1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-12 16:51:00 +00:00
hashcat/OpenCL/m21800-pure.cl

616 lines
14 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha512.cl"
#include "inc_ecc_secp256k1.cl"
#include "inc_cipher_aes.cl"
#include "inc_zip_inflate.cl"
#endif
typedef struct electrum
{
secp256k1_t coords;
u32 data_buf[256];
} electrum_t;
typedef struct electrum_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[8];
u64 out[8];
} electrum_tmp_t;
DECLSPEC void hmac_sha512_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *w4, u32x *w5, u32x *w6, u32x *w7, u64x *ipad, u64x *opad, u64x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
digest[5] = ipad[5];
digest[6] = ipad[6];
digest[7] = ipad[7];
sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest);
w0[0] = h32_from_64 (digest[0]);
w0[1] = l32_from_64 (digest[0]);
w0[2] = h32_from_64 (digest[1]);
w0[3] = l32_from_64 (digest[1]);
w1[0] = h32_from_64 (digest[2]);
w1[1] = l32_from_64 (digest[2]);
w1[2] = h32_from_64 (digest[3]);
w1[3] = l32_from_64 (digest[3]);
w2[0] = h32_from_64 (digest[4]);
w2[1] = l32_from_64 (digest[4]);
w2[2] = h32_from_64 (digest[5]);
w2[3] = l32_from_64 (digest[5]);
w3[0] = h32_from_64 (digest[6]);
w3[1] = l32_from_64 (digest[6]);
w3[2] = h32_from_64 (digest[7]);
w3[3] = l32_from_64 (digest[7]);
w4[0] = 0x80000000;
w4[1] = 0;
w4[2] = 0;
w4[3] = 0;
w5[0] = 0;
w5[1] = 0;
w5[2] = 0;
w5[3] = 0;
w6[0] = 0;
w6[1] = 0;
w6[2] = 0;
w6[3] = 0;
w7[0] = 0;
w7[1] = 0;
w7[2] = 0;
w7[3] = (128 + 64) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
digest[5] = opad[5];
digest[6] = opad[6];
digest[7] = opad[7];
sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest);
}
KERNEL_FQ void m21800_init (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha512_hmac_ctx_t sha512_hmac_ctx;
sha512_hmac_init_global_swap (&sha512_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha512_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha512_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha512_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha512_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha512_hmac_ctx.ipad.h[4];
tmps[gid].ipad[5] = sha512_hmac_ctx.ipad.h[5];
tmps[gid].ipad[6] = sha512_hmac_ctx.ipad.h[6];
tmps[gid].ipad[7] = sha512_hmac_ctx.ipad.h[7];
tmps[gid].opad[0] = sha512_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha512_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha512_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha512_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha512_hmac_ctx.opad.h[4];
tmps[gid].opad[5] = sha512_hmac_ctx.opad.h[5];
tmps[gid].opad[6] = sha512_hmac_ctx.opad.h[6];
tmps[gid].opad[7] = sha512_hmac_ctx.opad.h[7];
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
u32 w4[4];
u32 w5[4];
u32 w6[4];
u32 w7[4];
w0[0] = 1;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
w4[0] = 0;
w4[1] = 0;
w4[2] = 0;
w4[3] = 0;
w5[0] = 0;
w5[1] = 0;
w5[2] = 0;
w5[3] = 0;
w6[0] = 0;
w6[1] = 0;
w6[2] = 0;
w6[3] = 0;
w7[0] = 0;
w7[1] = 0;
w7[2] = 0;
w7[3] = 0;
sha512_hmac_update_128 (&sha512_hmac_ctx, w0, w1, w2, w3, w4, w5, w6, w7, 4);
