mirror of
https://github.com/hashcat/hashcat.git
synced 2025-01-22 05:31:11 +00:00
1364 lines
39 KiB
C
1364 lines
39 KiB
C
/* LzmaDec.c -- LZMA Decoder
|
|
2021-04-01 : Igor Pavlov : Public domain */
|
|
|
|
#include "Precomp.h"
|
|
|
|
#include <string.h>
|
|
|
|
/* #include "CpuArch.h" */
|
|
#include "LzmaDec.h"
|
|
|
|
#define kNumTopBits 24
|
|
#define kTopValue ((UInt32)1 << kNumTopBits)
|
|
|
|
#define kNumBitModelTotalBits 11
|
|
#define kBitModelTotal (1 << kNumBitModelTotalBits)
|
|
|
|
#define RC_INIT_SIZE 5
|
|
|
|
#ifndef _LZMA_DEC_OPT
|
|
|
|
#define kNumMoveBits 5
|
|
#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
|
|
|
|
#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
|
|
#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
|
|
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
|
|
#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
|
|
{ UPDATE_0(p); i = (i + i); A0; } else \
|
|
{ UPDATE_1(p); i = (i + i) + 1; A1; }
|
|
|
|
#define TREE_GET_BIT(probs, i) { GET_BIT2(probs + i, i, ;, ;); }
|
|
|
|
#define REV_BIT(p, i, A0, A1) IF_BIT_0(p + i) \
|
|
{ UPDATE_0(p + i); A0; } else \
|
|
{ UPDATE_1(p + i); A1; }
|
|
#define REV_BIT_VAR( p, i, m) REV_BIT(p, i, i += m; m += m, m += m; i += m; )
|
|
#define REV_BIT_CONST(p, i, m) REV_BIT(p, i, i += m; , i += m * 2; )
|
|
#define REV_BIT_LAST( p, i, m) REV_BIT(p, i, i -= m , ; )
|
|
|
|
#define TREE_DECODE(probs, limit, i) \
|
|
{ i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
|
|
|
|
/* #define _LZMA_SIZE_OPT */
|
|
|
|
#ifdef _LZMA_SIZE_OPT
|
|
#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
|
|
#else
|
|
#define TREE_6_DECODE(probs, i) \
|
|
{ i = 1; \
|
|
TREE_GET_BIT(probs, i); \
|
|
TREE_GET_BIT(probs, i); \
|
|
TREE_GET_BIT(probs, i); \
|
|
TREE_GET_BIT(probs, i); \
|
|
TREE_GET_BIT(probs, i); \
|
|
TREE_GET_BIT(probs, i); \
|
|
i -= 0x40; }
|
|
#endif
|
|
|
|
#define NORMAL_LITER_DEC TREE_GET_BIT(prob, symbol)
|
|
#define MATCHED_LITER_DEC \
|
|
matchByte += matchByte; \
|
|
bit = offs; \
|
|
offs &= matchByte; \
|
|
probLit = prob + (offs + bit + symbol); \
|
|
GET_BIT2(probLit, symbol, offs ^= bit; , ;)
|
|
|
|
#endif // _LZMA_DEC_OPT
|
|
|
|
|
|
#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_INPUT_EOF; range <<= 8; code = (code << 8) | (*buf++); }
|
|
|
|
#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * (UInt32)ttt; if (code < bound)
|
|
#define UPDATE_0_CHECK range = bound;
|
|
#define UPDATE_1_CHECK range -= bound; code -= bound;
|
|
#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
|
|
{ UPDATE_0_CHECK; i = (i + i); A0; } else \
|
|
{ UPDATE_1_CHECK; i = (i + i) + 1; A1; }
|
|
#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
|
|
#define TREE_DECODE_CHECK(probs, limit, i) \
|
|
{ i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
|
|
|
|
|
|
#define REV_BIT_CHECK(p, i, m) IF_BIT_0_CHECK(p + i) \
|
|
{ UPDATE_0_CHECK; i += m; m += m; } else \
|
|
{ UPDATE_1_CHECK; m += m; i += m; }
|
|
|
|
|
|
#define kNumPosBitsMax 4
|
|
#define kNumPosStatesMax (1 << kNumPosBitsMax)
|
|
|
|
#define kLenNumLowBits 3
|
|
#define kLenNumLowSymbols (1 << kLenNumLowBits)
|
|
#define kLenNumHighBits 8
|
|
#define kLenNumHighSymbols (1 << kLenNumHighBits)
|
|
|
|
#define LenLow 0
|
|
#define LenHigh (LenLow + 2 * (kNumPosStatesMax << kLenNumLowBits))
|
|
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
|
|
|
|
#define LenChoice LenLow
|
|
#define LenChoice2 (LenLow + (1 << kLenNumLowBits))
|
|
|
|
#define kNumStates 12
|
|
#define kNumStates2 16
|
|
#define kNumLitStates 7
|
|
|
|
#define kStartPosModelIndex 4
|
|
#define kEndPosModelIndex 14
|
|
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
|
|
|
|
#define kNumPosSlotBits 6
|
|
#define kNumLenToPosStates 4
|
|
|
|
#define kNumAlignBits 4
