/** * Author......: See docs/credits.txt * License.....: MIT */ //#define NEW_SIMD_CODE #ifdef KERNEL_STATIC #include "inc_vendor.h" #include "inc_types.h" #include "inc_platform.cl" #include "inc_common.cl" #include "inc_scalar.cl" #include "inc_hash_sha1.cl" #endif KERNEL_FQ void m18100_mxx (KERN_ATTR_BASIC ()) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; /** * base */ const u32 pw_len = pws[gid].pw_len; u32 w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = hc_swap32_S (pws[gid].i[idx]); } const u32 salt_len = 8; u32 s[64] = { 0 }; for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1) { s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]); } /** * loop */ for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++) { const u32 comb_len = combs_buf[il_pos].pw_len; u32 c[64]; #ifdef _unroll #pragma unroll #endif for (int idx = 0; idx < 64; idx++) { c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]); } switch_buffer_by_offset_1x64_be_S (c, pw_len); #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 64; i++) { c[i] |= w[i]; } sha1_hmac_ctx_t ctx; sha1_hmac_init (&ctx, c, pw_len + comb_len); sha1_hmac_update (&ctx, s, salt_len); sha1_hmac_final (&ctx); // initialize a buffer for the otp code u32 otp_code = 0; // grab 4 consecutive bytes of the hash, starting at offset switch (ctx.opad.h[4] & 15) { case 0: otp_code = ctx.opad.h[0]; break; case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break; case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break; case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break; case 4: otp_code = ctx.opad.h[1]; break; case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break; case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break; case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break; case 8: otp_code = ctx.opad.h[2]; break; case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break; case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break; case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break; case 12: otp_code = ctx.opad.h[3]; break; case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break; case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break; case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break; } // take only the lower 31 bits otp_code &= 0x7fffffff; // we want to generate only 6 digits of code otp_code %= 1000000; COMPARE_M_SCALAR (otp_code, 0, 0, 0); } } KERNEL_FQ void m18100_sxx (KERN_ATTR_BASIC ()) { /** * modifier */ const u64 lid = get_local_id (0); const u64 gid = get_global_id (0); if (gid >= GID_CNT) return; /** * digest */ const u32 search[4] = { digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R0], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R1], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R2], digests_buf[DIGESTS_OFFSET_HOST].digest_buf[DGST_R3] }; /** * base */ const u32 pw_len = pws[gid].pw_len; u32 w[64] = { 0 }; for (u32 i = 0, idx = 0; i < pw_len; i += 4, idx += 1) { w[idx] = hc_swap32_S (pws[gid].i[idx]); } const u32 salt_len = 8; u32 s[64] = { 0 }; for (u32 i = 0, idx = 0; i < salt_len; i += 4, idx += 1) { s[idx] = hc_swap32_S (salt_bufs[SALT_POS_HOST].salt_buf[idx]); } /** * loop */ for (u32 il_pos = 0; il_pos < IL_CNT; il_pos++) { const u32 comb_len = combs_buf[il_pos].pw_len; u32 c[64]; #ifdef _unroll #pragma unroll #endif for (int idx = 0; idx < 64; idx++) { c[idx] = hc_swap32_S (combs_buf[il_pos].i[idx]); } switch_buffer_by_offset_1x64_be_S (c, pw_len); #ifdef _unroll #pragma unroll #endif for (int i = 0; i < 64; i++) { c[i] |= w[i]; } sha1_hmac_ctx_t ctx; sha1_hmac_init (&ctx, c, pw_len + comb_len); sha1_hmac_update (&ctx, s, salt_len); sha1_hmac_final (&ctx); // initialize a buffer for the otp code u32 otp_code = 0; // grab 4 consecutive bytes of the hash, starting at offset switch (ctx.opad.h[4] & 15) { case 0: otp_code = ctx.opad.h[0]; break; case 1: otp_code = ctx.opad.h[0] << 8 | ctx.opad.h[1] >> 24; break; case 2: otp_code = ctx.opad.h[0] << 16 | ctx.opad.h[1] >> 16; break; case 3: otp_code = ctx.opad.h[0] << 24 | ctx.opad.h[1] >> 8; break; case 4: otp_code = ctx.opad.h[1]; break; case 5: otp_code = ctx.opad.h[1] << 8 | ctx.opad.h[2] >> 24; break; case 6: otp_code = ctx.opad.h[1] << 16 | ctx.opad.h[2] >> 16; break; case 7: otp_code = ctx.opad.h[1] << 24 | ctx.opad.h[2] >> 8; break; case 8: otp_code = ctx.opad.h[2]; break; case 9: otp_code = ctx.opad.h[2] << 8 | ctx.opad.h[3] >> 24; break; case 10: otp_code = ctx.opad.h[2] << 16 | ctx.opad.h[3] >> 16; break; case 11: otp_code = ctx.opad.h[2] << 24 | ctx.opad.h[3] >> 8; break; case 12: otp_code = ctx.opad.h[3]; break; case 13: otp_code = ctx.opad.h[3] << 8 | ctx.opad.h[4] >> 24; break; case 14: otp_code = ctx.opad.h[3] << 16 | ctx.opad.h[4] >> 16; break; case 15: otp_code = ctx.opad.h[3] << 24 | ctx.opad.h[4] >> 8; break; } // take only the lower 31 bits otp_code &= 0x7fffffff; // we want to generate only 6 digits of code otp_code %= 1000000; COMPARE_S_SCALAR (otp_code, 0, 0, 0); } }