sha512_hmac_final (&sha512_hmac_ctx);
tmps[gid].dgst[0] = sha512_hmac_ctx.opad.h[0];
tmps[gid].dgst[1] = sha512_hmac_ctx.opad.h[1];
tmps[gid].dgst[2] = sha512_hmac_ctx.opad.h[2];
tmps[gid].dgst[3] = sha512_hmac_ctx.opad.h[3];
tmps[gid].dgst[4] = sha512_hmac_ctx.opad.h[4];
tmps[gid].dgst[5] = sha512_hmac_ctx.opad.h[5];
tmps[gid].dgst[6] = sha512_hmac_ctx.opad.h[6];
tmps[gid].dgst[7] = sha512_hmac_ctx.opad.h[7];
tmps[gid].out[0] = tmps[gid].dgst[0];
tmps[gid].out[1] = tmps[gid].dgst[1];
tmps[gid].out[2] = tmps[gid].dgst[2];
tmps[gid].out[3] = tmps[gid].dgst[3];
tmps[gid].out[4] = tmps[gid].dgst[4];
tmps[gid].out[5] = tmps[gid].dgst[5];
tmps[gid].out[6] = tmps[gid].dgst[6];
tmps[gid].out[7] = tmps[gid].dgst[7];
}
KERNEL_FQ void m21800_loop (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u64x ipad[8];
u64x opad[8];
ipad[0] = pack64v (tmps, ipad, gid, 0);
ipad[1] = pack64v (tmps, ipad, gid, 1);
ipad[2] = pack64v (tmps, ipad, gid, 2);
ipad[3] = pack64v (tmps, ipad, gid, 3);
ipad[4] = pack64v (tmps, ipad, gid, 4);
ipad[5] = pack64v (tmps, ipad, gid, 5);
ipad[6] = pack64v (tmps, ipad, gid, 6);
ipad[7] = pack64v (tmps, ipad, gid, 7);
opad[0] = pack64v (tmps, opad, gid, 0);
opad[1] = pack64v (tmps, opad, gid, 1);
opad[2] = pack64v (tmps, opad, gid, 2);
opad[3] = pack64v (tmps, opad, gid, 3);
opad[4] = pack64v (tmps, opad, gid, 4);
opad[5] = pack64v (tmps, opad, gid, 5);
opad[6] = pack64v (tmps, opad, gid, 6);
opad[7] = pack64v (tmps, opad, gid, 7);
u64x dgst[8];
u64x out[8];
dgst[0] = pack64v (tmps, dgst, gid, 0);
dgst[1] = pack64v (tmps, dgst, gid, 1);
dgst[2] = pack64v (tmps, dgst, gid, 2);
dgst[3] = pack64v (tmps, dgst, gid, 3);
dgst[4] = pack64v (tmps, dgst, gid, 4);
dgst[5] = pack64v (tmps, dgst, gid, 5);
dgst[6] = pack64v (tmps, dgst, gid, 6);
dgst[7] = pack64v (tmps, dgst, gid, 7);
out[0] = pack64v (tmps, out, gid, 0);
out[1] = pack64v (tmps, out, gid, 1);
out[2] = pack64v (tmps, out, gid, 2);
out[3] = pack64v (tmps, out, gid, 3);
out[4] = pack64v (tmps, out, gid, 4);
out[5] = pack64v (tmps, out, gid, 5);
out[6] = pack64v (tmps, out, gid, 6);
out[7] = pack64v (tmps, out, gid, 7);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
u32x w4[4];
u32x w5[4];
u32x w6[4];
u32x w7[4];
w0[0] = h32_from_64 (dgst[0]);
w0[1] = l32_from_64 (dgst[0]);
w0[2] = h32_from_64 (dgst[1]);
w0[3] = l32_from_64 (dgst[1]);
w1[0] = h32_from_64 (dgst[2]);
w1[1] = l32_from_64 (dgst[2]);
w1[2] = h32_from_64 (dgst[3]);
w1[3] = l32_from_64 (dgst[3]);
w2[0] = h32_from_64 (dgst[4]);
w2[1] = l32_from_64 (dgst[4]);
w2[2] = h32_from_64 (dgst[5]);
w2[3] = l32_from_64 (dgst[5]);
w3[0] = h32_from_64 (dgst[6]);
w3[1] = l32_from_64 (dgst[6]);
w3[2] = h32_from_64 (dgst[7]);
w3[3] = l32_from_64 (dgst[7]);
w4[0] = 0x80000000;
w4[1] = 0;
w4[2] = 0;
w4[3] = 0;
w5[0] = 0;
w5[1] = 0;
w5[2] = 0;
w5[3] = 0;
w6[0] = 0;
w6[1] = 0;
w6[2] = 0;
w6[3] = 0;
w7[0] = 0;
w7[1] = 0;
w7[2] = 0;
w7[3] = (128 + 64) * 8;
hmac_sha512_run_V (w0, w1, w2, w3, w4, w5, w6, w7, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
out[5] ^= dgst[5];
out[6] ^= dgst[6];
out[7] ^= dgst[7];
}
unpack64v (tmps, dgst, gid, 0, dgst[0]);
unpack64v (tmps, dgst, gid, 1, dgst[1]);
