mirror of
https://github.com/hashcat/hashcat.git
synced 2024-11-27 02:18:21 +00:00
6a5b0c821e
Contains a kernel for the latest ODF 1.2 encryption implemented in LibreOffice. The algorithm uses a SHA-256 checksum, a PBKDF2-HMAC-SHA1 key derivation with 100000 iterations and key stretching and AES-CBC encryption. Valid hashes can be extracted with the libreoffice2john.py script, available from the John the Ripper Jumbo repository at https://github.com/magnumripper/JohnTheRipper/blob/bleeding-jumbo/run/libreoffice2john.py You have to remove the filename suffix at the end of the hash before passing it to hashcat. Also see 'hashcat -m18400 --example-hashes'. You can leave the filename prefix if you use the --username option to process those hashes. - Add hash-mode 18400 (Open Document Format (ODF) 1.2 (SHA-256, AES)) - Tests: add hash-mode 18400 (Open Document Format (ODF) 1.2 (SHA-256, AES))
453 lines
10 KiB
Common Lisp
453 lines
10 KiB
Common Lisp
/**
|
|
* Author......: See docs/credits.txt
|
|
* License.....: MIT
|
|
*/
|
|
|
|
#define NEW_SIMD_CODE
|
|
|
|
#include "inc_vendor.cl"
|
|
#include "inc_hash_constants.h"
|
|
#include "inc_hash_functions.cl"
|
|
#include "inc_types.cl"
|
|
#include "inc_common.cl"
|
|
#include "inc_simd.cl"
|
|
#include "inc_hash_sha1.cl"
|
|
#include "inc_hash_sha256.cl"
|
|
#include "inc_cipher_aes.cl"
|
|
|
|
#define COMPARE_S "inc_comp_single.cl"
|
|
#define COMPARE_M "inc_comp_multi.cl"
|
|
|
|
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
|
|
{
|
|
digest[0] = ipad[0];
|
|
digest[1] = ipad[1];
|
|
digest[2] = ipad[2];
|
|
digest[3] = ipad[3];
|
|
digest[4] = ipad[4];
|
|
|
|
sha1_transform_vector (w0, w1, w2, w3, digest);
|
|
|
|
w0[0] = digest[0];
|
|
w0[1] = digest[1];
|
|
w0[2] = digest[2];
|
|
w0[3] = digest[3];
|
|
w1[0] = digest[4];
|
|
w1[1] = 0x80000000;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = (64 + 20) * 8;
|
|
|
|
digest[0] = opad[0];
|
|
digest[1] = opad[1];
|
|
digest[2] = opad[2];
|
|
digest[3] = opad[3];
|
|
digest[4] = opad[4];
|
|
|
|
sha1_transform_vector (w0, w1, w2, w3, digest);
|
|
}
|
|
|
|
__kernel void m18400_init (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
|
|
{
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
sha256_ctx_t sha256_ctx;
|
|
|
|
sha256_init (&sha256_ctx);
|
|
|
|
sha256_update_global_swap (&sha256_ctx, pws[gid].i, pws[gid].pw_len);
|
|
|
|
sha256_final (&sha256_ctx);
|
|
|
|
// hmac key = hashed passphrase
|
|
u32 k0[4];
|
|
u32 k1[4];
|
|
u32 k2[4];
|
|
u32 k3[4];
|
|
|
|
k0[0] = sha256_ctx.h[0];
|
|
k0[1] = sha256_ctx.h[1];
|
|
k0[2] = sha256_ctx.h[2];
|
|
k0[3] = sha256_ctx.h[3];
|
|
k1[0] = sha256_ctx.h[4];
|
|
k1[1] = sha256_ctx.h[5];
|
|
k1[2] = sha256_ctx.h[6];
|
|
k1[3] = sha256_ctx.h[7];
|
|
k2[0] = 0;
|
|
k2[1] = 0;
|
|
k2[2] = 0;
|
|
k2[3] = 0;
|
|
k3[0] = 0;
|
|
k3[1] = 0;
|
|
k3[2] = 0;
|
|
k3[3] = 0;
|
|
|
|
// hmac message = salt
|
|
u32 m0[4];
|
|
u32 m1[4];
|
|
u32 m2[4];
|
|
u32 m3[4];
|
|
|
|
m0[0] = swap32_S (salt_bufs[digests_offset].salt_buf[0]);
|
|
