hc_swap32_4 (uint4 v)
{
return (rotate ((v & 0x00FF00FF), 24u) | rotate ((v & 0xFF00FF00), 8u));
}
#define GET_SCRYPT_CNT(r,p) (2 * (r) * 16 * (p))
#define GET_SMIX_CNT(r,N) (2 * (r) * 16 * (N))
#define GET_STATE_CNT(r) (2 * (r) * 16)
#define SCRYPT_CNT GET_SCRYPT_CNT (SCRYPT_R, SCRYPT_P)
#define SCRYPT_CNT4 (SCRYPT_CNT / 4)
#define STATE_CNT GET_STATE_CNT (SCRYPT_R)
#define STATE_CNT4 (STATE_CNT / 4)
#define ADD_ROTATE_XOR(r,i1,i2,s) (r) ^= rotate ((i1) + (i2), (s));
#if defined IS_CUDA || defined IS_HIP
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = make_uint4 (X1.w, X1.x, X1.y, X1.z); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.y, X3.z, X3.w, X3.x); \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = make_uint4 (X1.y, X1.z, X1.w, X1.x); \
X2 = make_uint4 (X2.z, X2.w, X2.x, X2.y); \
X3 = make_uint4 (X3.w, X3.x, X3.y, X3.z); \
}
#else
#define SALSA20_2R() \
{ \
ADD_ROTATE_XOR (X1, X0, X3, 7); \
ADD_ROTATE_XOR (X2, X1, X0, 9); \
ADD_ROTATE_XOR (X3, X2, X1, 13); \
ADD_ROTATE_XOR (X0, X3, X2, 18); \
\
X1 = X1.s3012; \
X2 = X2.s2301; \
X3 = X3.s1230; \
\
ADD_ROTATE_XOR (X3, X0, X1, 7); \
ADD_ROTATE_XOR (X2, X3, X0, 9); \
ADD_ROTATE_XOR (X1, X2, X3, 13); \
ADD_ROTATE_XOR (X0, X1, X2, 18); \
\
X1 = X1.s1230; \
X2 = X2.s2301; \
X3 = X3.s3012; \
}
#endif
#define Coord(xd4,y,z) (((xd4) * ySIZE * zSIZE) + ((y) * zSIZE) + (z))
#define CO Coord(xd4,y,z)
DECLSPEC void salsa_r (uint4 *TI)
{
uint4 R0 = TI[STATE_CNT4 - 4];
uint4 R1 = TI[STATE_CNT4 - 3];
uint4 R2 = TI[STATE_CNT4 - 2];
uint4 R3 = TI[STATE_CNT4 - 1];
for (int i = 0; i < STATE_CNT4; i += 4)
{
uint4 Y0 = TI[i + 0];
uint4 Y1 = TI[i + 1];
uint4 Y2 = TI[i + 2];
uint4 Y3 = TI[i + 3];
R0 = R0 ^ Y0;
R1 = R1 ^ Y1;
R2 = R2 ^ Y2;
R3 = R3 ^ Y3;
uint4 X0 = R0;
uint4 X1 = R1;
uint4 X2 = R2;
uint4 X3 = R3;
SALSA20_2R ();
SALSA20_2R ();
SALSA20_2R ();
SALSA20_2R ();
R0 = R0 + X0;
R1 = R1 + X1;
R2 = R2 + X2;
R3 = R3 + X3;
TI[i + 0] = R0;
TI[i + 1] = R1;
TI[i + 2] = R2;
TI[i + 3] = R3;
}
#if SCRYPT_R > 1
uint4 TT[STATE_CNT4 / 2];
for (int dst_off = 0, src_off = 4; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
{
TT[dst_off + 0] = TI[src_off + 0];
TT[dst_off + 1] = TI[src_off + 1];
TT[dst_off + 2] = TI[src_off + 2];
TT[dst_off + 3] = TI[src_off + 3];
}
for (int dst_off = 4, src_off = 8; src_off < STATE_CNT4; dst_off += 4, src_off += 8)
{
TI[dst_off + 0] = TI[src_off + 0];
TI[dst_off + 1] = TI[src_off + 1];
TI[dst_off + 2] = TI[src_off + 2];
TI[dst_off + 3] = TI[src_off + 3];
}
for (int dst_off = STATE_CNT4 / 2, src_off = 0; dst_off < STATE_CNT4; dst_off += 4, src_off += 4)
{
TI[dst_off + 0] = TT[src_off + 0];
TI[dst_off + 1] = TT[src_off + 1];
TI[dst_off + 2] = TT[src_off + 2];
TI[dst_off + 3] = TT[src_off + 3];
}
#endif
}
DECLSPEC void scrypt_smix_init (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
for (u32 y = 0; y < ySIZE; y++)
{
for (u32 z = 0; z < zSIZE; z++) V[CO] = X[z];
for (u32 i = 0; i < SCRYPT_TMTO; i++) salsa_r (X);