unpack64v (tmps, dgst, gid, 2, dgst[2]);
unpack64v (tmps, dgst, gid, 3, dgst[3]);
unpack64v (tmps, dgst, gid, 4, dgst[4]);
unpack64v (tmps, dgst, gid, 5, dgst[5]);
unpack64v (tmps, dgst, gid, 6, dgst[6]);
unpack64v (tmps, dgst, gid, 7, dgst[7]);
unpack64v (tmps, out, gid, 0, out[0]);
unpack64v (tmps, out, gid, 1, out[1]);
unpack64v (tmps, out, gid, 2, out[2]);
unpack64v (tmps, out, gid, 3, out[3]);
unpack64v (tmps, out, gid, 4, out[4]);
unpack64v (tmps, out, gid, 5, out[5]);
unpack64v (tmps, out, gid, 6, out[6]);
unpack64v (tmps, out, gid, 7, out[7]);
}
KERNEL_FQ void m21800_comp (KERN_ATTR_TMPS_ESALT (electrum_tmp_t, electrum_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/*
* Start by copying/aligning the data
*/
u64 out[8];
out[0] = tmps[gid].out[0];
out[1] = tmps[gid].out[1];
out[2] = tmps[gid].out[2];
out[3] = tmps[gid].out[3];
out[4] = tmps[gid].out[4];
out[5] = tmps[gid].out[5];
out[6] = tmps[gid].out[6];
out[7] = tmps[gid].out[7];
/*
* First calculate the modulo of the pbkdf2 hash with SECP256K1_N:
*/
u32 a[16];
a[ 0] = h32_from_64_S (out[0]);
a[ 1] = l32_from_64_S (out[0]);
a[ 2] = h32_from_64_S (out[1]);
a[ 3] = l32_from_64_S (out[1]);
a[ 4] = h32_from_64_S (out[2]);
a[ 5] = l32_from_64_S (out[2]);
a[ 6] = h32_from_64_S (out[3]);
a[ 7] = l32_from_64_S (out[3]);
a[ 8] = h32_from_64_S (out[4]);
a[ 9] = l32_from_64_S (out[4]);
a[10] = h32_from_64_S (out[5]);
a[11] = l32_from_64_S (out[5]);
a[12] = h32_from_64_S (out[6]);
a[13] = l32_from_64_S (out[6]);
a[14] = h32_from_64_S (out[7]);
a[15] = l32_from_64_S (out[7]);
mod_512 (a);
// copy the last 256 bit (32 bytes) of modulo (a):
u32 tweak[8];
tweak[0] = a[15];
tweak[1] = a[14];
tweak[2] = a[13];
tweak[3] = a[12];
tweak[4] = a[11];
tweak[5] = a[10];
tweak[6] = a[ 9];
tweak[7] = a[ 8];
/*
* the main secp256k1 point multiplication by a scalar/tweak:
*/
GLOBAL_AS secp256k1_t *coords = (GLOBAL_AS secp256k1_t *) &esalt_bufs[DIGESTS_OFFSET].coords;
u32 pubkey[64] = { 0 }; // for point_mul () we need: 1 + 32 bytes (for sha512 () we need more)
point_mul (pubkey, tweak, coords);
/*
* sha512 () of the pubkey:
*/
sha512_ctx_t sha512_ctx;
sha512_init (&sha512_ctx);
sha512_update (&sha512_ctx, pubkey, 33); // 33 because of 32 byte curve point + sign
sha512_final (&sha512_ctx);
// ... now we have the result in sha512_ctx.h[0]...sha512_ctx.h[7]
u32 iv[4];
iv[0] = h32_from_64_S (sha512_ctx.h[0]);
iv[1] = l32_from_64_S (sha512_ctx.h[0]);
iv[2] = h32_from_64_S (sha512_ctx.h[1]);
iv[3] = l32_from_64_S (sha512_ctx.h[1]);
iv[0] = hc_swap32_S (iv[0]);
iv[1] = hc_swap32_S (iv[1]);
iv[2] = hc_swap32_S (iv[2]);
iv[3] = hc_swap32_S (iv[3]);
u32 key[4];
key[0] = h32_from_64_S (sha512_ctx.h[2]);
key[1] = l32_from_64_S (sha512_ctx.h[2]);
key[2] = h32_from_64_S (sha512_ctx.h[3]);
key[3] = l32_from_64_S (sha512_ctx.h[3]);
key[0] = hc_swap32_S (key[0]);
key[1] = hc_swap32_S (key[1]);
key[2] = hc_swap32_S (key[2]);
key[3] = hc_swap32_S (key[3]);
/*
* AES decrypt the data_buf
*/
// init AES
#define KEYLEN 44
u32 ks[KEYLEN];
aes128_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// #define AES_LEN 1024
// in my tests it also worked with only 128 input bytes !
