/** * Author......: See docs/credits.txt * License.....: MIT */ #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_hash_sha1.cl" #include "inc_cipher_aes.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" #define ROUNDS 0x40000 #define PUTCHAR(a,p,c) ((u8 *)(a))[(p)] = (u8) (c) #define GETCHAR(a,p) ((u8 *)(a))[(p)] #define PUTCHAR_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c) #define GETCHAR_BE(a,p) ((u8 *)(a))[(p) ^ 3] #define MIN(a,b) (((a) < (b)) ? (a) : (b)) typedef struct rar3 { u32 data[81920]; u32 pack_size; u32 unpack_size; } rar3_t; typedef struct rar3_tmp { u32 dgst[17][5]; } rar3_tmp_t; CONSTANT_VK u32a crc32tab[0x100] = { 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d }; DECLSPEC u32 round_crc32 (const u32 a, const u32 v, LOCAL_AS u32 *l_crc32tab) { const u32 k = (a ^ v) & 0xff; const u32 s = a >> 8; return l_crc32tab[k] ^ s; } DECLSPEC u32 round_crc32_16 (const u32 crc32, const u32 *buf, const u32 len, LOCAL_AS u32 *l_crc32tab) { const int crc_len = MIN (len, 16); u32 c = crc32; for (int i = 0; i < crc_len; i++) { const u32 idx = i / 4; const u32 mod = i % 4; const u32 sht = (3 - mod) * 8; const u32 b = buf[idx] >> sht; // b & 0xff (but already done in round_crc32 ()) c = round_crc32 (c, b, l_crc32tab); } return c; } KERNEL_FQ void m23700_init (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, rar3_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; tmps[gid].dgst[0][0] = SHA1M_A; tmps[gid].dgst[0][1] = SHA1M_B; tmps[gid].dgst[0][2] = SHA1M_C; tmps[gid].dgst[0][3] = SHA1M_D; tmps[gid].dgst[0][4] = SHA1M_E; } /* KERNEL_FQ void m23700_loop (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, rar3_t)) { const u64 gid = get_global_id (0); if (gid >= gid_max) return; u32 pw_buf[5]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; const u32 pw_len = MIN (pws[gid].pw_len, 20); u32 salt_buf[2]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; const u32 salt_len = 8; // this is large enough to hold all possible w[] arrays for 64 iterations u32 cb[16] = { 0 }; u32 p = 0; for (u32 j = 0; j < pw_len; j++, p += 2) { PUTCHAR_BE (cb, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (cb, p, GETCHAR (salt_buf, j)); } const u32 p2 = (pw_len * 2) + salt_len; const u32 p3 = (pw_len * 2) + salt_len + 3; const u32 init_pos = loop_pos / (ROUNDS / 16); u32 dgst[5]; dgst[0] = tmps[gid].dgst[init_pos][0]; dgst[1] = tmps[gid].dgst[init_pos][1]; dgst[2] = tmps[gid].dgst[init_pos][2]; dgst[3] = tmps[gid].dgst[init_pos][3]; dgst[4] = tmps[gid].dgst[init_pos][4]; u32 w0[4] = { 0 }; u32 w1[4] = { 0 }; u32 w2[4] = { 0 }; u32 w3[4] = { 0 }; u32 w4[4] = { 