1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-17 04:08:34 +00:00
hashcat/src/dispatch.c
2016-09-21 16:07:49 +02:00

509 lines
12 KiB
C

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "common.h"
#include "types.h"
#include "memory.h"
#include "filehandling.h"
#include "interface.h"
#include "timer.h"
#include "logging.h"
#include "ext_OpenCL.h"
#include "ext_ADL.h"
#include "ext_nvapi.h"
#include "ext_nvml.h"
#include "ext_xnvctrl.h"
#include "tuningdb.h"
#include "thread.h"
#include "opencl.h"
#include "hwmon.h"
#include "restore.h"
#include "hash_management.h"
#include "rp_cpu.h"
#include "terminal.h"
#include "mpsp.h"
#include "outfile.h"
#include "potfile.h"
#include "debugfile.h"
#include "loopback.h"
#include "status.h"
#include "dictstat.h"
#include "wordlist.h"
#include "data.h"
#include "status.h"
#include "shared.h"
#include "dispatch.h"
extern hc_global_data_t data;
static void set_kernel_power_final (const u64 kernel_power_final)
{
if (data.quiet == false)
{
clear_prompt ();
//log_info ("");
log_info ("INFO: approaching final keyspace, workload adjusted");
log_info ("");
send_prompt ();
}
data.kernel_power_final = kernel_power_final;
}
static u32 get_power (hc_device_param_t *device_param)
{
const u64 kernel_power_final = data.kernel_power_final;
if (kernel_power_final)
{
const double device_factor = (double) device_param->hardware_power / data.hardware_power_all;
const u64 words_left_device = (u64) CEIL (kernel_power_final * device_factor);
// work should be at least the hardware power available without any accelerator
const u64 work = MAX (words_left_device, device_param->hardware_power);
return work;
}
return device_param->kernel_power;
}
static uint get_work (opencl_ctx_t *opencl_ctx, hc_device_param_t *device_param, const u64 max)
{
hc_thread_mutex_lock (opencl_ctx->mux_dispatcher);
const u64 words_cur = data.words_cur;
const u64 words_base = (data.limit == 0) ? data.words_base : MIN (data.limit, data.words_base);
device_param->words_off = words_cur;
const u64 kernel_power_all = data.kernel_power_all;
const u64 words_left = words_base - words_cur;
if (words_left < kernel_power_all)
{
if (data.kernel_power_final == 0)
{
set_kernel_power_final (words_left);
}
}
const u32 kernel_power = get_power (device_param);
uint work = MIN (words_left, kernel_power);
work = MIN (work, max);
data.words_cur += work;
hc_thread_mutex_unlock (opencl_ctx->mux_dispatcher);
return work;
}
void *thread_calc_stdin (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
opencl_ctx_t *opencl_ctx = data.opencl_ctx;
hashconfig_t *hashconfig = data.hashconfig;
hashes_t *hashes = data.hashes;
char *buf = (char *) mymalloc (HCBUFSIZ_LARGE);
const uint attack_kern = data.attack_kern;
while (opencl_ctx->run_thread_level1 == true)
{
hc_thread_mutex_lock (opencl_ctx->mux_dispatcher);
if (feof (stdin) != 0)
{
hc_thread_mutex_unlock (opencl_ctx->mux_dispatcher);
break;
}
uint words_cur = 0;
while (words_cur < device_param->kernel_power)
{
char *line_buf = fgets (buf, HCBUFSIZ_LARGE - 1, stdin);
if (line_buf == NULL) break;
uint line_len = in_superchop (line_buf);
line_len = convert_from_hex (line_buf, line_len);
// post-process rule engine
if (run_rule_engine (data.rule_len_l, data.rule_buf_l))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = -1;
if (line_len < BLOCK_SIZE)
{
rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out);
}
if (rule_len_out < 0) continue;
line_buf = rule_buf_out;
line_len = rule_len_out;
}
if (line_len > PW_MAX)
{
continue;
}
// hmm that's always the case, or?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
if ((line_len < data.pw_min) || (line_len > data.pw_max))
{
hc_thread_mutex_lock (opencl_ctx->mux_counter);
for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt;
}
hc_thread_mutex_unlock (opencl_ctx->mux_counter);
continue;
}
}
pw_add (device_param, (u8 *) line_buf, line_len);
words_cur++;
while (opencl_ctx->run_thread_level1 == false) break;
}
hc_thread_mutex_unlock (opencl_ctx->mux_dispatcher);
while (opencl_ctx->run_thread_level1 == false) break;
// flush
const uint pws_cnt = device_param->pws_cnt;
if (pws_cnt)
{
run_copy (opencl_ctx, device_param, hashconfig, pws_cnt);
run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
run_kernel_bzero (opencl_ctx, device_param, device_param->d_rules_c, device_param->size_rules_c);
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
run_kernel_bzero (opencl_ctx, device_param, device_param->d_combs_c, device_param->size_combs);
}
*/
}
}
device_param->kernel_accel = 0;
device_param->kernel_loops = 0;
myfree (buf);
return NULL;
}
void *thread_calc (void *p)
{
hc_device_param_t *device_param = (hc_device_param_t *) p;
if (device_param->skipped) return NULL;
opencl_ctx_t *opencl_ctx = data.opencl_ctx;