#define AES_LEN 128
#define AES_LEN_DIV_4 32
u32 buf_full[AES_LEN_DIV_4];
// we need to run it at least once:
GLOBAL_AS u32 *data_buf = (GLOBAL_AS u32 *) esalt_bufs[DIGESTS_OFFSET].data_buf;
u32 data[4];
data[0] = data_buf[0];
data[1] = data_buf[1];
data[2] = data_buf[2];
data[3] = data_buf[3];
u32 buf[4];
aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4);
buf[0] ^= iv[0];
// early reject
if ((buf[0] & 0x0006ffff) != 0x00049c78) return; // allow 0b100 or 0b101 at the end of 3rd byte
buf[1] ^= iv[1];
buf[2] ^= iv[2];
buf[3] ^= iv[3];
buf_full[0] = buf[0];
buf_full[1] = buf[1];
buf_full[2] = buf[2];
buf_full[3] = buf[3];
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
// for AES_LEN > 16 we need to loop
for (int i = 16, j = 4; i < AES_LEN; i += 16, j += 4)
{
data[0] = data_buf[j + 0];
data[1] = data_buf[j + 1];
data[2] = data_buf[j + 2];
data[3] = data_buf[j + 3];
aes128_decrypt (ks, data, buf, s_td0, s_td1, s_td2, s_td3, s_td4);
buf[0] ^= iv[0];
buf[1] ^= iv[1];
buf[2] ^= iv[2];
buf[3] ^= iv[3];
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
buf_full[j + 0] = buf[0];
buf_full[j + 1] = buf[1];
buf_full[j + 2] = buf[2];
buf_full[j + 3] = buf[3];
}
/*
* zlib inflate/decompress:
*/
mz_stream infstream;
infstream.opaque = Z_NULL;
// input:
infstream.avail_in = AES_LEN;
infstream.next_in = (u8 *) buf_full;
// output:
#define OUT_SIZE 16
u8 tmp[OUT_SIZE];
infstream.avail_out = OUT_SIZE;
infstream.next_out = tmp;
// decompress it:
inflate_state pStream;
mz_inflateInit2 (&infstream, MAX_WBITS, &pStream);
const int zlib_ret = inflate (&infstream, Z_NO_FLUSH);
if ((zlib_ret != MZ_OK) && (zlib_ret != MZ_STREAM_END))
{
return;
}
/*
* Verify if decompressed data is either:
* - "{\n \"" or
* - "{\r\n \""
*/
if (((tmp[0] == 0x7b) && (tmp[1] == 0x0a) && (tmp[2] == 0x20) && (tmp[3] == 0x20) &&
(tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x22)) ||
((tmp[0] == 0x7b) && (tmp[1] == 0x0d) && (tmp[2] == 0x0a) && (tmp[3] == 0x20) &&
(tmp[4] == 0x20) && (tmp[5] == 0x20) && (tmp[6] == 0x20) && (tmp[7] == 0x22)))
{
if (hc_atomic_inc (&hashes_shown[DIGESTS_OFFSET]) == 0)
{
mark_hash (plains_buf, d_return_buf, SALT_POS, digests_cnt, 0, DIGESTS_OFFSET + 0, gid, 0, 0, 0);
}
return;
}
}