1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-01 04:58:57 +00:00
hashcat/OpenCL/m18100_a3-pure.cl
Jens Steube 04d5e5a119 New Attack-Mode: Association Attack. Like JtR's single mode. Very early
stage. See hashcat Forum for detailed writeup.
2020-09-29 15:56:32 +02:00

206 lines
5.4 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
//#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#endif
KERNEL_FQ void m18100_mxx (KERN_ATTR_VECTOR ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
const u32 salt_len = 8;
u32x s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS].salt_buf[idx]);
}
/**
* loop
*/
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha1_hmac_ctx_vector_t ctx;
sha1_hmac_init_vector (&ctx, w, pw_len);
sha1_hmac_update_vector (&ctx, s, salt_len);
sha1_hmac_final_vector (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
}
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
COMPARE_M_SIMD (otp_code, 0, 0, 0);
}
}
KERNEL_FQ void m18100_sxx (KERN_ATTR_VECTOR ())
{
/**
* modifier
*/
const u64 lid = get_local_id (0);
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
/**
* digest
*/
const u32 search[4] =
{
digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R0],
digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R1],
digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R2],
digests_buf[DIGESTS_OFFSET].digest_buf[DGST_R3]
};
/**
* base
*/
const u32 pw_len = pws[gid].pw_len;
u32x w[64] = { 0 };
for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
{
w[idx] = pws[gid].i[idx];
}
const u32 salt_len = 8;
u32x s[64] = { 0 };
for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
{
s[idx] = hc_swap32_S (salt_bufs[SALT_POS].salt_buf[idx]);
}
/**
* loop
*/
u32x w0l = w[0];
for (u32 il_pos = 0; il_pos < il_cnt; il_pos += VECT_SIZE)
{
const u32x w0r = words_buf_r[il_pos / VECT_SIZE];
const u32x w0 = w0l | w0r;
w[0] = w0;
sha1_hmac_ctx_vector_t ctx;
sha1_hmac_init_vector (&ctx, w, pw_len);
sha1_hmac_update_vector (&ctx, s, salt_len);
sha1_hmac_final_vector (&ctx);
// initialize a buffer for the otp code
u32 otp_code = 0;
// grab 4 consecutive bytes of the hash, starting at offset
switch (ctx.opad.h[4] & 15)
{
case 0: otp_code = ctx.opad.h[0]; break;
case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break;
case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break;
case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break;
case 4: otp_code = ctx.opad.h[1]; break;
case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break;
case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break;
case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break;
case 8: otp_code = ctx.opad.h[2]; break;
case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break;
case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break;
case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break;
case 12: otp_code = ctx.opad.h[3]; break;
case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break;
case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break;
case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break;
}
// take only the lower 31 bits
otp_code &= 0x7fffffff;
// we want to generate only 6 digits of code
otp_code %= 1000000;
COMPARE_S_SIMD (otp_code, 0, 0, 0);
}
}