|
|
#define kAlignTableSize (1 << kNumAlignBits)
|
|
|
|
#define kMatchMinLen 2
|
|
#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols * 2 + kLenNumHighSymbols)
|
|
|
|
#define kMatchSpecLen_Error_Data (1 << 9)
|
|
#define kMatchSpecLen_Error_Fail (kMatchSpecLen_Error_Data - 1)
|
|
|
|
/* External ASM code needs same CLzmaProb array layout. So don't change it. */
|
|
|
|
/* (probs_1664) is faster and better for code size at some platforms */
|
|
/*
|
|
#ifdef MY_CPU_X86_OR_AMD64
|
|
*/
|
|
#define kStartOffset 1664
|
|
#define GET_PROBS p->probs_1664
|
|
/*
|
|
#define GET_PROBS p->probs + kStartOffset
|
|
#else
|
|
#define kStartOffset 0
|
|
#define GET_PROBS p->probs
|
|
#endif
|
|
*/
|
|
|
|
#define SpecPos (-kStartOffset)
|
|
#define IsRep0Long (SpecPos + kNumFullDistances)
|
|
#define RepLenCoder (IsRep0Long + (kNumStates2 << kNumPosBitsMax))
|
|
#define LenCoder (RepLenCoder + kNumLenProbs)
|
|
#define IsMatch (LenCoder + kNumLenProbs)
|
|
#define Align (IsMatch + (kNumStates2 << kNumPosBitsMax))
|
|
#define IsRep (Align + kAlignTableSize)
|
|
#define IsRepG0 (IsRep + kNumStates)
|
|
#define IsRepG1 (IsRepG0 + kNumStates)
|
|
#define IsRepG2 (IsRepG1 + kNumStates)
|
|
#define PosSlot (IsRepG2 + kNumStates)
|
|
#define Literal (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
|
|
#define NUM_BASE_PROBS (Literal + kStartOffset)
|
|
|
|
#if Align != 0 && kStartOffset != 0
|
|
#error Stop_Compiling_Bad_LZMA_kAlign
|
|
#endif
|
|
|
|
#if NUM_BASE_PROBS != 1984
|
|
#error Stop_Compiling_Bad_LZMA_PROBS
|
|
#endif
|
|
|
|
|
|
#define LZMA_LIT_SIZE 0x300
|
|
|
|
#define LzmaProps_GetNumProbs(p) (NUM_BASE_PROBS + ((UInt32)LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
|
|
|
|
|
|
#define CALC_POS_STATE(processedPos, pbMask) (((processedPos) & (pbMask)) << 4)
|
|
#define COMBINED_PS_STATE (posState + state)
|
|
#define GET_LEN_STATE (posState)
|
|
|
|
#define LZMA_DIC_MIN (1 << 12)
|
|
|
|
/*
|
|
p->remainLen : shows status of LZMA decoder:
|
|
< kMatchSpecLenStart : the number of bytes to be copied with (p->rep0) offset
|
|
= kMatchSpecLenStart : the LZMA stream was finished with end mark
|
|
= kMatchSpecLenStart + 1 : need init range coder
|
|
= kMatchSpecLenStart + 2 : need init range coder and state
|
|
= kMatchSpecLen_Error_Fail : Internal Code Failure
|
|
= kMatchSpecLen_Error_Data + [0 ... 273] : LZMA Data Error
|
|
*/
|
|
|
|
/* ---------- LZMA_DECODE_REAL ---------- */
|
|
/*
|
|
LzmaDec_DecodeReal_3() can be implemented in external ASM file.
|
|
3 - is the code compatibility version of that function for check at link time.
|
|
*/
|
|
|
|
#define LZMA_DECODE_REAL LzmaDec_DecodeReal_3
|
|
|
|
/*
|
|
LZMA_DECODE_REAL()
|
|
In:
|
|
RangeCoder is normalized
|
|
if (p->dicPos == limit)
|
|
{
|
|
LzmaDec_TryDummy() was called before to exclude LITERAL and MATCH-REP cases.
|
|
So first symbol can be only MATCH-NON-REP. And if that MATCH-NON-REP symbol
|
|
is not END_OF_PAYALOAD_MARKER, then the function doesn't write any byte to dictionary,
|
|
the function returns SZ_OK, and the caller can use (p->remainLen) and (p->reps[0]) later.
|
|
}
|
|
|
|
Processing:
|
|
The first LZMA symbol will be decoded in any case.
|
|
All main checks for limits are at the end of main loop,
|
|
It decodes additional LZMA-symbols while (p->buf < bufLimit && dicPos < limit),
|
|
RangeCoder is still without last normalization when (p->buf < bufLimit) is being checked.
|
|
But if (p->buf < bufLimit), the caller provided at least (LZMA_REQUIRED_INPUT_MAX + 1) bytes for
|
|
next iteration before limit (bufLimit + LZMA_REQUIRED_INPUT_MAX),
|
|
that is enough for worst case LZMA symbol with one additional RangeCoder normalization for one bit.
|
|
So that function never reads bufLimit [LZMA_REQUIRED_INPUT_MAX] byte.