0 }; u32 w5[4] = { 0 }; u32 w6[4] = { 0 }; u32 w7[4] = { 0 }; u32 iter = loop_pos; for (u32 i = 0; i < 256; i++) { u32 k1 = 0; u32 k2 = p2; for (u32 j = 0; j < p3; j++) { w0[0] = w4[0]; w0[1] = w4[1]; w0[2] = w4[2]; w0[3] = w4[3]; w1[0] = w5[0]; w1[1] = w5[1]; w1[2] = w5[2]; w1[3] = w5[3]; w2[0] = w6[0]; w2[1] = w6[1]; w2[2] = w6[2]; w2[3] = w6[3]; w3[0] = w7[0]; w3[1] = w7[1]; w3[2] = w7[2]; w3[3] = w7[3]; w4[0] = 0; w4[1] = 0; w4[2] = 0; w4[3] = 0; w5[0] = 0; w5[1] = 0; w5[2] = 0; w5[3] = 0; w6[0] = 0; w6[1] = 0; w6[2] = 0; w6[3] = 0; w7[0] = 0; w7[1] = 0; w7[2] = 0; w7[3] = 0; const u32 t1 = k1; while (k1 < 64) { u32 x0[4]; u32 x1[4]; u32 x2[4]; u32 x3[4]; u32 x4[4]; u32 x5[4]; u32 x6[4]; u32 x7[4]; x0[0] = cb[ 0]; x0[1] = cb[ 1]; x0[2] = cb[ 2]; x0[3] = cb[ 3]; x1[0] = cb[ 4]; x1[1] = cb[ 5]; x1[2] = cb[ 6]; x1[3] = cb[ 7]; x2[0] = cb[ 8]; x2[1] = cb[ 9]; x2[2] = cb[10]; x2[3] = cb[11]; x3[0] = cb[12]; x3[1] = cb[13]; x3[2] = cb[14]; x3[3] = cb[15]; x4[0] = 0; x4[1] = 0; x4[2] = 0; x4[3] = 0; x5[0] = 0; x5[1] = 0; x5[2] = 0; x5[3] = 0; x6[0] = 0; x6[1] = 0; x6[2] = 0; x6[3] = 0; x7[0] = 0; x7[1] = 0; x7[2] = 0; x7[3] = 0; switch_buffer_by_offset_carry_be (x0, x1, x2, x3, x4, x5, x6, x7, k1); w0[0] |= x0[0]; w0[1] |= x0[1]; w0[2] |= x0[2]; w0[3] |= x0[3]; w1[0] |= x1[0]; w1[1] |= x1[1]; w1[2] |= x1[2]; w1[3] |= x1[3]; w2[0] |= x2[0]; w2[1] |= x2[1]; w2[2] |= x2[2]; w2[3] |= x2[3]; w3[0] |= x3[0]; w3[1] |= x3[1]; w3[2] |= x3[2]; w3[3] |= x3[3]; w4[0] |= x4[0]; w4[1] |= x4[1]; w4[2] |= x4[2]; w4[3] |= x4[3]; w5[0] |= x5[0]; w5[1] |= x5[1]; w5[2] |= x5[2]; w5[3] |= x5[3]; w6[0] |= x6[0]; w6[1] |= x6[1]; w6[2] |= x6[2]; w6[3] |= x6[3]; w7[0] |= x7[0]; w7[1] |= x7[1]; w7[2] |= x7[2]; w7[3] |= x7[3]; k1 += p3; } while (k2 < k1) { const u32 iter_s = hc_swap32_S (iter); u32 tmp0 = 0; u32 tmp1 = 0; switch (k2 & 3) { case 0: tmp0 = iter_s >> 0; tmp1 = 0; break; case 1: tmp0 = iter_s >> 8; tmp1 = 0; break; case 2: tmp0 = iter_s >> 16; tmp1 = iter_s << 16; break; case 3: tmp0 = iter_s >> 24; tmp1 = iter_s << 8; break; } switch (k2 / 4) { case 0: w0[0] |= tmp0; w0[1] |= tmp1; break; case 1: w0[1] |= tmp0; w0[2] |= tmp1; break; case 2: w0[2] |= tmp0; w0[3] |= tmp1; break; case 3: w0[3] |= tmp0; w1[0] |= tmp1; break; case 4: w1[0] |= tmp0; w1[1] |= tmp1; break; case 5: w1[1] |= tmp0; w1[2] |= tmp1; break; case 6: w1[2] |= tmp0; w1[3] |= tmp1; break; case 7: w1[3] |= tmp0; w2[0] |= tmp1; break; case 8: w2[0] |= tmp0; w2[1] |= tmp1; break; case 9: w2[1] |= tmp0; w2[2] |= tmp1; break; case 10: w2[2] |= tmp0; w2[3] |= tmp1; break; case 11: w2[3] |= tmp0; w3[0] |= tmp1; break; case 12: