1
0
mirror of https://github.com/hashcat/hashcat.git synced 2025-01-22 05:31:11 +00:00
hashcat/OpenCL/inc_types.cl
jsteube a673aee037 Very hot commit, continue reading here:
This is a test commit using buffers large enough to handle both passwords and salts up to length 256.
It requires changes to the kernel code, which is not included in here.
It also requires some of the host code to be modified. Before we're going to modify kernel code to support the larger lengths I want to be
sure of:
1. Host code modification is ok (no overflows or underflows)
2. Passwords and Salts are printed correctly to status, outfile, show, left, etc.
3. Performance does not change (or only very minimal)
This is not a patch that supports actual cracking both passwords and salts up to length 256, but it can not fail anyway.
If if it does, there's no reason to continue to add support for both passwords and salts up to length 256.
2017-06-17 17:57:30 +02:00

1555 lines
27 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
typedef uchar u8;
typedef ushort u16;
typedef uint u32;
typedef ulong u64;
typedef u8 u8a __attribute__ ((aligned (8)));
typedef u16 u16a __attribute__ ((aligned (8)));
typedef u32 u32a __attribute__ ((aligned (8)));
typedef u64 u64a __attribute__ ((aligned (8)));
#ifndef NEW_SIMD_CODE
#undef VECT_SIZE
#define VECT_SIZE 1
#endif
#define CONCAT(a, b) a##b
#define VTYPE(type, width) CONCAT(type, width)
#if VECT_SIZE == 1
typedef uchar u8x;
typedef ushort u16x;
typedef uint u32x;
typedef ulong u64x;
#else
typedef VTYPE(uchar, VECT_SIZE) u8x;
typedef VTYPE(ushort, VECT_SIZE) u16x;
typedef VTYPE(uint, VECT_SIZE) u32x;
typedef VTYPE(ulong, VECT_SIZE) u64x;
#endif
inline u32 l32_from_64_S (u64 a)
{
const u32 r = (u32) (a);
return r;
}
inline u32 h32_from_64_S (u64 a)
{
a >>= 32;
const u32 r = (u32) (a);
return r;
}
inline u64 hl32_to_64_S (const u32 a, const u32 b)
{
return as_ulong ((uint2) (b, a));
}
inline u32x l32_from_64 (u64x a)
{
u32x r;
#if VECT_SIZE == 1
r = (u32) a;
#endif
#if VECT_SIZE >= 2
r.s0 = (u32) a.s0;
r.s1 = (u32) a.s1;
#endif
#if VECT_SIZE >= 4
r.s2 = (u32) a.s2;
r.s3 = (u32) a.s3;
#endif
#if VECT_SIZE >= 8
r.s4 = (u32) a.s4;
r.s5 = (u32) a.s5;
r.s6 = (u32) a.s6;
r.s7 = (u32) a.s7;
#endif
#if VECT_SIZE >= 16
r.s8 = (u32) a.s8;
r.s9 = (u32) a.s9;
r.sa = (u32) a.sa;
r.sb = (u32) a.sb;
r.sc = (u32) a.sc;
r.sd = (u32) a.sd;
r.se = (u32) a.se;
r.sf = (u32) a.sf;
#endif
return r;
}
inline u32x h32_from_64 (u64x a)
{
a >>= 32;
u32x r;
#if VECT_SIZE == 1
r = (u32) a;
#endif
#if VECT_SIZE >= 2
r.s0 = (u32) a.s0;
r.s1 = (u32) a.s1;
#endif
#if VECT_SIZE >= 4
r.s2 = (u32) a.s2;
r.s3 = (u32) a.s3;
#endif
#if VECT_SIZE >= 8
r.s4 = (u32) a.s4;
r.s5 = (u32) a.s5;
r.s6 = (u32) a.s6;
r.s7 = (u32) a.s7;
#endif
#if VECT_SIZE >= 16
r.s8 = (u32) a.s8;
r.s9 = (u32) a.s9;
r.sa = (u32) a.sa;
r.sb = (u32) a.sb;
r.sc = (u32) a.sc;
r.sd = (u32) a.sd;
r.se = (u32) a.se;
r.sf = (u32) a.sf;
#endif
return r;
}
inline u64x hl32_to_64 (const u32x a, const u32x b)
{
u64x r;
#if VECT_SIZE == 1
r = as_ulong ((uint2) (b, a));
#endif
#if VECT_SIZE >= 2
r.s0 = as_ulong ((uint2) (b.s0, a.s0));
r.s1 = as_ulong ((uint2) (b.s1, a.s1));
#endif
#if VECT_SIZE >= 4
r.s2 = as_ulong ((uint2) (b.s2, a.s2));
r.s3 = as_ulong ((uint2) (b.s3, a.s3));
#endif
#if VECT_SIZE >= 8