|
|
|
|
Out:
|
|
RangeCoder is normalized
|
|
Result:
|
|
SZ_OK - OK
|
|
p->remainLen:
|
|
< kMatchSpecLenStart : the number of bytes to be copied with (p->reps[0]) offset
|
|
= kMatchSpecLenStart : the LZMA stream was finished with end mark
|
|
|
|
SZ_ERROR_DATA - error, when the MATCH-Symbol refers out of dictionary
|
|
p->remainLen : undefined
|
|
p->reps[*] : undefined
|
|
*/
|
|
|
|
|
|
#ifdef _LZMA_DEC_OPT
|
|
|
|
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit);
|
|
|
|
#else
|
|
|
|
static
|
|
int MY_FAST_CALL LZMA_DECODE_REAL(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
|
|
{
|
|
CLzmaProb *probs = GET_PROBS;
|
|
unsigned state = (unsigned)p->state;
|
|
UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
|
|
unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
|
|
unsigned lc = p->prop.lc;
|
|
unsigned lpMask = ((unsigned)0x100 << p->prop.lp) - ((unsigned)0x100 >> lc);
|
|
|
|
Byte *dic = p->dic;
|
|
SizeT dicBufSize = p->dicBufSize;
|
|
SizeT dicPos = p->dicPos;
|
|
|
|
UInt32 processedPos = p->processedPos;
|
|
UInt32 checkDicSize = p->checkDicSize;
|
|
unsigned len = 0;
|
|
|
|
const Byte *buf = p->buf;
|
|
UInt32 range = p->range;
|
|
UInt32 code = p->code;
|
|
|
|
do
|
|
{
|
|
CLzmaProb *prob;
|
|
UInt32 bound;
|
|
unsigned ttt;
|
|
unsigned posState = CALC_POS_STATE(processedPos, pbMask);
|
|
|
|
prob = probs + IsMatch + COMBINED_PS_STATE;
|
|
IF_BIT_0(prob)
|
|
{
|
|
unsigned symbol;
|
|
UPDATE_0(prob);
|
|
prob = probs + Literal;
|
|
if (processedPos != 0 || checkDicSize != 0)
|
|
prob += (UInt32)3 * ((((processedPos << 8) + dic[(dicPos == 0 ? dicBufSize : dicPos) - 1]) & lpMask) << lc);
|
|
processedPos++;
|
|
|
|
if (state < kNumLitStates)
|
|
{
|
|
state -= (state < 4) ? state : 3;
|
|
symbol = 1;
|
|
#ifdef _LZMA_SIZE_OPT
|
|
do { NORMAL_LITER_DEC } while (symbol < 0x100);
|
|
#else
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
NORMAL_LITER_DEC
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
unsigned matchByte = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
|
|
unsigned offs = 0x100;
|
|
state -= (state < 10) ? 3 : 6;
|
|
symbol = 1;
|
|
#ifdef _LZMA_SIZE_OPT
|
|
do
|
|
{
|
|
unsigned bit;
|
|
CLzmaProb *probLit;
|
|
MATCHED_LITER_DEC
|
|
}
|
|
while (symbol < 0x100);
|
|
#else
|
|
{
|
|
unsigned bit;
|
|
CLzmaProb *probLit;
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
MATCHED_LITER_DEC
|
|
}
|
|
#endif
|
|
}
|
|
|
|
dic[dicPos++] = (Byte)symbol;
|
|
continue;
|
|
}
|
|
|
|
{
|
|
UPDATE_1(prob);
|
|
prob = probs + IsRep + state;
|
|
IF_BIT_0(prob)
|
|
{
|
|
UPDATE_0(prob);
|
|
state += kNumStates;
|
|
prob = probs + LenCoder;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(prob);
|
|
prob = probs + IsRepG0 + state;
|
|
IF_BIT_0(prob)
|
|
{
|
|
UPDATE_0(prob);
|
|
prob = probs + IsRep0Long + COMBINED_PS_STATE;
|
|
IF_BIT_0(prob)
|
|
{
|
|
UPDATE_0(prob);
|
|
|
|
// that case was checked before with kBadRepCode
|
|
// if (checkDicSize == 0 && processedPos == 0) { len = kMatchSpecLen_Error_Data + 1; break; }
|
|
// The caller doesn't allow (dicPos == limit) case here
|
|
// so we don't need the following check:
|
|
// if (dicPos == limit) { state = state < kNumLitStates ? 9 : 11; len = 1; break; }
|
|
|
|
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
|
|
dicPos++;
|
|
processedPos++;
|
|
state = state < kNumLitStates ? 9 : 11;
|
|
continue;
|
|
}
|
|
UPDATE_1(prob);
|
|
}
|
|
else
|
|
{
|
|
UInt32 distance;
|
|
UPDATE_1(prob);
|
|
prob = probs + IsRepG1 + state;
|
|
IF_BIT_0(prob)
|
|
{
|
|
UPDATE_0(prob);
|
|
distance = rep1;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(prob);
|
|
prob = probs + IsRepG2 + state;
|
|
IF_BIT_0(prob)
|
|
{
|
|
UPDATE_0(prob);
|
|
distance = rep2;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(prob);
|
|
distance = rep3;
|
|
rep3 = rep2;
|
|
}
|
|
rep2 = rep1;
|
|
}
|
|
rep1 = rep0;
|
|
rep0 = distance;
|
|
}
|
|
state = state < kNumLitStates ? 8 : 11;
|
|
prob = probs + RepLenCoder;
|
|
}
|
|
|
|
#ifdef _LZMA_SIZE_OPT
|
|
{
|
|
unsigned lim, offset;
|
|
CLzmaProb *probLen = prob + LenChoice;
|
|
IF_BIT_0(probLen)
|
|
{
|
|
UPDATE_0(probLen);
|
|
probLen = prob + LenLow + GET_LEN_STATE;
|
|
offset = 0;
|
|
lim = (1 << kLenNumLowBits);
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(probLen);
|
|
probLen = prob + LenChoice2;
|
|
IF_BIT_0(probLen)
|
|
{
|
|
UPDATE_0(probLen);
|
|
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
|
|
offset = kLenNumLowSymbols;
|
|
lim = (1 << kLenNumLowBits);
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(probLen);
|
|
probLen = prob + LenHigh;
|
|
offset = kLenNumLowSymbols * 2;
|
|
lim = (1 << kLenNumHighBits);
|
|
}
|
|
}
|
|
TREE_DECODE(probLen, lim, len);
|
|
len += offset;
|
|
}
|
|
#else
|
|
{
|
|
CLzmaProb *probLen = prob + LenChoice;
|
|
IF_BIT_0(probLen)
|
|
{
|
|
UPDATE_0(probLen);
|
|
probLen = prob + LenLow + GET_LEN_STATE;
|
|
len = 1;
|
|
TREE_GET_BIT(probLen, len);
|
|
TREE_GET_BIT(probLen, len);
|
|
TREE_GET_BIT(probLen, len);
|
|
len -= 8;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(probLen);
|
|
probLen = prob + LenChoice2;
|
|
IF_BIT_0(probLen)
|
|
{
|
|
UPDATE_0(probLen);
|
|
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
|
|
len = 1;
|
|
TREE_GET_BIT(probLen, len);