w3[0] |= tmp0; w3[1] |= tmp1; break; case 13: w3[1] |= tmp0; w3[2] |= tmp1; break; case 14: w3[2] |= tmp0; w3[3] |= tmp1; break; case 15: w3[3] |= tmp0; w4[0] |= tmp1; break; case 16: w4[0] |= tmp0; w4[1] |= tmp1; break; case 17: w4[1] |= tmp0; w4[2] |= tmp1; break; case 18: w4[2] |= tmp0; w4[3] |= tmp1; break; case 19: w4[3] |= tmp0; w5[0] |= tmp1; break; case 20: w5[0] |= tmp0; w5[1] |= tmp1; break; case 21: w5[1] |= tmp0; w5[2] |= tmp1; break; case 22: w5[2] |= tmp0; w5[3] |= tmp1; break; case 23: w5[3] |= tmp0; w6[0] |= tmp1; break; case 24: w6[0] |= tmp0; w6[1] |= tmp1; break; case 25: w6[1] |= tmp0; w6[2] |= tmp1; break; case 26: w6[2] |= tmp0; w6[3] |= tmp1; break; case 27: w6[3] |= tmp0; w7[0] |= tmp1; break; case 28: w7[0] |= tmp0; w7[1] |= tmp1; break; case 29: w7[1] |= tmp0; w7[2] |= tmp1; break; case 30: w7[2] |= tmp0; w7[3] |= tmp1; break; case 31: w7[3] |= tmp0; break; } iter++; k2 += p3; } sha1_transform (w0, w1, w2, w3, dgst); k1 &= 63; k2 &= 63; } } tmps[gid].dgst[init_pos + 1][0] = dgst[0]; tmps[gid].dgst[init_pos + 1][1] = dgst[1]; tmps[gid].dgst[init_pos + 1][2] = dgst[2]; tmps[gid].dgst[init_pos + 1][3] = dgst[3]; tmps[gid].dgst[init_pos + 1][4] = dgst[4]; } */ KERNEL_FQ void m23700_loop (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, rar3_t)) { const u64 gid = get_global_id (0); if (gid >= gid_max) return; u32 pw_buf[5]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; const u32 pw_len = MIN (pws[gid].pw_len, 20); u32 salt_buf[2]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; const u32 salt_len = 8; // this is large enough to hold all possible w[] arrays for 64 iterations #define LARGEBLOCK_ELEMS ((40 + 8 + 3) * 16) u32 largeblock[LARGEBLOCK_ELEMS]; for (u32 i = 0; i < LARGEBLOCK_ELEMS; i++) largeblock[i] = 0; for (u32 i = 0, p = 0; i < 64; i++) { for (u32 j = 0; j < pw_len; j++, p += 2) { PUTCHAR_BE (largeblock, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (largeblock, p, GETCHAR (salt_buf, j)); } PUTCHAR_BE (largeblock, p + 2, (loop_pos >> 16) & 0xff); p += 3; } const u32 p2 = (pw_len * 2) + salt_len; const u32 p3 = (pw_len * 2) + salt_len + 3; const u32 init_pos = loop_pos / (ROUNDS / 16); u32 dgst[5]; dgst[0] = tmps[gid].dgst[init_pos][0]; dgst[1] = tmps[gid].dgst[init_pos][1]; dgst[2] = tmps[gid].dgst[init_pos][2]; dgst[3] = tmps[gid].dgst[init_pos][3]; dgst[4] = tmps[gid].dgst[init_pos][4]; u32 iter = loop_pos; for (u32 i = 0; i < 256; i++) { u32 tmp = 0; u32 k = p2; for (u32 j = 0; j < p3; j++) { const u32 j16 = j * 16; u32 w[16 + 1]; w[ 0] = largeblock[j16 + 0] | tmp; w[ 1] = largeblock[j16 + 1]; w[ 2] = largeblock[j16 + 2]; w[ 