hashconfig_t *hashconfig = data.hashconfig;
hashes_t *hashes = data.hashes;
const uint attack_mode = data.attack_mode;
const uint attack_kern = data.attack_kern;
if (attack_mode == ATTACK_MODE_BF)
{
while (opencl_ctx->run_thread_level1 == true)
{
const uint work = get_work (opencl_ctx, device_param, -1u);
if (work == 0) break;
const u64 words_off = device_param->words_off;
const u64 words_fin = words_off + work;
const uint pws_cnt = work;
device_param->pws_cnt = pws_cnt;
if (pws_cnt)
{
run_copy (opencl_ctx, device_param, hashconfig, pws_cnt);
run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
run_kernel_bzero (device_param, device_param->d_bfs_c, device_param->size_bfs);
*/
}
if (opencl_ctx->run_thread_level1 == false) break;
if (data.benchmark == true) break;
device_param->words_done = words_fin;
}
}
else
{
const uint segment_size = data.segment_size;
char *dictfile = data.dictfile;
if (attack_mode == ATTACK_MODE_COMBI)
{
if (data.combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
dictfile = data.dictfile2;
}
}
FILE *fd = fopen (dictfile, "rb");
if (fd == NULL)
{
log_error ("ERROR: %s: %s", dictfile, strerror (errno));
return NULL;
}
if (attack_mode == ATTACK_MODE_COMBI)
{
const uint combs_mode = data.combs_mode;
if (combs_mode == COMBINATOR_MODE_BASE_LEFT)
{
const char *dictfilec = data.dictfile2;
FILE *combs_fp = fopen (dictfilec, "rb");
if (combs_fp == NULL)
{
log_error ("ERROR: %s: %s", dictfilec, strerror (errno));
fclose (fd);
return NULL;
}
device_param->combs_fp = combs_fp;
}
else if (combs_mode == COMBINATOR_MODE_BASE_RIGHT)
{
const char *dictfilec = data.dictfile;
FILE *combs_fp = fopen (dictfilec, "rb");
if (combs_fp == NULL)
{
log_error ("ERROR: %s: %s", dictfilec, strerror (errno));
fclose (fd);
return NULL;
}
device_param->combs_fp = combs_fp;
}
}
wl_data_t *wl_data = (wl_data_t *) mymalloc (sizeof (wl_data_t));
wl_data->buf = (char *) mymalloc (segment_size);
wl_data->avail = segment_size;
wl_data->incr = segment_size;
wl_data->cnt = 0;
wl_data->pos = 0;
u64 words_cur = 0;
while (opencl_ctx->run_thread_level1 == true)
{
u64 words_off = 0;
u64 words_fin = 0;
u64 max = -1llu;
while (max)
{
const uint work = get_work (opencl_ctx, device_param, max);
if (work == 0) break;
max = 0;
words_off = device_param->words_off;
words_fin = words_off + work;
char *line_buf;
uint line_len;
for ( ; words_cur < words_off; words_cur++) get_next_word (wl_data, fd, &line_buf, &line_len);
for ( ; words_cur < words_fin; words_cur++)
{
get_next_word (wl_data, fd, &line_buf, &line_len);
line_len = convert_from_hex (line_buf, line_len);
// post-process rule engine
if (run_rule_engine (data.rule_len_l, data.rule_buf_l))
{
char rule_buf_out[BLOCK_SIZE] = { 0 };
int rule_len_out = -1;
if (line_len < BLOCK_SIZE)
{
rule_len_out = _old_apply_rule (data.rule_buf_l, data.rule_len_l, line_buf, line_len, rule_buf_out);
}
if (rule_len_out < 0) continue;
line_buf = rule_buf_out;
line_len = rule_len_out;
}
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
if ((line_len < data.pw_min) || (line_len > data.pw_max))
{
max++;
hc_thread_mutex_lock (opencl_ctx->mux_counter);
for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.kernel_rules_cnt;
}
hc_thread_mutex_unlock (opencl_ctx->mux_counter);
continue;
}
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
// do not check if minimum restriction is satisfied (line_len >= data.pw_min) here
// since we still need to combine the plains
if (line_len > data.pw_max)
{
max++;
hc_thread_mutex_lock (opencl_ctx->mux_counter);
for (uint salt_pos = 0; salt_pos < hashes->salts_cnt; salt_pos++)
{
data.words_progress_rejected[salt_pos] += data.combs_cnt;
}
hc_thread_mutex_unlock (opencl_ctx->mux_counter);
continue;
}
}
pw_add (device_param, (u8 *) line_buf, line_len);
if (opencl_ctx->run_thread_level1 == false) break;
}
if (opencl_ctx->run_thread_level1 == false) break;
}
if (opencl_ctx->run_thread_level1 == false) break;
//
// flush
//
const uint pws_cnt = device_param->pws_cnt;
if (pws_cnt)
{
run_copy (opencl_ctx, device_param, hashconfig, pws_cnt);
run_cracker (opencl_ctx, device_param, hashconfig, hashes, pws_cnt);
device_param->pws_cnt = 0;
/*
still required?
if (attack_kern == ATTACK_KERN_STRAIGHT)
{
run_kernel_bzero (device_param, device_param->d_rules_c, device_param->size_rules_c);
}
else if (attack_kern == ATTACK_KERN_COMBI)
{
run_kernel_bzero (device_param, device_param->d_combs_c, device_param->size_combs);
}
*/
}
if (opencl_ctx->run_thread_level1 == false) break;
if (words_fin == 0) break;
device_param->words_done = words_fin;
}
if (attack_mode == ATTACK_MODE_COMBI)
{
fclose (device_param->combs_fp);
}
free (wl_data->buf);
free (wl_data);
fclose (fd);
}
device_param->kernel_accel = 0;
device_param->kernel_loops = 0;
return NULL;
}