|
|
TREE_GET_BIT(probLen, len);
|
|
TREE_GET_BIT(probLen, len);
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1(probLen);
|
|
probLen = prob + LenHigh;
|
|
TREE_DECODE(probLen, (1 << kLenNumHighBits), len);
|
|
len += kLenNumLowSymbols * 2;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (state >= kNumStates)
|
|
{
|
|
UInt32 distance;
|
|
prob = probs + PosSlot +
|
|
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
|
|
TREE_6_DECODE(prob, distance);
|
|
if (distance >= kStartPosModelIndex)
|
|
{
|
|
unsigned posSlot = (unsigned)distance;
|
|
unsigned numDirectBits = (unsigned)(((distance >> 1) - 1));
|
|
distance = (2 | (distance & 1));
|
|
if (posSlot < kEndPosModelIndex)
|
|
{
|
|
distance <<= numDirectBits;
|
|
prob = probs + SpecPos;
|
|
{
|
|
UInt32 m = 1;
|
|
distance++;
|
|
do
|
|
{
|
|
REV_BIT_VAR(prob, distance, m);
|
|
}
|
|
while (--numDirectBits);
|
|
distance -= m;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
numDirectBits -= kNumAlignBits;
|
|
do
|
|
{
|
|
NORMALIZE
|
|
range >>= 1;
|
|
|
|
{
|
|
UInt32 t;
|
|
code -= range;
|
|
t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
|
|
distance = (distance << 1) + (t + 1);
|
|
code += range & t;
|
|
}
|
|
/*
|
|
distance <<= 1;
|
|
if (code >= range)
|
|
{
|
|
code -= range;
|
|
distance |= 1;
|
|
}
|
|
*/
|
|
}
|
|
while (--numDirectBits);
|
|
prob = probs + Align;
|
|
distance <<= kNumAlignBits;
|
|
{
|
|
unsigned i = 1;
|
|
REV_BIT_CONST(prob, i, 1);
|
|
REV_BIT_CONST(prob, i, 2);
|
|
REV_BIT_CONST(prob, i, 4);
|
|
REV_BIT_LAST (prob, i, 8);
|
|
distance |= i;
|
|
}
|
|
if (distance == (UInt32)0xFFFFFFFF)
|
|
{
|
|
len = kMatchSpecLenStart;
|
|
state -= kNumStates;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
rep3 = rep2;
|
|
rep2 = rep1;
|
|
rep1 = rep0;
|
|
rep0 = distance + 1;
|
|
state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
|
|
if (distance >= (checkDicSize == 0 ? processedPos: checkDicSize))
|
|
{
|
|
len += kMatchSpecLen_Error_Data + kMatchMinLen;
|
|
// len = kMatchSpecLen_Error_Data;
|
|
// len += kMatchMinLen;
|
|
break;
|
|
}
|
|
}
|
|
|
|
len += kMatchMinLen;
|
|
|
|
{
|
|
SizeT rem;
|
|
unsigned curLen;
|
|
SizeT pos;
|
|
|
|
if ((rem = limit - dicPos) == 0)
|
|
{
|
|
/*
|
|
We stop decoding and return SZ_OK, and we can resume decoding later.
|
|
Any error conditions can be tested later in caller code.
|
|
For more strict mode we can stop decoding with error
|
|
// len += kMatchSpecLen_Error_Data;
|
|
*/
|
|
break;
|
|
}
|
|
|
|
curLen = ((rem < len) ? (unsigned)rem : len);
|
|
pos = dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0);
|
|
|
|
processedPos += (UInt32)curLen;
|
|
|
|
len -= curLen;
|
|
if (curLen <= dicBufSize - pos)
|
|
{
|
|
Byte *dest = dic + dicPos;
|
|
ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
|
|
const Byte *lim = dest + curLen;
|
|
dicPos += (SizeT)curLen;
|
|
do
|
|
*(dest) = (Byte)*(dest + src);
|
|
while (++dest != lim);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
dic[dicPos++] = dic[pos];
|
|
if (++pos == dicBufSize)
|
|
pos = 0;
|
|
}
|
|
while (--curLen != 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (dicPos < limit && buf < bufLimit);
|
|
|
|
NORMALIZE;
|
|
|
|
p->buf = buf;
|
|
p->range = range;
|
|
p->code = code;
|
|
p->remainLen = (UInt32)len; // & (kMatchSpecLen_Error_Data - 1); // we can write real length for error matches too.
|
|
p->dicPos = dicPos;
|
|
p->processedPos = processedPos;
|
|
p->reps[0] = rep0;
|
|
p->reps[1] = rep1;
|
|
p->reps[2] = rep2;
|
|
p->reps[3] = rep3;
|
|
p->state = (UInt32)state;
|
|
if (len >= kMatchSpecLen_Error_Data)
|
|
return SZ_ERROR_DATA;
|
|
return SZ_OK;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
|
|
{
|
|
unsigned len = (unsigned)p->remainLen;
|
|
if (len == 0 /* || len >= kMatchSpecLenStart */)
|
|
return;
|
|
{
|
|
SizeT dicPos = p->dicPos;
|
|
Byte *dic;
|
|
SizeT dicBufSize;
|
|
SizeT rep0; /* we use SizeT to avoid the BUG of VC14 for AMD64 */
|
|
{
|
|
SizeT rem = limit - dicPos;
|
|
if (rem < len)
|
|
{
|
|
len = (unsigned)(rem);
|
|
if (len == 0)
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
|
|
p->checkDicSize = p->prop.dicSize;
|
|
|
|
p->processedPos += (UInt32)len;
|
|
p->remainLen -= (UInt32)len;
|
|
dic = p->dic;
|
|
rep0 = p->reps[0];
|
|
dicBufSize = p->dicBufSize;
|
|
do
|
|
{
|
|
dic[dicPos] = dic[dicPos - rep0 + (dicPos < rep0 ? dicBufSize : 0)];
|
|
dicPos++;
|
|
}
|
|
while (--len);
|
|
p->dicPos = dicPos;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
At staring of new stream we have one of the following symbols:
|
|
- Literal - is allowed
|
|
- Non-Rep-Match - is allowed only if it's end marker symbol
|
|
- Rep-Match - is not allowed
|
|
We use early check of (RangeCoder:Code) over kBadRepCode to simplify main decoding code
|
|
*/
|
|
|
|
#define kRange0 0xFFFFFFFF
|
|
#define kBound0 ((kRange0 >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1))
|
|
#define kBadRepCode (kBound0 + (((kRange0 - kBound0) >> kNumBitModelTotalBits) << (kNumBitModelTotalBits - 1)))
|
|
#if kBadRepCode != (0xC0000000 - 0x400)
|
|
#error Stop_Compiling_Bad_LZMA_Check
|
|
#endif
|
|
|
|
|
|
/*
|
|
LzmaDec_DecodeReal2():
|
|
It calls LZMA_DECODE_REAL() and it adjusts limit according (p->checkDicSize).