3] = largeblock[j16 + 3]; w[ 4] = largeblock[j16 + 4]; w[ 5] = largeblock[j16 + 5]; w[ 6] = largeblock[j16 + 6]; w[ 7] = largeblock[j16 + 7]; w[ 8] = largeblock[j16 + 8]; w[ 9] = largeblock[j16 + 9]; w[10] = largeblock[j16 + 10]; w[11] = largeblock[j16 + 11]; w[12] = largeblock[j16 + 12]; w[13] = largeblock[j16 + 13]; w[14] = largeblock[j16 + 14]; w[15] = largeblock[j16 + 15]; w[16] = 0; while (k < 64) { const u32 iter_s = hc_swap32_S (iter); u32 mask0 = 0; u32 mask1 = 0; u32 tmp0 = 0; u32 tmp1 = 0; switch (k & 3) { case 0: tmp0 = iter_s >> 0; mask0 = 0x0000ffff; tmp1 = 0; mask1 = 0xffffffff; break; case 1: tmp0 = iter_s >> 8; mask0 = 0xff0000ff; tmp1 = 0; mask1 = 0xffffffff; break; case 2: tmp0 = iter_s >> 16; mask0 = 0xffff0000; tmp1 = 0; mask1 = 0xffffffff; break; case 3: tmp0 = iter_s >> 24; mask0 = 0xffffff00; tmp1 = iter_s << 8; mask1 = 0x00ffffff; break; } switch (k / 4) { case 0: w[ 0] = (w[ 0] & mask0) | tmp0; w[ 1] = (w[ 1] & mask1) | tmp1; break; case 1: w[ 1] = (w[ 1] & mask0) | tmp0; w[ 2] = (w[ 2] & mask1) | tmp1; break; case 2: w[ 2] = (w[ 2] & mask0) | tmp0; w[ 3] = (w[ 3] & mask1) | tmp1; break; case 3: w[ 3] = (w[ 3] & mask0) | tmp0; w[ 4] = (w[ 4] & mask1) | tmp1; break; case 4: w[ 4] = (w[ 4] & mask0) | tmp0; w[ 5] = (w[ 5] & mask1) | tmp1; break; case 5: w[ 5] = (w[ 5] & mask0) | tmp0; w[ 6] = (w[ 6] & mask1) | tmp1; break; case 6: w[ 6] = (w[ 6] & mask0) | tmp0; w[ 7] = (w[ 7] & mask1) | tmp1; break; case 7: w[ 7] = (w[ 7] & mask0) | tmp0; w[ 8] = (w[ 8] & mask1) | tmp1; break; case 8: w[ 8] = (w[ 8] & mask0) | tmp0; w[ 9] = (w[ 9] & mask1) | tmp1; break; case 9: w[ 9] = (w[ 9] & mask0) | tmp0; w[10] = (w[10] & mask1) | tmp1; break; case 10: w[10] = (w[10] & mask0) | tmp0; w[11] = (w[11] & mask1) | tmp1; break; case 11: w[11] = (w[11] & mask0) | tmp0; w[12] = (w[12] & mask1) | tmp1; break; case 12: w[12] = (w[12] & mask0) | tmp0; w[13] = (w[13] & mask1) | tmp1; break; case 13: w[13] = (w[13] & mask0) | tmp0; w[14] = (w[14] & mask1) | tmp1; break; case 14: w[14] = (w[14] & mask0) | tmp0; w[15] = (w[15] & mask1) | tmp1; break; case 15: w[15] = (w[15] & mask0) | tmp0; w[16] = tmp1; break; } iter++; k += p3; } sha1_transform (w + 0, w + 4, w + 8, w + 12, dgst); k &= 63; tmp = w[16]; } } tmps[gid].dgst[init_pos + 1][0] = dgst[0]; tmps[gid].dgst[init_pos + 1][1] = dgst[1]; tmps[gid].dgst[init_pos + 1][2] = dgst[2]; tmps[gid].dgst[init_pos + 1][3] = dgst[3]; tmps[gid].dgst[init_pos + 1][4] = dgst[4]; } KERNEL_FQ void m23700_comp (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, rar3_t)) { const u64 gid = get_global_id (0); const u64 lid = get_local_id (0); const