/**
 * Author......: See docs/credits.txt
 * License.....: MIT
 */

//#define NEW_SIMD_CODE

#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_simd.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha1.cl)
#endif

KERNEL_FQ void m18100_mxx (KERN_ATTR_VECTOR ())
{
  /**
   * modifier
   */

  const u64 lid = get_local_id (0);
  const u64 gid = get_global_id (0);

  if (gid >= GID_CNT) return;

  /**
   * base
   */

  const u32 pw_len = pws[gid].pw_len;

  u32x w[64] = { 0 };

  for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
  {
    w[idx] = pws[gid].i[idx];
  }

  const u32 salt_len = 8;

  u32x s[64] = { 0 };

  for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
  {
    s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
  }

  /**
   * loop
   */

  u32x w0l = w[0];

  for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
  {
    const u32x w0r = words_buf_r[il_pos / VECT_SIZE];

    const u32x w0 = w0l | w0r;

    w[0] = w0;

    sha1_hmac_ctx_vector_t ctx;

    sha1_hmac_init_vector (&ctx, w, pw_len);

    sha1_hmac_update_vector (&ctx, s, salt_len);

    sha1_hmac_final_vector (&ctx);

    // initialize a buffer for the otp code
    u32 otp_code = 0;

    // grab 4 consecutive bytes of the hash, starting at offset
    switch (ctx.opad.h[4] & 15)
    {
      case  0: otp_code = ctx.opad.h[0];                              break;
      case  1: otp_code = ctx.opad.h[0] <<  8 | ctx.opad.h[1] >> 24;  break;
      case  2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16;  break;
      case  3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >>  8;  break;
      case  4: otp_code = ctx.opad.h[1];                              break;
      case  5: otp_code = ctx.opad.h[1] <<  8 | ctx.opad.h[2] >> 24;  break;
      case  6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16;  break;
      case  7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >>  8;  break;
      case  8: otp_code = ctx.opad.h[2];                              break;
      case  9: otp_code = ctx.opad.h[2] <<  8 | ctx.opad.h[3] >> 24;  break;
      case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16;  break;
      case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >>  8;  break;
      case 12: otp_code = ctx.opad.h[3];                              break;
      case 13: otp_code = ctx.opad.h[3] <<  8 | ctx.opad.h[4] >> 24;  break;
      case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16;  break;
      case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >>  8;  break;
    }

    // take only the lower 31 bits
    otp_code &= 0x7fffffff;

    // we want to generate only 6 digits of code
    otp_code %= 1000000;

    COMPARE_M_SIMD (otp_code, 0, 0, 0);
  }
}

KERNEL_FQ void m18100_sxx (KERN_ATTR_VECTOR ())
{
  /**
   * modifier
   */

  const u64 lid = get_local_id (0);
  const u64 gid = get_global_id (0);

  if (gid >= GID_CNT) return;

  /**
   * digest
   */

  const u32 search[4] =
  {
    digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0],
    digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1],
    digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2],
    digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3]
  };

  /**
   * base
   */

  const u32 pw_len = pws[gid].pw_len;

  u32x w[64] = { 0 };

  for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1)
  {
    w[idx] = pws[gid].i[idx];
  }

  const u32 salt_len = 8;

  u32x s[64] = { 0 };

  for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1)
  {
    s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]);
  }

  /**
   * loop
   */

  u32x w0l = w[0];

  for (u32 il_pos = 0; il_pos < IL_CNT; il_pos += VECT_SIZE)
  {
    const u32x w0r = words_buf_r[il_pos / VECT_SIZE];

    const u32x w0 = w0l | w0r;

    w[0] = w0;

    sha1_hmac_ctx_vector_t ctx;

    sha1_hmac_init_vector (&ctx, w, pw_len);

    sha1_hmac_update_vector (&ctx, s, salt_len);

    sha1_hmac_final_vector (&ctx);

    // initialize a buffer for the otp code
    u32 otp_code = 0;

    // grab 4 consecutive bytes of the hash, starting at offset
    switch (ctx.opad.h[4] & 15)
    {
      case  0: otp_code = ctx.opad.h[0];                              break;
      case  1: otp_code = ctx.opad.h[0] <<  8 | ctx.opad.h[1] >> 24;  break;
      case  2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16;  break;
      case  3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >>  8;  break;
      case  4: otp_code = ctx.opad.h[1];                              break;
      case  5: otp_code = ctx.opad.h[1] <<  8 | ctx.opad.h[2] >> 24;  break;
      case  6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16;  break;
      case  7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >>  8;  break;
      case  8: otp_code = ctx.opad.h[2];                              break;
      case  9: otp_code = ctx.opad.h[2] <<  8 | ctx.opad.h[3] >> 24;  break;
      case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16;  break;
      case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >>  8;  break;
      case 12: otp_code = ctx.opad.h[3];                              break;
      case 13: otp_code = ctx.opad.h[3] <<  8 | ctx.opad.h[4] >> 24;  break;
      case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16;  break;
      case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >>  8;  break;
    }

    // take only the lower 31 bits
    otp_code &= 0x7fffffff;

    // we want to generate only 6 digits of code
    otp_code %= 1000000;

    COMPARE_S_SIMD (otp_code, 0, 0, 0);
  }
}