r.s4 = as_ulong ((uint2) (b.s4, a.s4));
r.s5 = as_ulong ((uint2) (b.s5, a.s5));
r.s6 = as_ulong ((uint2) (b.s6, a.s6));
r.s7 = as_ulong ((uint2) (b.s7, a.s7));
#endif
#if VECT_SIZE >= 16
r.s8 = as_ulong ((uint2) (b.s8, a.s8));
r.s9 = as_ulong ((uint2) (b.s9, a.s9));
r.sa = as_ulong ((uint2) (b.sa, a.sa));
r.sb = as_ulong ((uint2) (b.sb, a.sb));
r.sc = as_ulong ((uint2) (b.sc, a.sc));
r.sd = as_ulong ((uint2) (b.sd, a.sd));
r.se = as_ulong ((uint2) (b.se, a.se));
r.sf = as_ulong ((uint2) (b.sf, a.sf));
#endif
return r;
}
#ifdef IS_AMD
inline u32 swap32_S (const u32 v)
{
return (as_uint (as_uchar4 (v).s3210));
}
inline u64 swap64_S (const u64 v)
{
return (as_ulong (as_uchar8 (v).s76543210));
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
const u32 a0 = h32_from_64_S (a);
const u32 a1 = l32_from_64_S (a);
const u32 t0 = (n >= 32) ? amd_bitalign (a0, a1, n - 32) : amd_bitalign (a1, a0, n);
const u32 t1 = (n >= 32) ? amd_bitalign (a1, a0, n - 32) : amd_bitalign (a0, a1, n);
const u64 r = hl32_to_64_S (t0, t1);
return r;
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotr64_S (a, 64 - n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
const u32x a0 = h32_from_64 (a);
const u32x a1 = l32_from_64 (a);
const u32x t0 = (n >= 32) ? amd_bitalign (a0, a1, n - 32) : amd_bitalign (a1, a0, n);
const u32x t1 = (n >= 32) ? amd_bitalign (a1, a0, n - 32) : amd_bitalign (a0, a1, n);
const u64x r = hl32_to_64 (t0, t1);
return r;
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotr64 (a, 64 - n);
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
return amd_bfe (a, b, c);
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
return amd_bfe (a, b, c);
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
return amd_bytealign (a, b, c);
}
#endif
#ifdef IS_NV
inline u32 swap32_S (const u32 v)
{
u32 r;
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(r) : "r"(v));
return r;
}
inline u64 swap64_S (const u64 v)
{
u32 il;
u32 ir;
asm ("mov.b64 {%0, %1}, %2;" : "=r"(il), "=r"(ir) : "l"(v));
u32 tl;
u32 tr;
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(tl) : "r"(il));
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(tr) : "r"(ir));
u64 r;
asm ("mov.b64 %0, {%1, %2};" : "=l"(r) : "r"(tr), "r"(tl));
return r;
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotr64_S (a, 64 - n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x __byte_perm (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if VECT_SIZE == 1
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c) );
#endif
#if VECT_SIZE >= 2
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(a.s0), "r"(b.s0), "r"(c.s0));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(a.s1), "r"(b.s1), "r"(c.s1));
#endif
#if VECT_SIZE >= 4
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(a.s2), "r"(b.s2), "r"(c.s2));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(a.s3), "r"(b.s3), "r"(c.s3));
#endif
#if VECT_SIZE >= 8
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(a.s4), "r"(b.s4), "r"(c.s4));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(a.s5), "r"(b.s5), "r"(c.s5));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(a.s6), "r"(b.s6), "r"(c.s6));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(a.s7), "r"(b.s7), "r"(c.s7));
#endif
#if VECT_SIZE >= 16
