/** * Author......: See docs/credits.txt * License.....: MIT */ #define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_simd.cl" #include "inc_hash_sha1.cl" #include "inc_hash_sha256.cl" #include "inc_hash_sha512.cl" #include "inc_hash_ripemd160.cl" #include "inc_cipher_serpent.cl" #endif #define LUKS_STRIPES 4000 typedef enum hc_luks_hash_type { HC_LUKS_HASH_TYPE_SHA1 = 1, HC_LUKS_HASH_TYPE_SHA256 = 2, HC_LUKS_HASH_TYPE_SHA512 = 3, HC_LUKS_HASH_TYPE_RIPEMD160 = 4, HC_LUKS_HASH_TYPE_WHIRLPOOL = 5, } hc_luks_hash_type_t; typedef enum hc_luks_key_size { HC_LUKS_KEY_SIZE_128 = 128, HC_LUKS_KEY_SIZE_256 = 256, HC_LUKS_KEY_SIZE_512 = 512, } hc_luks_key_size_t; typedef enum hc_luks_cipher_type { HC_LUKS_CIPHER_TYPE_AES = 1, HC_LUKS_CIPHER_TYPE_SERPENT = 2, HC_LUKS_CIPHER_TYPE_TWOFISH = 3, } hc_luks_cipher_type_t; typedef enum hc_luks_cipher_mode { HC_LUKS_CIPHER_MODE_CBC_ESSIV = 1, HC_LUKS_CIPHER_MODE_CBC_PLAIN = 2, HC_LUKS_CIPHER_MODE_XTS_PLAIN = 3, } hc_luks_cipher_mode_t; typedef struct luks { int hash_type; // hc_luks_hash_type_t int key_size; // hc_luks_key_size_t int cipher_type; // hc_luks_cipher_type_t int cipher_mode; // hc_luks_cipher_mode_t u32 ct_buf[128]; u32 af_src_buf[((HC_LUKS_KEY_SIZE_512 / 8) * LUKS_STRIPES) / 4]; } luks_t; typedef struct luks_tmp { u32 ipad32[8]; u64 ipad64[8]; u32 opad32[8]; u64 opad64[8]; u32 dgst32[32]; u64 dgst64[16]; u32 out32[32]; u64 out64[16]; } luks_tmp_t; #ifdef KERNEL_STATIC #include "inc_luks_af.cl" #include "inc_luks_essiv.cl" #include "inc_luks_xts.cl" #include "inc_luks_serpent.cl" #endif #define COMPARE_S "inc_comp_single.cl" #define COMPARE_M "inc_comp_multi.cl" #define MAX_ENTROPY 7.0 DECLSPEC void hmac_ripemd160_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest) { digest[0] = ipad[0]; digest[1] = ipad[1]; digest[2] = ipad[2]; digest[3] = ipad[3]; digest[4] = ipad[4]; ripemd160_transform_vector (w0, w1, w2, w3, digest); w0[0] = digest[0]; w0[1] = digest[1]; w0[2] = digest[2]; w0[3] = digest[3]; w1[0] = digest[4]; w1[1] = 0x80; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = (64 + 20) * 8; w3[3] = 0; digest[0] = opad[0]; digest[1] = opad[1]; digest[2] = opad[2]; digest[3] = opad[3]; digest[4] = opad[4]; ripemd160_transform_vector (w0, w1, w2, w3, digest); } KERNEL_FQ void m14642_init (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t)) { /** * base */ const u64 gid = get_global_id (0); if (gid >= gid_max) return; ripemd160_hmac_ctx_t ripemd160_hmac_ctx; ripemd160_hmac_init_global (&ripemd160_hmac_ctx, pws[gid].i, pws[gid].pw_len); tmps[gid].ipad32[0] = ripemd160_hmac_ctx.ipad.h[0]; tmps[gid].ipad32[1] = ripemd160_hmac_ctx.ipad.h[1]; tmps[gid].ipad32[2] = ripemd160_hmac_ctx.ipad.h[2]; tmps[gid].ipad32[3] = ripemd160_hmac_ctx.ipad.h[3]; tmps[gid].ipad32[4] = ripemd160_hmac_ctx.ipad.h[4]; tmps[gid].opad32[0] = ripemd160_hmac_ctx.opad.h[0]; tmps[gid].opad32[1] = ripemd160_hmac_ctx.opad.h[1]; tmps[gid].opad32[2] = ripemd160_hmac_ctx.opad.h[2]; tmps[gid].opad32[3] = ripemd160_hmac_ctx.opad.h[3]; tmps[gid].opad32[4] = ripemd160_hmac_ctx.opad.h[4]; ripemd160_hmac_update_global (&ripemd160_hmac_ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len); const u32 key_size = esalt_bufs[DIGESTS_OFFSET].key_size; for (u32 i = 0, j = 1; i < ((key_size / 8) / 4); i += 5, j += 1) { ripemd160_hmac_ctx_t ripemd160_hmac_ctx2 = ripemd160_hmac_ctx; u32 w0[4]; u32 w1[4]; u32 w2[4]; u32 w3[4]; w0[0] = j << 24; w0[1] = 