m0[1] = swap32_S (salt_bufs[digests_offset].salt_buf[1]);
|
|
m0[2] = swap32_S (salt_bufs[digests_offset].salt_buf[2]);
|
|
m0[3] = swap32_S (salt_bufs[digests_offset].salt_buf[3]);
|
|
m1[0] = 0;
|
|
m1[1] = 0;
|
|
m1[2] = 0;
|
|
m1[3] = 0;
|
|
m2[0] = 0;
|
|
m2[1] = 0;
|
|
m2[2] = 0;
|
|
m2[3] = 0;
|
|
m3[0] = 0;
|
|
m3[1] = 0;
|
|
m3[2] = 0;
|
|
m3[3] = 0;
|
|
|
|
sha1_hmac_ctx_t sha1_hmac_ctx;
|
|
|
|
sha1_hmac_init_64 (&sha1_hmac_ctx, k0, k1, k2, k3);
|
|
|
|
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
|
|
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
|
|
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
|
|
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
|
|
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
|
|
|
|
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
|
|
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
|
|
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
|
|
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
|
|
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
|
|
|
|
// first pbkdf iteration; key stretching
|
|
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
|
|
{
|
|
m1[0] = j;
|
|
|
|
sha1_hmac_ctx_t sha1_hmac_ctx_loop = sha1_hmac_ctx;
|
|
|
|
sha1_hmac_update_64 (&sha1_hmac_ctx_loop, m0, m1, m2, m3, 20);
|
|
|
|
sha1_hmac_final (&sha1_hmac_ctx_loop);
|
|
|
|
tmps[gid].dgst[i + 0] = sha1_hmac_ctx_loop.opad.h[0];
|
|
tmps[gid].dgst[i + 1] = sha1_hmac_ctx_loop.opad.h[1];
|
|
tmps[gid].dgst[i + 2] = sha1_hmac_ctx_loop.opad.h[2];
|
|
tmps[gid].dgst[i + 3] = sha1_hmac_ctx_loop.opad.h[3];
|
|
tmps[gid].dgst[i + 4] = sha1_hmac_ctx_loop.opad.h[4];
|
|
|
|
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
|
|
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
|
|
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
|
|
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
|
|
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
|
|
}
|
|
}
|
|
|
|
__kernel void m18400_loop (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
|
|
if ((gid * VECT_SIZE) >= gid_max) return;
|
|
|
|
u32x ipad[5];
|
|
u32x opad[5];
|
|
|
|
ipad[0] = packv (tmps, ipad, gid, 0);
|
|
ipad[1] = packv (tmps, ipad, gid, 1);
|
|
ipad[2] = packv (tmps, ipad, gid, 2);
|
|
ipad[3] = packv (tmps, ipad, gid, 3);
|
|
ipad[4] = packv (tmps, ipad, gid, 4);
|
|
|
|
opad[0] = packv (tmps, opad, gid, 0);
|
|
opad[1] = packv (tmps, opad, gid, 1);
|
|
opad[2] = packv (tmps, opad, gid, 2);
|
|
opad[3] = packv (tmps, opad, gid, 3);
|
|
opad[4] = packv (tmps, opad, gid, 4);
|
|
|
|
// key stretching
|
|
for (u32 i = 0; i < 8; i += 5)
|
|
{
|
|
u32x dgst[5];
|
|
u32x out[5];
|
|
|
|
dgst[0] = packv (tmps, dgst, gid, i + 0);
|
|
dgst[1] = packv (tmps, dgst, gid, i + 1);
|
|
dgst[2] = packv (tmps, dgst, gid, i + 2);
|
|
dgst[3] = packv (tmps, dgst, gid, i + 3);
|
|
dgst[4] = packv (tmps, dgst, gid, i + 4);
|
|
|
|
out[0] = packv (tmps, out, gid, i + 0);
|
|
out[1] = packv (tmps, out, gid, i + 1);
|
|
out[2] = packv (tmps, out, gid, i + 2);
|
|
out[3] = packv (tmps, out, gid, i + 3);