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(a.s8), "r"(b.s8), "r"(c.s8));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(a.s9), "r"(b.s9), "r"(c.s9));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(a.sa), "r"(b.sa), "r"(c.sa));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(a.sb), "r"(b.sb), "r"(c.sb));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(a.sc), "r"(b.sc), "r"(c.sc));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(a.sd), "r"(b.sd), "r"(c.sd));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(a.se), "r"(b.se), "r"(c.se));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(a.sf), "r"(b.sf), "r"(c.sf));
#endif
return r;
}
inline u32 __byte_perm_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
return r;
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if VECT_SIZE == 1
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
#endif
#if VECT_SIZE >= 2
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(a.s0), "r"(b.s0), "r"(c.s0));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(a.s1), "r"(b.s1), "r"(c.s1));
#endif
#if VECT_SIZE >= 4
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(a.s2), "r"(b.s2), "r"(c.s2));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(a.s3), "r"(b.s3), "r"(c.s3));
#endif
#if VECT_SIZE >= 8
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(a.s4), "r"(b.s4), "r"(c.s4));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(a.s5), "r"(b.s5), "r"(c.s5));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(a.s6), "r"(b.s6), "r"(c.s6));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(a.s7), "r"(b.s7), "r"(c.s7));
#endif
#if VECT_SIZE >= 16
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(a.s8), "r"(b.s8), "r"(c.s8));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(a.s9), "r"(b.s9), "r"(c.s9));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(a.sa), "r"(b.sa), "r"(c.sa));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(a.sb), "r"(b.sb), "r"(c.sb));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(a.sc), "r"(b.sc), "r"(c.sc));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(a.sd), "r"(b.sd), "r"(c.sd));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(a.se), "r"(b.se), "r"(c.se));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(a.sf), "r"(b.sf), "r"(c.sf));
#endif
return r;
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
return r;
}
inline u32x amd_bytealign (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if CUDA_ARCH >= 350
#if VECT_SIZE == 1
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(b), "r"(a), "r"((c & 3) * 8));
#endif
#if VECT_SIZE >= 2
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(b.s0), "r"(a.s0), "r"((c.s0 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(b.s1), "r"(a.s1), "r"((c.s1 & 3) * 8));
#endif
#if VECT_SIZE >= 4
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(b.s2), "r"(a.s2), "r"((c.s2 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(b.s3), "r"(a.s3), "r"((c.s3 & 3) * 8));
#endif
#if VECT_SIZE >= 8
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(b.s4), "r"(a.s4), "r"((c.s4 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(b.s5), "r"(a.s5), "r"((c.s5 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(b.s6), "r"(a.s6), "r"((c.s6 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(b.s7), "r"(a.s7), "r"((c.s7 & 3) * 8));