|
|
|
|
We correct (p->checkDicSize) after LZMA_DECODE_REAL() and in LzmaDec_WriteRem(),
|
|
and we support the following state of (p->checkDicSize):
|
|
if (total_processed < p->prop.dicSize) then
|
|
{
|
|
(total_processed == p->processedPos)
|
|
(p->checkDicSize == 0)
|
|
}
|
|
else
|
|
(p->checkDicSize == p->prop.dicSize)
|
|
*/
|
|
|
|
static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
|
|
{
|
|
if (p->checkDicSize == 0)
|
|
{
|
|
UInt32 rem = p->prop.dicSize - p->processedPos;
|
|
if (limit - p->dicPos > rem)
|
|
limit = p->dicPos + rem;
|
|
}
|
|
{
|
|
int res = LZMA_DECODE_REAL(p, limit, bufLimit);
|
|
if (p->checkDicSize == 0 && p->processedPos >= p->prop.dicSize)
|
|
p->checkDicSize = p->prop.dicSize;
|
|
return res;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
typedef enum
|
|
{
|
|
DUMMY_INPUT_EOF, /* need more input data */
|
|
DUMMY_LIT,
|
|
DUMMY_MATCH,
|
|
DUMMY_REP
|
|
} ELzmaDummy;
|
|
|
|
|
|
#define IS_DUMMY_END_MARKER_POSSIBLE(dummyRes) ((dummyRes) == DUMMY_MATCH)
|
|
|
|
static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, const Byte **bufOut)
|
|
{
|
|
UInt32 range = p->range;
|
|
UInt32 code = p->code;
|
|
const Byte *bufLimit = *bufOut;
|
|
const CLzmaProb *probs = GET_PROBS;
|
|
unsigned state = (unsigned)p->state;
|
|
ELzmaDummy res;
|
|
|
|
for (;;)
|
|
{
|
|
const CLzmaProb *prob;
|
|
UInt32 bound;
|
|
unsigned ttt;
|
|
unsigned posState = CALC_POS_STATE(p->processedPos, ((unsigned)1 << p->prop.pb) - 1);
|
|
|
|
prob = probs + IsMatch + COMBINED_PS_STATE;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK
|
|
|
|
prob = probs + Literal;
|
|
if (p->checkDicSize != 0 || p->processedPos != 0)
|
|
prob += ((UInt32)LZMA_LIT_SIZE *
|
|
((((p->processedPos) & (((unsigned)1 << (p->prop.lp)) - 1)) << p->prop.lc) +
|
|
((unsigned)p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
|
|
|
|
if (state < kNumLitStates)
|
|
{
|
|
unsigned symbol = 1;
|
|
do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
|
|
}
|
|
else
|
|
{
|
|
unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
|
|
(p->dicPos < p->reps[0] ? p->dicBufSize : 0)];
|
|
unsigned offs = 0x100;
|
|
unsigned symbol = 1;
|
|
do
|
|
{
|
|
unsigned bit;
|
|
const CLzmaProb *probLit;
|
|
matchByte += matchByte;
|
|
bit = offs;
|
|
offs &= matchByte;
|
|
probLit = prob + (offs + bit + symbol);
|
|
GET_BIT2_CHECK(probLit, symbol, offs ^= bit; , ; )
|
|
}
|
|
while (symbol < 0x100);
|
|
}
|
|
res = DUMMY_LIT;
|
|
}
|
|
else
|
|
{
|
|
unsigned len;
|
|
UPDATE_1_CHECK;
|
|
|
|
prob = probs + IsRep + state;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
state = 0;
|
|
prob = probs + LenCoder;
|
|
res = DUMMY_MATCH;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
res = DUMMY_REP;
|
|
prob = probs + IsRepG0 + state;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
prob = probs + IsRep0Long + COMBINED_PS_STATE;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
prob = probs + IsRepG1 + state;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
prob = probs + IsRepG2 + state;
|
|
IF_BIT_0_CHECK(prob)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
}
|
|
}
|
|
}
|
|
state = kNumStates;
|
|
prob = probs + RepLenCoder;
|
|
}
|
|
{
|
|
unsigned limit, offset;
|
|
const CLzmaProb *probLen = prob + LenChoice;
|
|
IF_BIT_0_CHECK(probLen)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
probLen = prob + LenLow + GET_LEN_STATE;
|
|
offset = 0;
|
|
limit = 1 << kLenNumLowBits;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
probLen = prob + LenChoice2;
|
|
IF_BIT_0_CHECK(probLen)
|
|
{
|
|
UPDATE_0_CHECK;
|
|
probLen = prob + LenLow + GET_LEN_STATE + (1 << kLenNumLowBits);
|
|
offset = kLenNumLowSymbols;
|
|
limit = 1 << kLenNumLowBits;
|
|
}
|
|
else
|
|
{
|
|
UPDATE_1_CHECK;
|
|
probLen = prob + LenHigh;
|
|
offset = kLenNumLowSymbols * 2;
|
|
limit = 1 << kLenNumHighBits;
|
|
}
|
|
}
|
|
TREE_DECODE_CHECK(probLen, limit, len);
|
|
len += offset;
|
|
}
|
|
|
|
if (state < 4)
|
|
{
|
|
unsigned posSlot;
|
|
prob = probs + PosSlot +
|
|
((len < kNumLenToPosStates - 1 ? len : kNumLenToPosStates - 1) <<
|
|
kNumPosSlotBits);
|
|
TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
|
|
if (posSlot >= kStartPosModelIndex)
|
|
{
|
|
unsigned numDirectBits = ((posSlot >> 1) - 1);
|
|
|
|
if (posSlot < kEndPosModelIndex)
|
|
{
|
|
prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits);
|
|
}
|
|
else
|
|
{
|
|
numDirectBits -= kNumAlignBits;
|
|
do
|
|
{
|
|
NORMALIZE_CHECK
|
|
range >>= 1;
|
|
code -= range & (((code - range) >> 31) - 1);
|
|
/* if (code >= range) code -= range; */
|
|
}
|
|
while (--numDirectBits);
|
|
prob = probs + Align;
|
|
numDirectBits = kNumAlignBits;
|
|
}
|
|
{
|
|
unsigned i = 1;
|
|
unsigned m = 1;
|
|
do
|
|
{
|
|
REV_BIT_CHECK(prob, i, m);
|
|
}
|
|
while (--numDirectBits);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
NORMALIZE_CHECK;
|
|
|
|
*bufOut = buf;
|
|
return res;
|
|
}
|
|
|
|
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
|
|
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState)
|
|
{
|
|
p->remainLen = kMatchSpecLenStart + 1;
|
|
p->tempBufSize = 0;
|
|
|
|
if (initDic)
|
|
{
|
|
p->processedPos = 0;
|
|
p->checkDicSize = 0;
|
|
p->remainLen = kMatchSpecLenStart + 2;
|
|
}
|
|
if (initState)
|
|
p->remainLen = kMatchSpecLenStart + 2;
|
|
}
|
|
|
|
void LzmaDec_Init(CLzmaDec *p)
|
|
{
|
|
p->dicPos = 0;
|
|
LzmaDec_InitDicAndState(p, True, True);
|
|
}
|
|
|
|
|
|
/*
|
|
LZMA supports optional end_marker.