}
}
DECLSPEC void scrypt_smix_loop (uint4 *X, GLOBAL_AS uint4 *V0, GLOBAL_AS uint4 *V1, GLOBAL_AS uint4 *V2, GLOBAL_AS uint4 *V3)
{
const u32 ySIZE = SCRYPT_N / SCRYPT_TMTO;
const u32 zSIZE = STATE_CNT4;
const u32 x = get_global_id (0);
const u32 xd4 = x / 4;
const u32 xm4 = x & 3;
GLOBAL_AS uint4 *V;
switch (xm4)
{
case 0: V = V0; break;
case 1: V = V1; break;
case 2: V = V2; break;
case 3: V = V3; break;
}
// note: fixed 1024 iterations = forced -u 1024
for (u32 N_pos = 0; N_pos < 1024; N_pos++)
{
const u32 k = X[zSIZE - 4].x & (SCRYPT_N - 1);
const u32 y = k / SCRYPT_TMTO;
const u32 km = k - (y * SCRYPT_TMTO);
uint4 T[STATE_CNT4];
for (u32 z = 0; z < zSIZE; z++) T[z] = V[CO];
for (u32 i = 0; i < km; i++) salsa_r (T);
for (u32 z = 0; z < zSIZE; z++) X[z] ^= T[z];
salsa_r (X);
}
}
#ifndef KECCAK_ROUNDS
#define KECCAK_ROUNDS 24
#endif
#define Theta1(s) (st[0 + s] ^ st[5 + s] ^ st[10 + s] ^ st[15 + s] ^ st[20 + s])
#define Theta2(s) \
{ \
st[ 0 + s] ^= t; \
st[ 5 + s] ^= t; \
st[10 + s] ^= t; \
st[15 + s] ^= t; \
st[20 + s] ^= t; \
}
#define Rho_Pi(s) \
{ \
u32 j = keccakf_piln[s]; \
u32 k = keccakf_rotc[s]; \
bc0 = st[j]; \
st[j] = hc_rotl64_S (t, k); \
t = bc0; \
}
#define Chi(s) \
{ \
bc0 = st[0 + s]; \
bc1 = st[1 + s]; \
bc2 = st[2 + s]; \
bc3 = st[3 + s]; \
bc4 = st[4 + s]; \
st[0 + s] ^= ~bc1 & bc2; \
st[1 + s] ^= ~bc2 & bc3; \
st[2 + s] ^= ~bc3 & bc4; \
st[3 + s] ^= ~bc4 & bc0; \
st[4 + s] ^= ~bc0 & bc1; \
}
CONSTANT_VK u64a keccakf_rndc[24] =
{
KECCAK_RNDC_00, KECCAK_RNDC_01, KECCAK_RNDC_02, KECCAK_RNDC_03,
KECCAK_RNDC_04, KECCAK_RNDC_05, KECCAK_RNDC_06, KECCAK_RNDC_07,
KECCAK_RNDC_08, KECCAK_RNDC_09, KECCAK_RNDC_10, KECCAK_RNDC_11,
KECCAK_RNDC_12, KECCAK_RNDC_13, KECCAK_RNDC_14, KECCAK_RNDC_15,
KECCAK_RNDC_16, KECCAK_RNDC_17, KECCAK_RNDC_18, KECCAK_RNDC_19,
KECCAK_RNDC_20, KECCAK_RNDC_21, KECCAK_RNDC_22, KECCAK_RNDC_23
};
DECLSPEC void keccak_transform_S (u64 *st)
{
const u8 keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const u8 keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
/**
* Keccak
*/
int round;
for (round = 0; round < KECCAK_ROUNDS; round++)
{
// Theta
u64 bc0 = Theta1 (0);
u64 bc1 = Theta1 (1);
u64 bc2 = Theta1 (2);
u64 bc3 = Theta1 (3);
u64 bc4 = Theta1 (4);
u64 t;
t = bc4 ^ hc_rotl64_S (bc1, 1); Theta2 (0);
t = bc0 ^ hc_rotl64_S (bc2, 1); Theta2 (1);
t = bc1 ^ hc_rotl64_S (bc3, 1); Theta2 (2);
t = bc2 ^ hc_rotl64_S (bc4, 1); Theta2 (3);
t = bc3 ^ hc_rotl64_S (bc0, 1); Theta2 (4);
// Rho Pi
t = st[1];
Rho_Pi (0);
Rho_Pi (1);
Rho_Pi (2);
Rho_Pi (3);
Rho_Pi (4);
Rho_Pi (5);
Rho_Pi (6);
Rho_Pi (7);
Rho_Pi (8);
Rho_Pi (9);
Rho_Pi (10);
Rho_Pi (11);
Rho_Pi (12);
Rho_Pi (13);
Rho_Pi (14);
Rho_Pi (15);
Rho_Pi (16);
Rho_Pi (17);
Rho_Pi (18);
Rho_Pi (19);
Rho_Pi (20);
Rho_Pi (21);
Rho_Pi (22);
Rho_Pi (23);
// Chi
Chi (0);
Chi (5);
Chi (10);
Chi (15);
Chi (20);
// Iota
st[0] ^= keccakf_rndc[round];
}
}