|
|
out[4] = packv (tmps, out, gid, i + 4);
|
|
|
|
for (u32 j = 0; j < loop_cnt; j++)
|
|
{
|
|
u32x w0[4];
|
|
u32x w1[4];
|
|
u32x w2[4];
|
|
u32x w3[4];
|
|
|
|
w0[0] = dgst[0];
|
|
w0[1] = dgst[1];
|
|
w0[2] = dgst[2];
|
|
w0[3] = dgst[3];
|
|
w1[0] = dgst[4];
|
|
w1[1] = 0x80000000;
|
|
w1[2] = 0;
|
|
w1[3] = 0;
|
|
w2[0] = 0;
|
|
w2[1] = 0;
|
|
w2[2] = 0;
|
|
w2[3] = 0;
|
|
w3[0] = 0;
|
|
w3[1] = 0;
|
|
w3[2] = 0;
|
|
w3[3] = (64 + 20) * 8;
|
|
|
|
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
|
|
|
|
out[0] ^= dgst[0];
|
|
out[1] ^= dgst[1];
|
|
out[2] ^= dgst[2];
|
|
out[3] ^= dgst[3];
|
|
out[4] ^= dgst[4];
|
|
}
|
|
|
|
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
|
|
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
|
|
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
|
|
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
|
|
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
|
|
|
|
unpackv (tmps, out, gid, i + 0, out[0]);
|
|
unpackv (tmps, out, gid, i + 1, out[1]);
|
|
unpackv (tmps, out, gid, i + 2, out[2]);
|
|
unpackv (tmps, out, gid, i + 3, out[3]);
|
|
unpackv (tmps, out, gid, i + 4, out[4]);
|
|
}
|
|
}
|
|
|
|
__kernel void m18400_comp (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
|
|
{
|
|
const u64 gid = get_global_id (0);
|
|
const u64 lid = get_local_id (0);
|
|
const u64 lsz = get_local_size (0);
|
|
|
|
/**
|
|
* aes shared
|
|
*/
|
|
|
|
#ifdef REAL_SHM
|
|
|
|
__local u32 s_td0[256];
|
|
__local u32 s_td1[256];
|
|
__local u32 s_td2[256];
|
|
__local u32 s_td3[256];
|
|
__local u32 s_td4[256];
|
|
|
|
__local u32 s_te0[256];
|
|
__local u32 s_te1[256];
|
|
__local u32 s_te2[256];
|
|
__local u32 s_te3[256];
|
|
__local u32 s_te4[256];
|
|
|
|
for (MAYBE_VOLATILE u32 i = lid; i < 256; i += lsz)
|
|
{
|
|
s_td0[i] = td0[i];
|
|
s_td1[i] = td1[i];
|
|
s_td2[i] = td2[i];
|
|
s_td3[i] = td3[i];
|
|
s_td4[i] = td4[i];
|
|
|
|
s_te0[i] = te0[i];
|
|
s_te1[i] = te1[i];
|
|
s_te2[i] = te2[i];
|
|
s_te3[i] = te3[i];
|
|
s_te4[i] = te4[i];
|
|
}
|
|
|
|
barrier (CLK_LOCAL_MEM_FENCE);
|
|
|
|
#else
|
|
|
|
__constant u32a *s_td0 = td0;
|
|
__constant u32a *s_td1 = td1;
|
|
__constant u32a *s_td2 = td2;
|
|
__constant u32a *s_td3 = td3;
|
|
__constant u32a *s_td4 = td4;
|
|
|
|
__constant u32a *s_te0 = te0;
|
|
__constant u32a *s_te1 = te1;
|
|
__constant u32a *s_te2 = te2;
|
|
__constant u32a *s_te3 = te3;
|
|
__constant u32a *s_te4 = te4;
|
|
|
|
#endif
|
|
|
|
if (gid >= gid_max) return;
|
|
|
|
/**
|
|
* base
|
|
*/
|
|
|
|
u32 ukey[8];
|
|
|
|
ukey[0] = swap32_S (tmps[gid].out[0]);
|
|
ukey[1] = swap32_S (tmps[gid].out[1]);
|
|
ukey[2] = swap32_S (tmps[gid].out[2]);
|
|
ukey[3] = swap32_S (tmps[gid].out[3]);
|
|
ukey[4] = swap32_S (tmps[gid].out[4]);
|
|
ukey[5] = swap32_S (tmps[gid].out[5]);
|
|
ukey[6] = swap32_S (tmps[gid].out[6]);
|
|
ukey[7] = swap32_S (tmps[gid].out[7]);
|
|
|
|
u32 ks[60];
|
|
|
|
aes256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_te4, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