|
|
So the decoder can lookahead for one additional LZMA-Symbol to check end_marker.
|
|
That additional LZMA-Symbol can require up to LZMA_REQUIRED_INPUT_MAX bytes in input stream.
|
|
When the decoder reaches dicLimit, it looks (finishMode) parameter:
|
|
if (finishMode == LZMA_FINISH_ANY), the decoder doesn't lookahead
|
|
if (finishMode != LZMA_FINISH_ANY), the decoder lookahead, if end_marker is possible for current position
|
|
|
|
When the decoder lookahead, and the lookahead symbol is not end_marker, we have two ways:
|
|
1) Strict mode (default) : the decoder returns SZ_ERROR_DATA.
|
|
2) The relaxed mode (alternative mode) : we could return SZ_OK, and the caller
|
|
must check (status) value. The caller can show the error,
|
|
if the end of stream is expected, and the (status) is noit
|
|
LZMA_STATUS_FINISHED_WITH_MARK or LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK.
|
|
*/
|
|
|
|
|
|
#define RETURN__NOT_FINISHED__FOR_FINISH \
|
|
*status = LZMA_STATUS_NOT_FINISHED; \
|
|
return SZ_ERROR_DATA; // for strict mode
|
|
// return SZ_OK; // for relaxed mode
|
|
|
|
|
|
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
|
|
ELzmaFinishMode finishMode, ELzmaStatus *status)
|
|
{
|
|
SizeT inSize = *srcLen;
|
|
(*srcLen) = 0;
|
|
*status = LZMA_STATUS_NOT_SPECIFIED;
|
|
|
|
if (p->remainLen > kMatchSpecLenStart)
|
|
{
|
|
if (p->remainLen > kMatchSpecLenStart + 2)
|
|
return p->remainLen == kMatchSpecLen_Error_Fail ? SZ_ERROR_FAIL : SZ_ERROR_DATA;
|
|
|
|
for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
|
|
p->tempBuf[p->tempBufSize++] = *src++;
|
|
if (p->tempBufSize != 0 && p->tempBuf[0] != 0)
|
|
return SZ_ERROR_DATA;
|
|
if (p->tempBufSize < RC_INIT_SIZE)
|
|
{
|
|
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
|
|
return SZ_OK;
|
|
}
|
|
p->code =
|
|
((UInt32)p->tempBuf[1] << 24)
|
|
| ((UInt32)p->tempBuf[2] << 16)
|
|
| ((UInt32)p->tempBuf[3] << 8)
|
|
| ((UInt32)p->tempBuf[4]);
|
|
|
|
if (p->checkDicSize == 0
|
|
&& p->processedPos == 0
|
|
&& p->code >= kBadRepCode)
|
|
return SZ_ERROR_DATA;
|
|
|
|
p->range = 0xFFFFFFFF;
|
|
p->tempBufSize = 0;
|
|
|
|
if (p->remainLen > kMatchSpecLenStart + 1)
|
|
{
|
|
SizeT numProbs = LzmaProps_GetNumProbs(&p->prop);
|
|
SizeT i;
|
|
CLzmaProb *probs = p->probs;
|
|
for (i = 0; i < numProbs; i++)
|
|
probs[i] = kBitModelTotal >> 1;
|
|
p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
|
|
p->state = 0;
|
|
}
|
|
|
|
p->remainLen = 0;
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
if (p->remainLen == kMatchSpecLenStart)
|
|
{
|
|
if (p->code != 0)
|
|
return SZ_ERROR_DATA;
|
|
*status = LZMA_STATUS_FINISHED_WITH_MARK;
|
|
return SZ_OK;
|
|
}
|
|
|
|
LzmaDec_WriteRem(p, dicLimit);
|
|
|
|
{
|
|
// (p->remainLen == 0 || p->dicPos == dicLimit)
|
|
|
|
int checkEndMarkNow = 0;
|
|
|
|
if (p->dicPos >= dicLimit)
|
|
{
|
|
if (p->remainLen == 0 && p->code == 0)
|
|
{
|
|
*status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
|
|
return SZ_OK;
|
|
}
|
|
if (finishMode == LZMA_FINISH_ANY)
|
|
{
|
|
*status = LZMA_STATUS_NOT_FINISHED;
|
|
return SZ_OK;
|
|
}
|
|
if (p->remainLen != 0)
|
|
{
|
|
RETURN__NOT_FINISHED__FOR_FINISH;
|
|
}
|
|
checkEndMarkNow = 1;
|
|
}
|
|
|
|
// (p->remainLen == 0)
|
|
|
|
if (p->tempBufSize == 0)
|
|
{
|
|
const Byte *bufLimit;
|
|
int dummyProcessed = -1;
|
|
|
|
if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
|
|
{
|
|
const Byte *bufOut = src + inSize;
|
|
|
|
ELzmaDummy dummyRes = LzmaDec_TryDummy(p, src, &bufOut);
|
|
|
|
if (dummyRes == DUMMY_INPUT_EOF)
|
|
{
|
|
size_t i;
|
|
if (inSize >= LZMA_REQUIRED_INPUT_MAX)
|
|
break;
|
|
(*srcLen) += inSize;
|
|
p->tempBufSize = (unsigned)inSize;
|
|
for (i = 0; i < inSize; i++)
|
|
p->tempBuf[i] = src[i];
|
|
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
|
|
return SZ_OK;
|
|
}
|
|
|
|