#endif
#if VECT_SIZE >= 16
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(b.s8), "r"(a.s8), "r"((c.s8 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(b.s9), "r"(a.s9), "r"((c.s9 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(b.sa), "r"(a.sa), "r"((c.sa & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(b.sb), "r"(a.sb), "r"((c.sb & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(b.sc), "r"(a.sc), "r"((c.sc & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(b.sd), "r"(a.sd), "r"((c.sd & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(b.se), "r"(a.se), "r"((c.se & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(b.sf), "r"(a.sf), "r"((c.sf & 3) * 8));
#endif
#else
r = __byte_perm (b, a, ((u32x) (0x76543210) >> ((c & 3) * 4)) & 0xffff);
#endif
return r;
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
#if CUDA_ARCH >= 350
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(b), "r"(a), "r"((c & 3) * 8));
#else
r = __byte_perm_S (b, a, (0x76543210 >> ((c & 3) * 4)) & 0xffff);
#endif
return r;
}
#endif
#ifdef IS_GENERIC
inline u32 swap32_S (const u32 v)
{
return (as_uint (as_uchar4 (v).s3210));
}
inline u64 swap64_S (const u64 v)
{
return (as_ulong (as_uchar8 (v).s76543210));
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
#define BIT(x) ((u32x) (1u) << (x))
#define BIT_MASK(x) (BIT (x) - 1)
#define BFE(x,y,z) (((x) >> (y)) & BIT_MASK (z))
return BFE (a, b, c);
#undef BIT
#undef BIT_MASK
#undef BFE
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
#define BIT(x) (1u << (x))
#define BIT_MASK(x) (BIT (x) - 1)
#define BFE(x,y,z) (((x) >> (y)) & BIT_MASK (z))
return BFE (a, b, c);
#undef BIT
#undef BIT_MASK
#undef BFE
}
inline u32x amd_bytealign (const u32x a, const u32x b, const u32 c)
{
#if VECT_SIZE == 1
const u64x tmp = ((((u64x) (a)) << 32) | ((u64x) (b))) >> ((c & 3) * 8);
return (u32x) (tmp);
#endif
#if VECT_SIZE == 2
const u64x tmp = ((((u64x) (a.s0, a.s1)) << 32) | ((u64x) (b.s0, b.s1))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1);
#endif
#if VECT_SIZE == 4
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3);
#endif
#if VECT_SIZE == 8
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3, a.s4, a.s5, a.s6, a.s7)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3, b.s4, b.s5, b.s6, b.s7))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3, tmp.s4, tmp.s5, tmp.s6, tmp.s7);
#endif
#if VECT_SIZE == 16
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3, a.s4, a.s5, a.s6, a.s7, a.s8, a.s9, a.sa, a.sb, a.sc, a.sd, a.se, a.sf)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3, b.s4, b.s5, b.s6, b.s7, b.s8, b.s9, b.sa, b.sb, b.sc, b.sd, b.se, b.sf))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3, tmp.s4, tmp.s5, tmp.s6, tmp.s7, tmp.s8, tmp.s9, tmp.sa, tmp.sb, tmp.sc, tmp.sd, tmp.se, tmp.sf);
#endif
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
const u64 tmp = ((((u64) a) << 32) | ((u64) b)) >> ((c & 3) * 8);
return (u32) (tmp);
}
#endif
typedef struct digest
{
u32 digest_buf[DGST_ELEM];
} digest_t;
typedef struct salt
{
u32 salt_buf[64];
u32 salt_buf_pc[64];
u32 salt_len;
u32 salt_len_pc;
u32 salt_iter;
u32 salt_iter2;
u32 salt_sign[2];
u32 keccak_mdlen;