KERNEL_FQ void m15700_init (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);
for (u32 i = 0, j = 1, k = 0; i < SCRYPT_CNT; i += 8, j += 1, k += 2)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
u32 digest[8];
digest[0] = sha256_hmac_ctx2.opad.h[0];
digest[1] = sha256_hmac_ctx2.opad.h[1];
digest[2] = sha256_hmac_ctx2.opad.h[2];
digest[3] = sha256_hmac_ctx2.opad.h[3];
digest[4] = sha256_hmac_ctx2.opad.h[4];
digest[5] = sha256_hmac_ctx2.opad.h[5];
digest[6] = sha256_hmac_ctx2.opad.h[6];
digest[7] = sha256_hmac_ctx2.opad.h[7];
#if defined IS_CUDA
const uint4 tmp0 = make_uint4 (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = make_uint4 (digest[4], digest[5], digest[6], digest[7]);
#else
const uint4 tmp0 = (uint4) (digest[0], digest[1], digest[2], digest[3]);
const uint4 tmp1 = (uint4) (digest[4], digest[5], digest[6], digest[7]);
#endif
tmps[gid].P[k + 0] = tmp0;
tmps[gid].P[k + 1] = tmp1;
}
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 T[4];
T[0] = tmps[gid].P[l + 0];
T[1] = tmps[gid].P[l + 1];
T[2] = tmps[gid].P[l + 2];
T[3] = tmps[gid].P[l + 3];
T[0] = hc_swap32_4 (T[0]);
T[1] = hc_swap32_4 (T[1]);
T[2] = hc_swap32_4 (T[2]);
T[3] = hc_swap32_4 (T[3]);
uint4 X[4];
#if defined IS_CUDA
X[0] = make_uint4 (T[0].x, T[1].y, T[2].z, T[3].w);
X[1] = make_uint4 (T[1].x, T[2].y, T[3].z, T[0].w);
X[2] = make_uint4 (T[2].x, T[3].y, T[0].z, T[1].w);
X[3] = make_uint4 (T[3].x, T[0].y, T[1].z, T[2].w);
#else
X[0] = (uint4) (T[0].x, T[1].y, T[2].z, T[3].w);
X[1] = (uint4) (T[1].x, T[2].y, T[3].z, T[0].w);
X[2] = (uint4) (T[2].x, T[3].y, T[0].z, T[1].w);
X[3] = (uint4) (T[3].x, T[0].y, T[1].z, T[2].w);
#endif
tmps[gid].P[l + 0] = X[0];
tmps[gid].P[l + 1] = X[1];
tmps[gid].P[l + 2] = X[2];
tmps[gid].P[l + 3] = X[3];
}
}
KERNEL_FQ void m15700_loop_prepare (KERN_ATTR_TMPS (scrypt_tmp_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
// SCRYPT part, init V
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
uint4 X[STATE_CNT4];
const u32 P_offset = salt_repeat * STATE_CNT4;
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
scrypt_smix_init (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
}
KERNEL_FQ void m15700_loop (KERN_ATTR_TMPS (scrypt_tmp_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
GLOBAL_AS uint4 *d_scrypt0_buf = (GLOBAL_AS uint4 *) d_extra0_buf;
GLOBAL_AS uint4 *d_scrypt1_buf = (GLOBAL_AS uint4 *) d_extra1_buf;
GLOBAL_AS uint4 *d_scrypt2_buf = (GLOBAL_AS uint4 *) d_extra2_buf;
GLOBAL_AS uint4 *d_scrypt3_buf = (GLOBAL_AS uint4 *) d_extra3_buf;
uint4 X[STATE_CNT4];
const u32 P_offset = salt_repeat * STATE_CNT4;
GLOBAL_AS uint4 *P = tmps[gid].P + P_offset;
for (int z = 0; z < STATE_CNT4; z++) X[z] = P[z];
scrypt_smix_loop (X, d_scrypt0_buf, d_scrypt1_buf, d_scrypt2_buf, d_scrypt3_buf);
for (int z = 0; z < STATE_CNT4; z++) P[z] = X[z];
}
KERNEL_FQ void m15700_comp (KERN_ATTR_TMPS_ESALT (scrypt_tmp_t, ethereum_scrypt_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
