/* This is an independent implementation of the encryption algorithm: */ /* */ /* Twofish by Bruce Schneier and colleagues */ /* */ /* which is a candidate algorithm in the Advanced Encryption Standard */ /* programme of the US National Institute of Standards and Technology. */ /* */ /* Copyright in this implementation is held by Dr B R Gladman but I */ /* hereby give permission for its free direct or derivative use subject */ /* to acknowledgment of its origin and compliance with any conditions */ /* that the originators of t he algorithm place on its exploitation. */ /* */ /* My thanks to Doug Whiting and Niels Ferguson for comments that led */ /* to improvements in this implementation. */ /* */ /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */ /* */ /* -------------------------------------------------------------------- */ /* */ /* Cleaned and optimized for GPU use with hashcat by Jens Steube */ #include "inc_vendor.h" #include "inc_types.h" #include "inc_common.h" #include "inc_cipher_twofish.h" #define extract_byte(x,n) (((x) >> (8 * (n))) & 0xff) #define g1_fun128(x) \ (mds (0, q20 (extract_byte (x, 3), sk)) ^ \ mds (1, q21 (extract_byte (x, 0), sk)) ^ \ mds (2, q22 (extract_byte (x, 1), sk)) ^ \ mds (3, q23 (extract_byte (x, 2), sk))) #define g0_fun128(x) \ (mds (0, q20 (extract_byte (x, 0), sk)) ^ \ mds (1, q21 (extract_byte (x, 1), sk)) ^ \ mds (2, q22 (extract_byte (x, 2), sk)) ^ \ mds (3, q23 (extract_byte (x, 3), sk))) #define f_rnd128(i) \ { \ u32 t0 = g0_fun128 (data[0]); \ u32 t1 = g1_fun128 (data[1]); \ data[2] = hc_rotr32_S (data[2] ^ (t0 + t1 + lk[4 * (i) + 8]), 1); \ data[3] = hc_rotl32_S (data[3], 1) ^ (t0 + 2 * t1 + lk[4 * (i) + 9]); \ u32 t2 = g0_fun128 (data[2]); \ u32 t3 = g1_fun128 (data[3]); \ data[0] = hc_rotr32_S (data[0] ^ (t2 + t3 + lk[4 * (i) + 10]), 1); \ data[1] = hc_rotl32_S (data[1], 1) ^ (t2 + 2 * t3 + lk[4 * (i) + 11]); \ } #define i_rnd128(i) \ { \ u32 t0 = g0_fun128 (data[0]); \ u32 t1 = g1_fun128 (data[1]); \ data[2] = hc_rotl32_S (data[2], 1) ^ (t0 + t1 + lk[4 * (i) + 10]); \ data[3] = hc_rotr32_S (data[3] ^ (t0 + 2 * t1 + lk[4 * (i) + 11]), 1); \ u32 t2 = g0_fun128 (data[2]); \ u32 t3 = g1_fun128 (data[3]); \ data[0] = hc_rotl32_S (data[0], 1) ^ (t2 + t3 + lk[4 * (i) + 8]); \ data[1] = hc_rotr32_S (data[1] ^ (t2 + 2 * t3 + lk[4 * (i) + 9]), 1); \ } #define f_rnd256(i) \ { \ u32 t0 = g0_fun256 (data[0]); \ u32 t1 = g1_fun256 (data[1]); \ data[2] = hc_rotr32_S (data[2] ^ (t0 + t1 + lk[4 * (i) + 8]), 1); \ data[3] = hc_rotl32_S (data[3], 1) ^ (t0 + 2 * t1 + lk[4 * (i) + 9]); \ u32 t2 = g0_fun256 (data[2]); \ u32 t3 = g1_fun256 (data[3]); \ data[0] = hc_rotr32_S (data[0] ^ (t2 + t3 + lk[4 * (i) + 10]), 1); \ data[1] = hc_rotl32_S (data[1], 1) ^ (t2 + 2 * t3 + lk[4 * (i) + 11]); \ } #define i_rnd256(i) \ { \ u32 t0 = g0_fun256 (data[0]); \ u32 t1 = g1_fun256 (data[1]); \ data[2] = hc_rotl32_S (data[2], 1) ^ (t0 + t1 + lk[4 * (i) + 10]); \ data[3] = hc_rotr32_S (data[3] ^ (t0 + 2 * t1 + lk[4 * (i) + 11]), 1); \ u32 t2 = g0_fun256 (data[2]); \ u32 t3 = g1_fun256 (data[3]); \ data[0] = hc_rotl32_S (data[0], 1) ^ (t2 + t3 + lk[4 * (i) + 8]); \ data[1] = hc_rotr32_S (data[1] ^ (t2 + 2 * t3 + lk[4 * (i) + 9]), 1); \ } #define q(n,x) q_tab[n][x] #define mds(n,x) m_tab[n][x] #define q20(x,k) q (0, q (0, x) ^ extract_byte (k[1], 0)) ^ extract_byte (k[0], 0) #define q21(x,k) q (0, q (1, x) ^ extract_byte (k[1], 1)) ^ extract_byte (k[0], 1) #define q22(x,k) q (1, q (0, x) ^ extract_byte (k[1], 2)) ^ extract_byte (k[0], 2) #define q23(x,k) q (1, q (1, x) ^ extract_byte (k[1], 3)) ^ extract_byte (k[0], 3) #define q40(x,k) q (0, q (0, q (1, q (1, x) ^ extract_byte (k[3], 0)) ^ extract_byte (k[2], 0)) ^ extract_byte (k[1], 0)) ^ extract_byte (k[0], 0) #define q41(x,k) q (0, q (1, q (1, q (0, x) ^ extract_byte (k[3], 1)) ^ extract_byte (k[2], 1)) ^ extract_byte (k[1], 1)) ^ extract_byte (k[0], 1) #define q42(x,k) q (1, q (0, q (0, q (0, x) ^ extract_byte (k[3], 2)) ^ extract_byte (k[2], 2)) ^ extract_byte (k[1], 2)) ^ extract_byte (k[0], 2) #define q43(x,k) q (1, q (1, q (0, q (1, x) ^ extract_byte (k[3], 3)) ^ extract_byte (k[2], 3)) ^ extract_byte (k[1], 3)) ^ extract_byte (k[0], 3) DECLSPEC u32 mds_rem (u32 p0, u32 p1) { #define G_MOD 0x14d #define MDS_REM_ROUND() \ { \ u32 t = p1 >> 24; \ p1 = (p1 << 8) | (p0 >> 24); \ p0 <<= 8; \ u32 u = (t << 1); \ if (t & 0x80) u ^= G_MOD; \ p1 ^= t ^ (u << 16); \ u ^= (t >> 1); \ if (t & 0x01) u ^= G_MOD >> 1; \ p1 ^= (u << 24) | (u << 8); \ } MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); MDS_REM_ROUND(); #undef MDS_REM_ROUND return p1; } DECLSPEC u32 h_fun128 (const u32 x, const u32 *key) { u32 b0, b1, b2, b3; b0 = extract_byte (x, 0); b1 = extract_byte (x, 1); b2 = extract_byte (x, 2); b3 = extract_byte (x, 3); b0 = q (0, (q (0, b0) ^ extract_byte (key[1], 0))) ^ extract_byte (key[0], 0); b1 = q (0, (q (1, b1) ^ extract_byte (key[1], 1))) ^ extract_byte (key[0], 1); b2 = q (1, (q (0, b2) ^ extract_byte (key[1], 2))) ^ extract_byte (key[0], 2); b3 = q (1, (q (1, b3) ^ extract_byte (key[1], 3))) ^ extract_byte (key[0], 3); return mds (0, b0) ^ mds (1, b1) ^ mds (2, b2) ^ mds (3, b3); } DECLSPEC void twofish128_set_key (u32 *sk, u32 *lk, const u32 *ukey) { u32 me_key[2]; me_key[0] = ukey[0]; me_key[1] = ukey[2]; u32 mo_key[2]; mo_key[0] = ukey[1]; mo_key[1] = ukey[3]; sk[1] = mds_rem (me_key[0], mo_key[0]); sk[0] = mds_rem (me_key[1], mo_key[1]); for (int i = 0; i < 40; i += 2) { u32 a = 0x01010101 * i; u32 b = 0x01010101 + a; a = h_fun128 (a, me_key); b = h_fun128 (b, mo_key); b = hc_rotl32_S (b, 8); lk[i + 0] = a + b; lk[i + 1] = hc_rotl32_S (a + 2 * b, 9); } } DECLSPEC void twofish128_encrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out) { u32 data[4]; data[0] = in[0] ^ lk[0]; data[1] = in[1] ^ lk[1]; data[2] = in[2] ^ lk[2]; data[3] = in[3] ^ lk[3]; f_rnd128 (0); f_rnd128 (1); f_rnd128 (2); f_rnd128 (3); f_rnd128 (4); f_rnd128 (5); f_rnd128 (6); f_rnd128 (7); out[0] = data[2] ^ lk[4]; out[1] = data[3] ^ lk[5]; out[2] = data[0] ^ lk[6]; out[3] = data[1] ^ lk[7]; } DECLSPEC void twofish128_decrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out) { u32 data[4]; data[0] = in[0] ^ lk[4]; data[1] = in[1] ^ lk[5]; data[2] = in[2] ^ lk[6]; data[3] = in[3] ^ lk[7]; i_rnd128 (7); i_rnd128 (6); i_rnd128 (5); i_rnd128 (4); i_rnd128 (3); i_rnd128 (2); i_rnd128 (1); i_rnd128 (0); out[0] = data[2] ^ lk[0]; out[1] = data[3] ^ lk[1]; out[2] = data[0] ^ lk[2]; out[3] = data[1] ^ lk[3]; } // 256 bit key #define g1_fun256(x) \ (mds (0, q40 (extract_byte (x, 3), sk)) ^ \ mds (1, q41 (extract_byte (x, 0), sk)) ^ \ mds (2, q42 (extract_byte (x, 1), sk)) ^ \ mds (3, q43 (extract_byte (x, 2), sk))) #define g0_fun256(x) \ (mds (0, q40 (extract_byte (x, 0), sk)) ^ \ mds (1, q41 (extract_byte (x, 1), sk)) ^ \ mds (2, q42 (extract_byte (x, 2), sk)) ^ \ mds (3, q43 (extract_byte (x, 3), sk))) DECLSPEC u32 h_fun256 (const u32 x, const u32 *key) { u32 b0, b1, b2, b3; b0 = extract_byte (x, 0); b1 = extract_byte (x, 1); b2 = extract_byte (x, 2); b3 = extract_byte (x, 3); b0 = q (1, b0) ^ extract_byte (key[3], 0); b1 = q (0, b1) ^ extract_byte (key[3], 1); b2 = q (0, b2) ^ extract_byte (key[3], 2); b3 = q (1, b3) ^ extract_byte (key[3], 3); b0 = q (1, b0) ^ extract_byte (key[2], 0); b1 = q (1, b1) ^ extract_byte (key[2], 1); b2 = q (0, b2) ^ extract_byte (key[2], 2); b3 = q (0, b3) ^ extract_byte (key[2], 3); b0 = q (0, (q (0, b0) ^ extract_byte (key[1], 0))) ^ extract_byte (key[0], 0); b1 = q (0, (q (1, b1) ^ extract_byte (key[1], 1))) ^ extract_byte (key[0], 1); b2 = q (1, (q (0, b2) ^ extract_byte (key[1], 2))) ^ extract_byte (key[0], 2); b3 = q (1, (q (1, b3) ^ extract_byte (key[1], 3))) ^ extract_byte (key[0], 3); return mds (0, b0) ^ mds (1, b1) ^ mds (2, b2) ^ mds (3, b3); } DECLSPEC void twofish256_set_key (u32 *sk, u32 *lk, const u32 *ukey) { u32 me_key[4]; me_key[0] = ukey[0]; me_key[1] = ukey[2]; me_key[2] = ukey[4]; me_key[3] = ukey[6]; u32 mo_key[4]; mo_key[0] = ukey[1]; mo_key[1] = ukey[3]; mo_key[2] = ukey[5]; mo_key[3] = ukey[7]; sk[3] = mds_rem (me_key[0], mo_key[0]); sk[2] = mds_rem (me_key[1], mo_key[1]); sk[1] = mds_rem (me_key[2], mo_key[2]); sk[0] = mds_rem (me_key[3], mo_key[3]); for (int i = 0; i < 40; i += 2) { u32 a = 0x01010101 * i; u32 b = 0x01010101 + a; a = h_fun256 (a, me_key); b = h_fun256 (b, mo_key); b = hc_rotl32_S (b, 8); lk[i + 0] = a + b; lk[i + 1] = hc_rotl32_S (a + 2 * b, 9); } } DECLSPEC void twofish256_encrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out) { u32 data[4]; data[0] = in[0] ^ lk[0]; data[1] = in[1] ^ lk[1]; data[2] = in[2] ^ lk[2]; data[3] = in[3] ^ lk[3]; f_rnd256 (0); f_rnd256 (1); f_rnd256 (2); f_rnd256 (3); f_rnd256 (4); f_rnd256 (5); f_rnd256 (6); f_rnd256 (7); out[0] = data[2] ^ lk[4]; out[1] = data[3] ^ lk[5]; out[2] = data[0] ^ lk[6]; out[3] = data[1] ^ lk[7]; } DECLSPEC void twofish256_decrypt (const u32 *sk, const u32 *lk, const u32 *in, u32 *out) { u32 data[4]; data[0] = in[0] ^ lk[4]; data[1] = in[1] ^ lk[5]; data[2] = in[2] ^ lk[6]; data[3] = in[3] ^ lk[7]; i_rnd256 (7); i_rnd256 (6); i_rnd256 (5); i_rnd256 (4); i_rnd256 (3); i_rnd256 (2); i_rnd256 (1); i_rnd256 (0); out[0] = data[2] ^ lk[0]; out[1] = data[3] ^ lk[1]; out[2] = data[0] ^ lk[2]; out[3] = data[1] ^ lk[3]; } #undef g1_fun128 #undef g0_fun128 #undef f_rnd128 #undef i_rnd128 #undef f_rnd256 #undef i_rnd256 #undef q #undef mds #undef q20 #undef q21 #undef q22 #undef q23 #undef q40 #undef q41 #undef q42 #undef q43