__global const odf12_t *es = &esalt_bufs[digests_offset];
|
|
|
|
u32 iv[4];
|
|
|
|
iv[0] = es->iv[0];
|
|
iv[1] = es->iv[1];
|
|
iv[2] = es->iv[2];
|
|
iv[3] = es->iv[3];
|
|
|
|
u32 ct[4];
|
|
|
|
u32 pt1[4];
|
|
u32 pt2[4];
|
|
u32 pt3[4];
|
|
u32 pt4[4];
|
|
|
|
sha256_ctx_t sha256_ctx;
|
|
|
|
sha256_init (&sha256_ctx);
|
|
|
|
// decrypt aes-cbc and calculate plaintext checksum at the same time
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
const int i16 = i * 16;
|
|
|
|
ct[0] = es->encrypted_data[i16 + 0];
|
|
ct[1] = es->encrypted_data[i16 + 1];
|
|
ct[2] = es->encrypted_data[i16 + 2];
|
|
ct[3] = es->encrypted_data[i16 + 3];
|
|
|
|
aes256_decrypt (ks, ct, pt1, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
pt1[0] ^= iv[0];
|
|
pt1[1] ^= iv[1];
|
|
pt1[2] ^= iv[2];
|
|
pt1[3] ^= iv[3];
|
|
|
|
iv[0] = ct[0];
|
|
iv[1] = ct[1];
|
|
iv[2] = ct[2];
|
|
iv[3] = ct[3];
|
|
|
|
ct[0] = es->encrypted_data[i16 + 4];
|
|
ct[1] = es->encrypted_data[i16 + 5];
|
|
ct[2] = es->encrypted_data[i16 + 6];
|
|
ct[3] = es->encrypted_data[i16 + 7];
|
|
|
|
aes256_decrypt (ks, ct, pt2, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
pt2[0] ^= iv[0];
|
|
pt2[1] ^= iv[1];
|
|
pt2[2] ^= iv[2];
|
|
pt2[3] ^= iv[3];
|
|
|
|
iv[0] = ct[0];
|
|
iv[1] = ct[1];
|
|
iv[2] = ct[2];
|
|
iv[3] = ct[3];
|
|
|
|
ct[0] = es->encrypted_data[i16 + 8];
|
|
ct[1] = es->encrypted_data[i16 + 9];
|
|
ct[2] = es->encrypted_data[i16 + 10];
|
|
ct[3] = es->encrypted_data[i16 + 11];
|
|
|
|
aes256_decrypt (ks, ct, pt3, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
pt3[0] ^= iv[0];
|
|
pt3[1] ^= iv[1];
|
|
pt3[2] ^= iv[2];
|
|
pt3[3] ^= iv[3];
|
|
|
|
iv[0] = ct[0];
|
|
iv[1] = ct[1];
|
|
iv[2] = ct[2];
|
|
iv[3] = ct[3];
|
|
|
|
ct[0] = es->encrypted_data[i16 + 12];
|
|
ct[1] = es->encrypted_data[i16 + 13];
|
|
ct[2] = es->encrypted_data[i16 + 14];
|
|
ct[3] = es->encrypted_data[i16 + 15];
|
|
|
|
aes256_decrypt (ks, ct, pt4, s_td0, s_td1, s_td2, s_td3, s_td4);
|
|
|
|
pt4[0] ^= iv[0];
|
|
pt4[1] ^= iv[1];
|
|
pt4[2] ^= iv[2];
|
|
pt4[3] ^= iv[3];
|
|
|
|
iv[0] = ct[0];
|
|
iv[1] = ct[1];
|
|
iv[2] = ct[2];
|
|
iv[3] = ct[3];
|
|
|
|
pt1[0] = swap32_S (pt1[0]);
|
|
pt1[1] = swap32_S (pt1[1]);
|
|
pt1[2] = swap32_S (pt1[2]);
|
|
pt1[3] = swap32_S (pt1[3]);
|
|
|
|
pt2[0] = swap32_S (pt2[0]);
|
|
pt2[1] = swap32_S (pt2[1]);
|
|
pt2[2] = swap32_S (pt2[2]);
|
|
pt2[3] = swap32_S (pt2[3]);
|
|
|
|
pt3[0] = swap32_S (pt3[0]);
|
|
pt3[1] = swap32_S (pt3[1]);
|
|
pt3[2] = swap32_S (pt3[2]);
|
|
pt3[3] = swap32_S (pt3[3]);
|
|
|
|
pt4[0] = swap32_S (pt4[0]);
|
|
pt4[1] = swap32_S (pt4[1]);
|
|
pt4[2] = swap32_S (pt4[2]);
|
|
pt4[3] = swap32_S (pt4[3]);
|
|
|
|
sha256_update_64 (&sha256_ctx, pt1, pt2, pt3, pt4, 64);
|
|
}
|
|
|
|
sha256_final (&sha256_ctx);
|
|
|
|
const u32 r0 = swap32_S (sha256_ctx.h[0]);
|
|
const u32 r1 = swap32_S (sha256_ctx.h[1]);
|
|
const u32 r2 = swap32_S (sha256_ctx.h[2]);
|
|
const u32 r3 = swap32_S (sha256_ctx.h[3]);
|
|
|
|
#define il_pos 0
|
|
|
|
#include COMPARE_M
|
|
}
|