u32 digests_cnt;
u32 digests_done;
u32 digests_offset;
u32 scrypt_N;
u32 scrypt_r;
u32 scrypt_p;
} salt_t;
#define LUKS_STRIPES 4000
typedef enum hc_luks_hash_type
{
HC_LUKS_HASH_TYPE_SHA1 = 1,
HC_LUKS_HASH_TYPE_SHA256 = 2,
HC_LUKS_HASH_TYPE_SHA512 = 3,
HC_LUKS_HASH_TYPE_RIPEMD160 = 4,
HC_LUKS_HASH_TYPE_WHIRLPOOL = 5,
} hc_luks_hash_type_t;
typedef enum hc_luks_key_size
{
HC_LUKS_KEY_SIZE_128 = 128,
HC_LUKS_KEY_SIZE_256 = 256,
HC_LUKS_KEY_SIZE_512 = 512,
} hc_luks_key_size_t;
typedef enum hc_luks_cipher_type
{
HC_LUKS_CIPHER_TYPE_AES = 1,
HC_LUKS_CIPHER_TYPE_SERPENT = 2,
HC_LUKS_CIPHER_TYPE_TWOFISH = 3,
} hc_luks_cipher_type_t;
typedef enum hc_luks_cipher_mode
{
HC_LUKS_CIPHER_MODE_CBC_ESSIV = 1,
HC_LUKS_CIPHER_MODE_CBC_PLAIN = 2,
HC_LUKS_CIPHER_MODE_XTS_PLAIN = 3,
} hc_luks_cipher_mode_t;
typedef struct luks
{
int hash_type; // hc_luks_hash_type_t
int key_size; // hc_luks_key_size_t
int cipher_type; // hc_luks_cipher_type_t
int cipher_mode; // hc_luks_cipher_mode_t
u32 ct_buf[128];
u32 af_src_buf[((HC_LUKS_KEY_SIZE_512 / 8) * LUKS_STRIPES) / 4];
} luks_t;
typedef struct itunes_backup
{
u32 wpky[10];
u32 dpsl[5];
} itunes_backup_t;
typedef struct blake2
{
u64 h[8];
u64 t[2];
u64 f[2];
u32 buflen;
u32 outlen;
u8 last_node;
} blake2_t;
typedef struct chacha20
{
u32 iv[2];
u32 plain[2];
u32 position[2];
u32 offset;
} chacha20_t;
typedef struct pdf
{
int V;
int R;
int P;
int enc_md;
u32 id_buf[8];
u32 u_buf[32];
u32 o_buf[32];
int id_len;
int o_len;
int u_len;
u32 rc4key[2];
u32 rc4data[2];
} pdf_t;
typedef struct wpa
{
u32 pke[25];
u32 eapol[64 + 16];
u16 eapol_len;
u8 message_pair;
int message_pair_chgd;
u8 keyver;
u8 orig_mac_ap[6];
u8 orig_mac_sta[6];
u8 orig_nonce_ap[32];
u8 orig_nonce_sta[32];
u8 essid_len;
u8 essid[32];
u32 keymic[4];
u32 hash[4];
int nonce_compare;
int nonce_error_corrections;
} wpa_t;
typedef struct bitcoin_wallet
{
u32 cry_master_buf[64];
u32 ckey_buf[64];
u32 public_key_buf[64];
u32 cry_master_len;
u32 ckey_len;
u32 public_key_len;
} bitcoin_wallet_t;
typedef struct sip
{
u32 salt_buf[30];
u32 salt_len;
u32 esalt_buf[38];
u32 esalt_len;
} sip_t;
typedef struct androidfde
{
u32 data[384];
} androidfde_t;
typedef struct ikepsk
{
u32 nr_buf[16];
u32 nr_len;
u32 msg_buf[128];
u32 msg_len;
} ikepsk_t;
typedef struct netntlm
{
u32 user_len;
u32 domain_len;
u32 srvchall_len;
u32 clichall_len;
u32 userdomain_buf[64];
u32 chall_buf[256];
} netntlm_t;
typedef struct krb5pa
{
u32 user[16];
u32 realm[16];
u32 salt[32];
u32 timestamp[16];
u32 checksum[4];
} krb5pa_t;
typedef struct krb5tgs
{
u32 account_info[512];
u32 checksum[4];
u32 edata2[2560];
u32 edata2_len;
} krb5tgs_t;
typedef struct tc
{
u32 salt_buf[16];
u32 data_buf[112];
u32 keyfile_buf[16];
u32 signature;
} tc_t;
typedef struct pbkdf2_md5
{
u32 salt_buf[16];
} pbkdf2_md5_t;
typedef struct pbkdf2_sha1
{
u32 salt_buf[16];
} pbkdf2_sha1_t;
typedef struct pbkdf2_sha256
{
u32 salt_buf[16];
} pbkdf2_sha256_t;
typedef struct pbkdf2_sha512
{
u32 salt_buf[32];
} pbkdf2_sha512_t;
typedef struct rakp
{
u32 salt_buf[128];
u32 salt_len;
} rakp_t;
typedef struct cloudkey
{
u32 data_len;
u32 data_buf[512];
} cloudkey_t;
typedef struct office2007
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[5];
u32 keySize;
} office2007_t;
typedef struct office2010