if (gid >= gid_max) return;
/**
* 2nd pbkdf2, creates B
*/
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
sha256_hmac_ctx_t ctx;
sha256_hmac_init_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
for (u32 l = 0; l < SCRYPT_CNT4; l += 4)
{
uint4 X[4];
X[0] = tmps[gid].P[l + 0];
X[1] = tmps[gid].P[l + 1];
X[2] = tmps[gid].P[l + 2];
X[3] = tmps[gid].P[l + 3];
uint4 T[4];
#if defined IS_CUDA
T[0] = make_uint4 (X[0].x, X[3].y, X[2].z, X[1].w);
T[1] = make_uint4 (X[1].x, X[0].y, X[3].z, X[2].w);
T[2] = make_uint4 (X[2].x, X[1].y, X[0].z, X[3].w);
T[3] = make_uint4 (X[3].x, X[2].y, X[1].z, X[0].w);
#else
T[0] = (uint4) (X[0].x, X[3].y, X[2].z, X[1].w);
T[1] = (uint4) (X[1].x, X[0].y, X[3].z, X[2].w);
T[2] = (uint4) (X[2].x, X[1].y, X[0].z, X[3].w);
T[3] = (uint4) (X[3].x, X[2].y, X[1].z, X[0].w);
#endif
T[0] = hc_swap32_4 (T[0]);
T[1] = hc_swap32_4 (T[1]);
T[2] = hc_swap32_4 (T[2]);
T[3] = hc_swap32_4 (T[3]);
w0[0] = T[0].x;
w0[1] = T[0].y;
w0[2] = T[0].z;
w0[3] = T[0].w;
w1[0] = T[1].x;
w1[1] = T[1].y;
w1[2] = T[1].z;
w1[3] = T[1].w;
w2[0] = T[2].x;
w2[1] = T[2].y;
w2[2] = T[2].z;
w2[3] = T[2].w;
w3[0] = T[3].x;
w3[1] = T[3].y;
w3[2] = T[3].z;
w3[3] = T[3].w;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 64);
}
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&ctx, w0, w1, w2, w3, 4);
sha256_hmac_final (&ctx);
/**
* keccak
*/
u32 ciphertext[8];
ciphertext[0] = esalt_bufs[DIGESTS_OFFSET].ciphertext[0];
ciphertext[1] = esalt_bufs[DIGESTS_OFFSET].ciphertext[1];
ciphertext[2] = esalt_bufs[DIGESTS_OFFSET].ciphertext[2];
ciphertext[3] = esalt_bufs[DIGESTS_OFFSET].ciphertext[3];
ciphertext[4] = esalt_bufs[DIGESTS_OFFSET].ciphertext[4];
ciphertext[5] = esalt_bufs[DIGESTS_OFFSET].ciphertext[5];
ciphertext[6] = esalt_bufs[DIGESTS_OFFSET].ciphertext[6];
ciphertext[7] = esalt_bufs[DIGESTS_OFFSET].ciphertext[7];
u32 key[4];
key[0] = hc_swap32_S (ctx.opad.h[4]);
key[1] = hc_swap32_S (ctx.opad.h[5]);
key[2] = hc_swap32_S (ctx.opad.h[6]);
key[3] = hc_swap32_S (ctx.opad.h[7]);
u64 st[25];
st[ 0] = hl32_to_64_S (key[1], key[0]);
st[ 1] = hl32_to_64_S (key[3], key[2]);
st[ 2] = hl32_to_64_S (ciphertext[1], ciphertext[0]);
st[ 3] = hl32_to_64_S (ciphertext[3], ciphertext[2]);
st[ 4] = hl32_to_64_S (ciphertext[5], ciphertext[4]);
st[ 5] = hl32_to_64_S (ciphertext[7], ciphertext[6]);
st[ 6] = 0x01;
st[ 7] = 0;
st[ 8] = 0;
st[ 9] = 0;
st[10] = 0;
st[11] = 0;
st[12] = 0;
st[13] = 0;
st[14] = 0;
st[15] = 0;
st[16] = 0;
st[17] = 0;
st[18] = 0;
st[19] = 0;
st[20] = 0;
st[21] = 0;
st[22] = 0;
st[23] = 0;
st[24] = 0;
const u32 mdlen = 32;
const u32 rsiz = 200 - (2 * mdlen);
const u32 add80w = (rsiz - 1) / 8;
st[add80w] |= 0x8000000000000000UL;
keccak_transform_S (st);
const u32 r0 = l32_from_64_S (st[0]);
const u32 r1 = h32_from_64_S (st[0]);
const u32 r2 = l32_from_64_S (st[1]);
const u32 r3 = h32_from_64_S (st[1]);
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}