dummyProcessed = (int)(bufOut - src);
|
|
if ((unsigned)dummyProcessed > LZMA_REQUIRED_INPUT_MAX)
|
|
break;
|
|
|
|
if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
|
|
{
|
|
unsigned i;
|
|
(*srcLen) += (unsigned)dummyProcessed;
|
|
p->tempBufSize = (unsigned)dummyProcessed;
|
|
for (i = 0; i < (unsigned)dummyProcessed; i++)
|
|
p->tempBuf[i] = src[i];
|
|
// p->remainLen = kMatchSpecLen_Error_Data;
|
|
RETURN__NOT_FINISHED__FOR_FINISH;
|
|
}
|
|
|
|
bufLimit = src;
|
|
// we will decode only one iteration
|
|
}
|
|
else
|
|
bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
|
|
|
|
p->buf = src;
|
|
|
|
{
|
|
int res = LzmaDec_DecodeReal2(p, dicLimit, bufLimit);
|
|
|
|
SizeT processed = (SizeT)(p->buf - src);
|
|
|
|
if (dummyProcessed < 0)
|
|
{
|
|
if (processed > inSize)
|
|
break;
|
|
}
|
|
else if ((unsigned)dummyProcessed != processed)
|
|
break;
|
|
|
|
src += processed;
|
|
inSize -= processed;
|
|
(*srcLen) += processed;
|
|
|
|
if (res != SZ_OK)
|
|
{
|
|
p->remainLen = kMatchSpecLen_Error_Data;
|
|
return SZ_ERROR_DATA;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
{
|
|
// we have some data in (p->tempBuf)
|
|
// in strict mode: tempBufSize is not enough for one Symbol decoding.
|
|
// in relaxed mode: tempBufSize not larger than required for one Symbol decoding.
|
|
|
|
unsigned rem = p->tempBufSize;
|
|
unsigned ahead = 0;
|
|
int dummyProcessed = -1;
|
|
|
|
while (rem < LZMA_REQUIRED_INPUT_MAX && ahead < inSize)
|
|
p->tempBuf[rem++] = src[ahead++];
|
|
|
|
// ahead - the size of new data copied from (src) to (p->tempBuf)
|
|
// rem - the size of temp buffer including new data from (src)
|
|
|
|
if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
|
|
{
|
|
const Byte *bufOut = p->tempBuf + rem;
|
|
|
|
ELzmaDummy dummyRes = LzmaDec_TryDummy(p, p->tempBuf, &bufOut);
|
|
|
|
if (dummyRes == DUMMY_INPUT_EOF)
|
|
{
|
|
if (rem >= LZMA_REQUIRED_INPUT_MAX)
|
|
break;
|
|
p->tempBufSize = rem;
|
|
(*srcLen) += (SizeT)ahead;
|
|
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
|
|
return SZ_OK;
|
|
}
|
|
|
|
dummyProcessed = (int)(bufOut - p->tempBuf);
|
|
|
|
if ((unsigned)dummyProcessed < p->tempBufSize)
|
|
break;
|
|
|
|
if (checkEndMarkNow && !IS_DUMMY_END_MARKER_POSSIBLE(dummyRes))
|
|
{
|
|
(*srcLen) += (unsigned)dummyProcessed - p->tempBufSize;
|
|
p->tempBufSize = (unsigned)dummyProcessed;
|
|
// p->remainLen = kMatchSpecLen_Error_Data;
|
|
RETURN__NOT_FINISHED__FOR_FINISH;
|
|
}
|
|
}
|
|
|
|
p->buf = p->tempBuf;
|
|
|
|
{
|
|
// we decode one symbol from (p->tempBuf) here, so the (bufLimit) is equal to (p->buf)
|
|
int res = LzmaDec_DecodeReal2(p, dicLimit, p->buf);
|
|
|
|
SizeT processed = (SizeT)(p->buf - p->tempBuf);
|
|
rem = p->tempBufSize;
|
|
|
|
if (dummyProcessed < 0)
|
|
{
|
|
if (processed > LZMA_REQUIRED_INPUT_MAX)
|
|
break;
|
|
if (processed < rem)
|
|
break;
|
|
}
|
|
else if ((unsigned)dummyProcessed != processed)
|
|
break;
|
|
|
|
processed -= rem;
|
|
|
|
src += processed;
|
|
inSize -= processed;
|
|
(*srcLen) += processed;
|
|
p->tempBufSize = 0;
|
|
|
|
if (res != SZ_OK)
|
|
{
|
|
p->remainLen = kMatchSpecLen_Error_Data;
|
|
return SZ_ERROR_DATA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Some unexpected error: internal error of code, memory corruption or hardware failure */
|
|
p->remainLen = kMatchSpecLen_Error_Fail;
|
|
return SZ_ERROR_FAIL;
|
|
}
|
|
|
|
|
|
|
|
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
|
|
{
|
|
SizeT outSize = *destLen;
|
|
SizeT inSize = *srcLen;
|
|
*srcLen = *destLen = 0;
|
|
for (;;)
|
|
{
|
|
SizeT inSizeCur = inSize, outSizeCur, dicPos;
|
|
ELzmaFinishMode curFinishMode;
|
|
SRes res;
|
|
if (p->dicPos == p->dicBufSize)
|
|
p->dicPos = 0;
|
|
dicPos = p->dicPos;
|
|
if (outSize > p->dicBufSize - dicPos)
|
|
{
|
|
outSizeCur = p->dicBufSize;
|
|
curFinishMode = LZMA_FINISH_ANY;