u64 lsz = get_local_size (0); /** * aes shared */ #ifdef REAL_SHM LOCAL_VK u32 s_td0[256]; LOCAL_VK u32 s_td1[256]; LOCAL_VK u32 s_td2[256]; LOCAL_VK u32 s_td3[256]; LOCAL_VK u32 s_td4[256]; LOCAL_VK u32 s_te0[256]; LOCAL_VK u32 s_te1[256]; LOCAL_VK u32 s_te2[256]; LOCAL_VK u32 s_te3[256]; LOCAL_VK u32 s_te4[256]; for (u32 i = lid; i < 256; i += lsz) { s_td0[i] = td0[i]; s_td1[i] = td1[i]; s_td2[i] = td2[i]; s_td3[i] = td3[i]; s_td4[i] = td4[i]; s_te0[i] = te0[i]; s_te1[i] = te1[i]; s_te2[i] = te2[i]; s_te3[i] = te3[i]; s_te4[i] = te4[i]; } #else CONSTANT_AS u32a *s_td0 = td0; CONSTANT_AS u32a *s_td1 = td1; CONSTANT_AS u32a *s_td2 = td2; CONSTANT_AS u32a *s_td3 = td3; CONSTANT_AS u32a *s_td4 = td4; CONSTANT_AS u32a *s_te0 = te0; CONSTANT_AS u32a *s_te1 = te1; CONSTANT_AS u32a *s_te2 = te2; CONSTANT_AS u32a *s_te3 = te3; CONSTANT_AS u32a *s_te4 = te4; #endif LOCAL_VK u32 l_crc32tab[256]; for (int i = lid; i < 256; i += lsz) { l_crc32tab[i] = crc32tab[i]; } SYNC_THREADS (); if (gid >= gid_max) return; /** * base */ const u32 pw_len = MIN (pws[gid].pw_len, 20); const u32 salt_len = 8; const u32 p3 = (pw_len * 2) + salt_len + 3; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = 0x80000000; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = (p3 * ROUNDS) * 8; u32 dgst[5]; dgst[0] = tmps[gid].dgst[16][0]; dgst[1] = tmps[gid].dgst[16][1]; dgst[2] = tmps[gid].dgst[16][2]; dgst[3] = tmps[gid].dgst[16][3]; dgst[4] = tmps[gid].dgst[16][4]; sha1_transform (w0, w1, w2, w3, dgst); u32 ukey[4]; ukey[0] = hc_swap32_S (dgst[0]); ukey[1] = hc_swap32_S (dgst[1]); ukey[2] = hc_swap32_S (dgst[2]); ukey[3] = hc_swap32_S (dgst[3]); u32 ks[44]; AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3); u32 iv[4]; iv[0] = 0; iv[1] = 0; iv[2] = 0; iv[3] = 0; for (int i = 0; i < 16; i++) { u32 pw_buf[5]; pw_buf[0] = pws[gid].i[0]; pw_buf[1] = pws[gid].i[1]; pw_buf[2] = pws[gid].i[2]; pw_buf[3] = pws[gid].i[3]; pw_buf[4] = pws[gid].i[4]; //const u32 pw_len = pws[gid].pw_len; u32 salt_buf[2]; salt_buf[0] = salt_bufs[salt_pos].salt_buf[0]; salt_buf[1] = salt_bufs[salt_pos].salt_buf[1]; //const u32 salt_len = 8; //const u32 p3 = (pw_len * 2) + salt_len + 3; u32 w[16]; w[ 0] = 0; w[ 1] = 0; w[ 2] = 0; w[ 3] = 0; w[ 4] = 0; w[ 5] = 0; w[ 6] = 0; w[ 7] = 0; w[ 8] = 0; w[ 9] = 0; w[10] = 0; w[11] = 0; w[12] = 0; w[13] = 0; w[14] = 0; w[15] = 0; u32 p = 0; for (u32 j = 0; j < pw_len; j++, p += 2) { PUTCHAR_BE (w, p, GETCHAR (pw_buf, j)); } for (u32 j = 0; j < salt_len; j++, p += 1) { PUTCHAR_BE (w, p, GETCHAR (salt_buf, j)); } const u32 iter_pos = i * (ROUNDS / 16); PUTCHAR_BE (w, p + 0, (iter_pos >> 0) & 