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[8];
} office2010_t;
typedef struct office2013
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[8];
} office2013_t;
typedef struct oldoffice01
{
u32 version;
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[4];
u32 rc4key[2];
} oldoffice01_t;
typedef struct oldoffice34
{
u32 version;
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[5];
u32 rc4key[2];
} oldoffice34_t;
typedef struct pstoken
{
u32 salt_buf[128];
u32 salt_len;
u32 pc_digest[5];
u32 pc_offset;
} pstoken_t;
typedef struct zip2
{
u32 type;
u32 mode;
u32 magic;
u32 salt_len;
u32 salt_buf[4];
u32 verify_bytes;
u32 compress_length;
u32 data_len;
u32 data_buf[2048];
u32 auth_len;
u32 auth_buf[4];
} zip2_t;
typedef struct win8phone
{
u32 salt_buf[32];
} win8phone_t;
typedef struct keepass
{
u32 version;
u32 algorithm;
/* key-file handling */
u32 keyfile_len;
u32 keyfile[8];
u32 final_random_seed[8];
u32 transf_random_seed[8];
u32 enc_iv[4];
u32 contents_hash[8];
/* specific to version 1 */
u32 contents_len;
u32 contents[75000];
/* specific to version 2 */
u32 expected_bytes[8];
} keepass_t;
typedef struct dpapimk
{
u32 version;
u32 context;
u32 SID[32];
u32 SID_len;
u32 SID_offset;
/* here only for possible
forward compatibiliy
*/
// u8 cipher_algo[16];
// u8 hash_algo[16];
u32 iv[4];
u32 contents_len;
u32 contents[128];
} dpapimk_t;
typedef struct jks_sha1
{
u32 checksum[5];
u32 iv[5];
u32 enc_key_buf[4096];
u32 enc_key_len;
u32 der[5];
u32 alias[16];
} jks_sha1_t;
typedef struct ethereum_pbkdf2
{
u32 salt_buf[16];
u32 ciphertext[8];
} ethereum_pbkdf2_t;
typedef struct ethereum_scrypt
{
u32 salt_buf[16];
u32 ciphertext[8];
} ethereum_scrypt_t;
typedef struct pdf14_tmp
{
u32 digest[4];
u32 out[4];
} pdf14_tmp_t;
typedef struct luks_tmp
{
u32 ipad32[8];
u64 ipad64[8];
u32 opad32[8];
u64 opad64[8];
u32 dgst32[32];
u64 dgst64[16];
u32 out32[32];
u64 out64[16];
} luks_tmp_t;
typedef struct pdf17l8_tmp
{
union
{
u32 dgst32[16];
u64 dgst64[8];
};
u32 dgst_len;
u32 W_len;
} pdf17l8_tmp_t;
typedef struct phpass_tmp
{
u32 digest_buf[4];
} phpass_tmp_t;
typedef struct md5crypt_tmp
{
u32 digest_buf[4];
} md5crypt_tmp_t;
typedef struct sha256crypt_tmp
{
u32 alt_result[8];
u32 p_bytes[4];
u32 s_bytes[4];
} sha256crypt_tmp_t;
typedef struct sha512crypt_tmp
{
u64 l_alt_result[8];
u64 l_p_bytes[2];
u64 l_s_bytes[2];
} sha512crypt_tmp_t;
typedef struct wpa_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} wpa_tmp_t;
typedef struct bitcoin_wallet_tmp
{
u64 dgst[8];
} bitcoin_wallet_tmp_t;
typedef struct dcc2_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[4];
} dcc2_tmp_t;
typedef struct bcrypt_tmp
{
u32 E[18];
u32 P[18];
u32 S0[256];
u32 S1[256];
u32 S2[256];
u32 S3[256];
} bcrypt_tmp_t;
typedef struct pwsafe2_tmp
{
u32 digest[2];
u32 P[18];
u32 S0[256];
u32 S1[256];
u32 S2[256];
u32 S3[256];
} pwsafe2_tmp_t;
typedef struct pwsafe3_tmp
{
u32 digest_buf[8];
} pwsafe3_tmp_t;
typedef struct androidpin_tmp
{
u32 digest_buf[5];
} androidpin_tmp_t;
typedef struct androidfde_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} androidfde_tmp_t;
typedef struct tc_tmp
{
u32 ipad[16];
u32 opad[16];
u32 dgst[64];
u32 out[64];
} tc_tmp_t;
typedef struct tc64_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[32];
u64 out[32];
} tc64_tmp_t;