|
|
}
|
|
else
|
|
{
|
|
outSizeCur = dicPos + outSize;
|
|
curFinishMode = finishMode;
|
|
}
|
|
|
|
res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
|
|
src += inSizeCur;
|
|
inSize -= inSizeCur;
|
|
*srcLen += inSizeCur;
|
|
outSizeCur = p->dicPos - dicPos;
|
|
memcpy(dest, p->dic + dicPos, outSizeCur);
|
|
dest += outSizeCur;
|
|
outSize -= outSizeCur;
|
|
*destLen += outSizeCur;
|
|
if (res != 0)
|
|
return res;
|
|
if (outSizeCur == 0 || outSize == 0)
|
|
return SZ_OK;
|
|
}
|
|
}
|
|
|
|
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc)
|
|
{
|
|
ISzAlloc_Free(alloc, p->probs);
|
|
p->probs = NULL;
|
|
}
|
|
|
|
static void LzmaDec_FreeDict(CLzmaDec *p, ISzAllocPtr alloc)
|
|
{
|
|
ISzAlloc_Free(alloc, p->dic);
|
|
p->dic = NULL;
|
|
}
|
|
|
|
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc)
|
|
{
|
|
LzmaDec_FreeProbs(p, alloc);
|
|
LzmaDec_FreeDict(p, alloc);
|
|
}
|
|
|
|
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
|
|
{
|
|
UInt32 dicSize;
|
|
Byte d;
|
|
|
|
if (size < LZMA_PROPS_SIZE)
|
|
return SZ_ERROR_UNSUPPORTED;
|
|
else
|
|
dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
|
|
|
|
if (dicSize < LZMA_DIC_MIN)
|
|
dicSize = LZMA_DIC_MIN;
|
|
p->dicSize = dicSize;
|
|
|
|
d = data[0];
|
|
if (d >= (9 * 5 * 5))
|
|
return SZ_ERROR_UNSUPPORTED;
|
|
|
|
p->lc = (Byte)(d % 9);
|
|
d /= 9;
|
|
p->pb = (Byte)(d / 5);
|
|
p->lp = (Byte)(d % 5);
|
|
|
|
return SZ_OK;
|
|
}
|
|
|
|
static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAllocPtr alloc)
|
|
{
|
|
UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
|
|
if (!p->probs || numProbs != p->numProbs)
|
|
{
|
|
LzmaDec_FreeProbs(p, alloc);
|
|
p->probs = (CLzmaProb *)ISzAlloc_Alloc(alloc, numProbs * sizeof(CLzmaProb));
|
|
if (!p->probs)
|
|
return SZ_ERROR_MEM;
|
|
p->probs_1664 = p->probs + 1664;
|
|
p->numProbs = numProbs;
|
|
}
|
|
return SZ_OK;
|
|
}
|
|
|
|
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
|
|
{
|
|
CLzmaProps propNew;
|
|
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
|
|
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
|
|
p->prop = propNew;
|
|
return SZ_OK;
|
|
}
|
|
|
|
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc)
|
|
{
|
|
CLzmaProps propNew;
|
|
SizeT dicBufSize;
|
|
RINOK(LzmaProps_Decode(&propNew, props, propsSize));
|
|
RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
|
|
|
|
{
|
|
UInt32 dictSize = propNew.dicSize;
|
|
SizeT mask = ((UInt32)1 << 12) - 1;
|
|
if (dictSize >= ((UInt32)1 << 30)) mask = ((UInt32)1 << 22) - 1;
|
|
else if (dictSize >= ((UInt32)1 << 22)) mask = ((UInt32)1 << 20) - 1;;
|
|
dicBufSize = ((SizeT)dictSize + mask) & ~mask;
|
|
if (dicBufSize < dictSize)
|
|
dicBufSize = dictSize;
|
|
}
|
|
|
|
if (!p->dic || dicBufSize != p->dicBufSize)
|
|
{
|
|
LzmaDec_FreeDict(p, alloc);
|
|
p->dic = (Byte *)ISzAlloc_Alloc(alloc, dicBufSize);
|
|
if (!p->dic)
|
|
{
|
|
LzmaDec_FreeProbs(p, alloc);
|
|
return SZ_ERROR_MEM;
|
|
}
|
|
}
|
|
p->dicBufSize = dicBufSize;
|
|
p->prop = propNew;
|
|
return SZ_OK;
|
|
}
|
|
|
|
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
|
|
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
|
|
ELzmaStatus *status, ISzAllocPtr alloc)
|
|
{
|
|
CLzmaDec p;
|
|
SRes res;
|
|
SizeT outSize = *destLen, inSize = *srcLen;
|
|
*destLen = *srcLen = 0;
|
|
*status = LZMA_STATUS_NOT_SPECIFIED;
|
|
if (inSize < RC_INIT_SIZE)
|
|
return SZ_ERROR_INPUT_EOF;
|
|
LzmaDec_Construct(&p);
|
|
RINOK(LzmaDec_AllocateProbs(&p, propData, propSize, alloc));
|
|
p.dic = dest;
|
|
p.dicBufSize = outSize;
|
|
LzmaDec_Init(&p);
|
|
*srcLen = inSize;
|
|
res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
|
|
*destLen = p.dicPos;
|
|
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
|
|
res = SZ_ERROR_INPUT_EOF;
|
|
LzmaDec_FreeProbs(&p, alloc);
|
|
return res;
|
|
}
|