0xff); PUTCHAR_BE (w, p + 1, (iter_pos >> 8) & 0xff); PUTCHAR_BE (w, p + 2, (iter_pos >> 16) & 0xff); PUTCHAR_BE (w, p3, 0x80); w[15] = ((iter_pos + 1) * p3) * 8; u32 dgst[5]; dgst[0] = tmps[gid].dgst[i][0]; dgst[1] = tmps[gid].dgst[i][1]; dgst[2] = tmps[gid].dgst[i][2]; dgst[3] = tmps[gid].dgst[i][3]; dgst[4] = tmps[gid].dgst[i][4]; sha1_transform (w + 0, w + 4, w + 8, w + 12, dgst); PUTCHAR (iv, i, dgst[4] & 0xff); } iv[0] = hc_swap32_S (iv[0]); iv[1] = hc_swap32_S (iv[1]); iv[2] = hc_swap32_S (iv[2]); iv[3] = hc_swap32_S (iv[3]); const u32 pack_size = esalt_bufs[digests_offset].pack_size; const u32 unpack_size = esalt_bufs[digests_offset].unpack_size; if (pack_size > unpack_size) // could be aligned { if (pack_size >= 32) // otherwise IV... { const u32 pack_size_elements = pack_size / 4; u32 last_block_encrypted[4]; last_block_encrypted[0] = esalt_bufs[digests_offset].data[pack_size_elements - 4 + 0]; last_block_encrypted[1] = esalt_bufs[digests_offset].data[pack_size_elements - 4 + 1]; last_block_encrypted[2] = esalt_bufs[digests_offset].data[pack_size_elements - 4 + 2]; last_block_encrypted[3] = esalt_bufs[digests_offset].data[pack_size_elements - 4 + 3]; u32 last_block_decrypted[4]; AES128_decrypt (ks, last_block_encrypted, last_block_decrypted, s_td0, s_td1, s_td2, s_td3, s_td4); u32 last_block_iv[4]; last_block_iv[0] = esalt_bufs[digests_offset].data[pack_size_elements - 8 + 0]; last_block_iv[1] = esalt_bufs[digests_offset].data[pack_size_elements - 8 + 1]; last_block_iv[2] = esalt_bufs[digests_offset].data[pack_size_elements - 8 + 2]; last_block_iv[3] = esalt_bufs[digests_offset].data[pack_size_elements - 8 + 3]; last_block_decrypted[0] ^= last_block_iv[0]; last_block_decrypted[1] ^= last_block_iv[1]; last_block_decrypted[2] ^= last_block_iv[2]; last_block_decrypted[3] ^= last_block_iv[3]; if ((last_block_decrypted[3] & 0xff) != 0) return; } } u32 data_left = unpack_size; u32 crc32 = ~0; for (u32 i = 0, j = 0; i < pack_size / 16; i += 1, j += 4) { u32 data[4]; data[0] = esalt_bufs[digests_offset].data[j + 0]; data[1] = esalt_bufs[digests_offset].data[j + 1]; data[2] = esalt_bufs[digests_offset].data[j + 2]; data[3] = esalt_bufs[digests_offset].data[j + 3]; u32 out[4]; AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4); out[0] ^= iv[0]; out[1] ^= iv[1]; out[2] ^= iv[2]; out[3] ^= iv[3]; crc32 = round_crc32_16 (crc32, out, data_left, l_crc32tab); iv[0] = data[0]; iv[1] = data[1]; iv[2] = data[2]; iv[3] = data[3]; data_left -= 16; } const u32 r0 = crc32; const u32 r1 = 0; const u32 r2 = 0; const u32 r3 = 0; #define il_pos 0 #ifdef KERNEL_STATIC #include COMPARE_M #endif }