You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
hashcat/OpenCL/m18400-pure.cl

414 lines
9.5 KiB

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#endif
#define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl)
#define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl)
typedef struct odf12_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} odf12_tmp_t;
typedef struct odf12
{
u32 iterations;
u32 iv[4];
u32 checksum[8];
u32 encrypted_data[256];
int encrypted_len;
} odf12_t;
DECLSPEC void hmac_sha1_run_V (PRIVATE_AS u32x *w0, PRIVATE_AS u32x *w1, PRIVATE_AS u32x *w2, PRIVATE_AS u32x *w3, PRIVATE_AS u32x *ipad, PRIVATE_AS u32x *opad, PRIVATE_AS u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m18400_init (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
sha256_ctx_t sha256_ctx;
sha256_init (&sha256_ctx);
sha256_update_global_swap (&sha256_ctx, pws[gid].i, pws[gid].pw_len);
sha256_final (&sha256_ctx);
// hmac key = hashed passphrase
u32 k0[4];
u32 k1[4];
u32 k2[4];
u32 k3[4];
k0[0] = sha256_ctx.h[0];
k0[1] = sha256_ctx.h[1];
k0[2] = sha256_ctx.h[2];
k0[3] = sha256_ctx.h[3];
k1[0] = sha256_ctx.h[4];
k1[1] = sha256_ctx.h[5];
k1[2] = sha256_ctx.h[6];
k1[3] = sha256_ctx.h[7];
k2[0] = 0;
k2[1] = 0;
k2[2] = 0;
k2[3] = 0;
k3[0] = 0;
k3[1] = 0;
k3[2] = 0;
k3[3] = 0;
// hmac message = salt
u32 m0[4];
u32 m1[4];
u32 m2[4];
u32 m3[4];
m0[0] = hc_swap32_S (salt_bufs[DIGESTS_OFFSET_HOST].salt_buf[0]);
m0[1] = hc_swap32_S (salt_bufs[DIGESTS_OFFSET_HOST].salt_buf[1]);
m0[2] = hc_swap32_S (salt_bufs[DIGESTS_OFFSET_HOST].salt_buf[2]);
m0[3] = hc_swap32_S (salt_bufs[DIGESTS_OFFSET_HOST].salt_buf[3]);
m1[0] = 0;
m1[1] = 0;
m1[2] = 0;
m1[3] = 0;
m2[0] = 0;
m2[1] = 0;
m2[2] = 0;
m2[3] = 0;
m3[0] = 0;
m3[1] = 0;
m3[2] = 0;
m3[3] = 0;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_64 (&sha1_hmac_ctx, k0, k1, k2, k3);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
// first pbkdf iteration; key stretching
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
{
m1[0] = j;
sha1_hmac_ctx_t sha1_hmac_ctx_loop = sha1_hmac_ctx;
sha1_hmac_update_64 (&sha1_hmac_ctx_loop, m0, m1, m2, m3, 20);
sha1_hmac_final (&sha1_hmac_ctx_loop);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx_loop.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx_loop.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx_loop.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx_loop.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx_loop.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m18400_loop (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= GID_CNT) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
// key stretching
for (u32 i = 0; i < 8; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < LOOP_CNT; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m18400_comp (KERN_ATTR_TMPS_ESALT (odf12_tmp_t, odf12_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/**
* base
*/
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps[gid].out[0]);
ukey[1] = hc_swap32_S (tmps[gid].out[1]);
ukey[2] = hc_swap32_S (tmps[gid].out[2]);
ukey[3] = hc_swap32_S (tmps[gid].out[3]);
ukey[4] = hc_swap32_S (tmps[gid].out[4]);
ukey[5] = hc_swap32_S (tmps[gid].out[5]);
ukey[6] = hc_swap32_S (tmps[gid].out[6]);
ukey[7] = hc_swap32_S (tmps[gid].out[7]);
u32 ks[60];
aes256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
GLOBAL_AS const odf12_t *es = &esalt_bufs[DIGESTS_OFFSET_HOST];
u32 iv[4];
iv[0] = es->iv[0];
iv[1] = es->iv[1];
iv[2] = es->iv[2];
iv[3] = es->iv[3];
u32 pt[256];
for (int i = 0, j = 0; i < es->encrypted_len; i += 16, j += 4)
{
u32 ct[4];
ct[0] = es->encrypted_data[j + 0];
ct[1] = es->encrypted_data[j + 1];
ct[2] = es->encrypted_data[j + 2];
ct[3] = es->encrypted_data[j + 3];
aes256_decrypt (ks, ct, pt + j, s_td0, s_td1, s_td2, s_td3, s_td4);
pt[j + 0] ^= iv[0];
pt[j + 1] ^= iv[1];
pt[j + 2] ^= iv[2];
pt[j + 3] ^= iv[3];
iv[0] = ct[0];
iv[1] = ct[1];
iv[2] = ct[2];
iv[3] = ct[3];
}
const int full64 = es->encrypted_len / 64;
const int encrypted_len64 = full64 * 64;
sha256_ctx_t sha256_ctx;
sha256_init (&sha256_ctx);
sha256_update_swap (&sha256_ctx, pt, encrypted_len64);
const int remaining64 = es->encrypted_len - encrypted_len64;
if (remaining64)
{
PRIVATE_AS u32 *pt_remaining = pt + (encrypted_len64 / 4);
truncate_block_16x4_be_S (pt_remaining + 0, pt_remaining + 4, pt_remaining + 8, pt_remaining + 12, remaining64);
sha256_update_swap (&sha256_ctx, pt_remaining, remaining64);
}
sha256_final (&sha256_ctx);
const u32 r0 = hc_swap32_S (sha256_ctx.h[0]);
const u32 r1 = hc_swap32_S (sha256_ctx.h[1]);
const u32 r2 = hc_swap32_S (sha256_ctx.h[2]);
const u32 r3 = hc_swap32_S (sha256_ctx.h[3]);
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}