typedef struct pbkdf1_sha1_tmp
{
// pbkdf1-sha1 is limited to 160 bits
u32 ipad[5];
u32 opad[5];
u32 out[5];
} pbkdf1_sha1_tmp_t;
typedef struct pbkdf2_md5_tmp
{
u32 ipad[4];
u32 opad[4];
u32 dgst[32];
u32 out[32];
} pbkdf2_md5_tmp_t;
typedef struct pbkdf2_sha1_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[32];
u32 out[32];
} pbkdf2_sha1_tmp_t;
typedef struct pbkdf2_sha256_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[32];
u32 out[32];
} pbkdf2_sha256_tmp_t;
typedef struct pbkdf2_sha512_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
} pbkdf2_sha512_tmp_t;
typedef struct ecryptfs_tmp
{
u64 out[8];
} ecryptfs_tmp_t;
typedef struct oraclet_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
} oraclet_tmp_t;
typedef struct agilekey_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} agilekey_tmp_t;
typedef struct mywallet_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst1[5];
u32 out1[5];
u32 dgst2[5];
u32 out2[5];
} mywallet_tmp_t;
typedef struct sha1aix_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} sha1aix_tmp_t;
typedef struct sha256aix_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} sha256aix_tmp_t;
typedef struct sha512aix_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[8];
u64 out[8];
} sha512aix_tmp_t;
typedef struct lastpass_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} lastpass_tmp_t;
typedef struct drupal7_tmp
{
u64 digest_buf[8];
} drupal7_tmp_t;
typedef struct lotus8_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} lotus8_tmp_t;
typedef struct office2007_tmp
{
u32 out[5];
} office2007_tmp_t;
typedef struct office2010_tmp
{
u32 out[5];
} office2010_tmp_t;
typedef struct office2013_tmp
{
u64 out[8];
} office2013_tmp_t;
typedef struct saph_sha1_tmp
{
u32 digest_buf[5];
} saph_sha1_tmp_t;
typedef struct seven_zip_tmp
{
u32 block[16];
u32 dgst[8];
u32 block_len;
u32 final_len;
} seven_zip_tmp_t;
typedef struct axcrypt_tmp
{
u32 KEK[4];
u32 lsb[4];
u32 cipher[4];
} axcrypt_tmp_t;
typedef struct keepass_tmp
{
u32 tmp_digest[8];
} keepass_tmp_t;
typedef struct dpapimk_tmp
{
/* dedicated to hmac-sha1 */
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
u32 userKey[5];
/* dedicated to hmac-sha512 */
u64 ipad64[8];
u64 opad64[8];
u64 dgst64[16];
u64 out64[16];
} dpapimk_tmp_t;
typedef struct bsdicrypt_tmp
{
u32 Kc[16];
u32 Kd[16];
u32 iv[2];
} bsdicrypt_tmp_t;
typedef struct rar3_tmp
{
u32 dgst[17][5];
} rar3_tmp_t;
typedef struct
{
u32 ukey[8];
u32 hook_success;
} seven_zip_hook_t;
typedef struct cram_md5
{
u32 user[16];
} cram_md5_t;
typedef struct
{
u32 key;
u64 val;
} hcstat_table_t;
typedef struct
{
u32 cs_buf[0x100];
u32 cs_len;
} cs_t;
typedef struct
{
u32 cmds[32];
} kernel_rule_t;
typedef struct pw
{
u32 i[64];
u32 pw_len;
u32 alignment_placeholder_1;
u32 alignment_placeholder_2;
u32 alignment_placeholder_3;
} pw_t;
typedef struct bf
{
u32 i;
} bf_t;
typedef struct comb
{
u32 i[64];
u32 pw_len;
} comb_t;
typedef struct bs_word
{
u32 b[32];
} bs_word_t;
typedef struct
{
u32 salt_pos;
u32 digest_pos;
u32 hash_pos;
u32 gidvid;
u32 il_pos;
} plain_t;
typedef struct
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} scrypt_tmp_t;
typedef enum combinator_mode
{
COMBINATOR_MODE_BASE_LEFT = 10001,
COMBINATOR_MODE_BASE_RIGHT = 10002
} combinator_mode_t;