0; w0[2] = 0; w0[3] = 0; w1[0] = 0; w1[1] = 0; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = 0; w3[3] = 0; ripemd160_hmac_update_64 (&ripemd160_hmac_ctx2, w0, w1, w2, w3, 4); ripemd160_hmac_final (&ripemd160_hmac_ctx2); tmps[gid].dgst32[i + 0] = ripemd160_hmac_ctx2.opad.h[0]; tmps[gid].dgst32[i + 1] = ripemd160_hmac_ctx2.opad.h[1]; tmps[gid].dgst32[i + 2] = ripemd160_hmac_ctx2.opad.h[2]; tmps[gid].dgst32[i + 3] = ripemd160_hmac_ctx2.opad.h[3]; tmps[gid].dgst32[i + 4] = ripemd160_hmac_ctx2.opad.h[4]; tmps[gid].out32[i + 0] = tmps[gid].dgst32[i + 0]; tmps[gid].out32[i + 1] = tmps[gid].dgst32[i + 1]; tmps[gid].out32[i + 2] = tmps[gid].dgst32[i + 2]; tmps[gid].out32[i + 3] = tmps[gid].dgst32[i + 3]; tmps[gid].out32[i + 4] = tmps[gid].dgst32[i + 4]; } } KERNEL_FQ void m14642_loop (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t)) { const u64 gid = get_global_id (0); if ((gid * VECT_SIZE) >= gid_max) return; u32x ipad[5]; u32x opad[5]; ipad[0] = packv (tmps, ipad32, gid, 0); ipad[1] = packv (tmps, ipad32, gid, 1); ipad[2] = packv (tmps, ipad32, gid, 2); ipad[3] = packv (tmps, ipad32, gid, 3); ipad[4] = packv (tmps, ipad32, gid, 4); opad[0] = packv (tmps, opad32, gid, 0); opad[1] = packv (tmps, opad32, gid, 1); opad[2] = packv (tmps, opad32, gid, 2); opad[3] = packv (tmps, opad32, gid, 3); opad[4] = packv (tmps, opad32, gid, 4); u32 key_size = esalt_bufs[DIGESTS_OFFSET].key_size; for (u32 i = 0; i < ((key_size / 8) / 4); i += 5) { u32x dgst[5]; u32x out[5]; dgst[0] = packv (tmps, dgst32, gid, i + 0); dgst[1] = packv (tmps, dgst32, gid, i + 1); dgst[2] = packv (tmps, dgst32, gid, i + 2); dgst[3] = packv (tmps, dgst32, gid, i + 3); dgst[4] = packv (tmps, dgst32, gid, i + 4); out[0] = packv (tmps, out32, gid, i + 0); out[1] = packv (tmps, out32, gid, i + 1); out[2] = packv (tmps, out32, gid, i + 2); out[3] = packv (tmps, out32, gid, i + 3); out[4] = packv (tmps, out32, gid, i + 4); for (u32 j = 0; j < loop_cnt; j++) { u32x w0[4]; u32x w1[4]; u32x w2[4]; u32x w3[4]; w0[0] = dgst[0]; w0[1] = dgst[1]; w0[2] = dgst[2]; w0[3] = dgst[3]; w1[0] = dgst[4]; w1[1] = 0x80; w1[2] = 0; w1[3] = 0; w2[0] = 0; w2[1] = 0; w2[2] = 0; w2[3] = 0; w3[0] = 0; w3[1] = 0; w3[2] = (64 + 20) * 8; w3[3] = 0; hmac_ripemd160_run_V (w0, w1, w2, w3, ipad, opad, dgst); out[0] ^= dgst[0]; out[1] ^= dgst[1]; out[2] ^= dgst[2]; out[3] ^= dgst[3]; out[4] ^= dgst[4]; } unpackv (tmps, dgst32, gid, i + 0, dgst[0]); unpackv (tmps, dgst32, gid, i + 1, dgst[1]); unpackv (tmps, dgst32, gid, i + 2, dgst[2]); unpackv (tmps, dgst32, gid, i + 3, dgst[3]); unpackv (tmps, dgst32, gid, i + 4, dgst[4]); unpackv (tmps, out32, gid, i + 0, out[0]); unpackv (tmps, out32, gid, i + 1, out[1]); unpackv (tmps, out32, gid, i + 2, out[2]); unpackv (tmps, out32, gid, i + 3, out[3]); unpackv (tmps, out32, gid, i + 4, out[4]); } } KERNEL_FQ void m14642_comp (KERN_ATTR_TMPS_ESALT (luks_tmp_t, luks_t)) { const u64 gid = get_global_id (0); if (gid >= gid_max) return; // decrypt AF with first pbkdf2 result // merge AF to masterkey // decrypt first payload sector with masterkey u32 pt_buf[128]; luks_af_ripemd160_then_serpent_decrypt (&esalt_bufs[DIGESTS_OFFSET], &tmps[gid], pt_buf); // check entropy const float entropy = hc_get_entropy (pt_buf, 128); if (entropy < MAX_ENTROPY) { if (atomic_inc (&hashes_shown[DIGESTS_OFFSET]) == 0) { mark_hash (plains_buf, d_return_buf, SALT_POS, digests_cnt, 0, 0, gid, 0, 0, 0); } } }