/* Sha256Opt.c -- SHA-256 optimized code for SHA-256 hardware instructions 2021-04-01 : Igor Pavlov : Public domain */ #include "Precomp.h" #if defined(_MSC_VER) #if (_MSC_VER < 1900) && (_MSC_VER >= 1200) // #define USE_MY_MM #endif #endif #include "CpuArch.h" #ifdef MY_CPU_X86_OR_AMD64 #if defined(__clang__) #if (__clang_major__ >= 8) // fix that check #define USE_HW_SHA #ifndef __SHA__ #define ATTRIB_SHA __attribute__((__target__("sha,ssse3"))) #if defined(_MSC_VER) // SSSE3: for clang-cl: #include #define __SHA__ #endif #endif #endif #elif defined(__GNUC__) #if (__GNUC__ >= 8) // fix that check #define USE_HW_SHA #ifndef __SHA__ #define ATTRIB_SHA __attribute__((__target__("sha,ssse3"))) // #pragma GCC target("sha,ssse3") #endif #endif #elif defined(__INTEL_COMPILER) #if (__INTEL_COMPILER >= 1800) // fix that check #define USE_HW_SHA #endif #elif defined(_MSC_VER) #ifdef USE_MY_MM #define USE_VER_MIN 1300 #else #define USE_VER_MIN 1910 #endif #if _MSC_VER >= USE_VER_MIN #define USE_HW_SHA #endif #endif // #endif // MY_CPU_X86_OR_AMD64 #ifdef USE_HW_SHA // #pragma message("Sha256 HW") // #include #if !defined(_MSC_VER) || (_MSC_VER >= 1900) #include #else #include #if defined(_MSC_VER) && (_MSC_VER >= 1600) // #include #endif #ifdef USE_MY_MM #include "My_mm.h" #endif #endif /* SHA256 uses: SSE2: _mm_loadu_si128 _mm_storeu_si128 _mm_set_epi32 _mm_add_epi32 _mm_shuffle_epi32 / pshufd SSSE3: _mm_shuffle_epi8 / pshufb _mm_alignr_epi8 SHA: _mm_sha256* */ // K array must be aligned for 16-bytes at least. // The compiler can look align attribute and selects // movdqu - for code without align attribute // movdqa - for code with align attribute extern MY_ALIGN(64) const UInt32 SHA256_K_ARRAY[64]; #define K SHA256_K_ARRAY #define ADD_EPI32(dest, src) dest = _mm_add_epi32(dest, src); #define SHA256_MSG1(dest, src) dest = _mm_sha256msg1_epu32(dest, src); #define SHA25G_MSG2(dest, src) dest = _mm_sha256msg2_epu32(dest, src); #define LOAD_SHUFFLE(m, k) \ m = _mm_loadu_si128((const __m128i *)(const void *)(data + (k) * 16)); \ m = _mm_shuffle_epi8(m, mask); \ #define SM1(g0, g1, g2, g3) \ SHA256_MSG1(g3, g0); \ #define SM2(g0, g1, g2, g3) \ tmp = _mm_alignr_epi8(g1, g0, 4); \ ADD_EPI32(g2, tmp); \ SHA25G_MSG2(g2, g1); \ // #define LS0(k, g0, g1, g2, g3) LOAD_SHUFFLE(g0, k) // #define LS1(k, g0, g1, g2, g3) LOAD_SHUFFLE(g1, k+1) #define NNN(g0, g1, g2, g3) #define RND2(t0, t1) \ t0 = _mm_sha256rnds2_epu32(t0, t1, msg); #define RND2_0(m, k) \ msg = _mm_add_epi32(m, *(const __m128i *) (const void *) &K[(k) * 4]); \ RND2(state0, state1); \ msg = _mm_shuffle_epi32(msg, 0x0E); \ #define RND2_1 \ RND2(state1, state0); \ // We use scheme with 3 rounds ahead for SHA256_MSG1 / 2 rounds ahead for SHA256_MSG2 #define R4(k, g0, g1, g2, g3, OP0, OP1) \ RND2_0(g0, k); \ OP0(g0, g1, g2, g3); \ RND2_1; \ OP1(g0, g1, g2, g3); \ #define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \ R4 ( (k)*4+0, m0, m1, m2, m3, OP0, OP1 ) \ R4 ( (k)*4+1, m1, m2, m3, m0, OP2, OP3 ) \ R4 ( (k)*4+2, m2, m3, m0, m1, OP4, OP5 ) \ R4 ( (k)*4+3, m3, m0, m1, m2, OP6, OP7 ) \ #define PREPARE_STATE \ tmp = _mm_shuffle_epi32(state0, 0x1B); /* abcd */ \ state0 = _mm_shuffle_epi32(state1, 0x1B); /* efgh */ \ state1 = state0; \ state0 = _mm_unpacklo_epi64(state0, tmp); /* cdgh */ \ state1 = _mm_unpackhi_epi64(state1, tmp); /* abef */ \ void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks); #ifdef ATTRIB_SHA ATTRIB_SHA #endif void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks) { const __m128i mask = _mm_set_epi32(0x0c0d0e0f, 0x08090a0b, 0x04050607, 0x00010203); __m128i tmp; __m128i state0, state1; if (numBlocks == 0) return; state0 = _mm_loadu_si128((const __m128i *) (const void *) &state[0]); state1 = _mm_loadu_si128((const __m128i *) (const void *) &state[4]); PREPARE_STATE do { __m128i state0_save, state1_save; __m128i m0, m1, m2, m3; __m128i msg; // #define msg tmp state0_save = state0; state1_save = state1; LOAD_SHUFFLE (m0, 0) LOAD_SHUFFLE (m1, 1) LOAD_SHUFFLE (m2, 2) LOAD_SHUFFLE (m3, 3) R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 ); R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 ); R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 ); R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN ); ADD_EPI32(state0, state0_save); ADD_EPI32(state1, state1_save); data += 64; } while (--numBlocks); PREPARE_STATE _mm_storeu_si128((__m128i *) (void *) &state[0], state0); _mm_storeu_si128((__m128i *) (void *) &state[4], state1); } #endif // USE_HW_SHA #elif defined(MY_CPU_ARM_OR_ARM64) #if defined(__clang__) #if (__clang_major__ >= 8) // fix that check #define USE_HW_SHA #endif #elif defined(__GNUC__) #if (__GNUC__ >= 6) // fix that check #define USE_HW_SHA #endif #elif defined(_MSC_VER) #if _MSC_VER >= 1910 #define USE_HW_SHA #endif #endif #ifdef USE_HW_SHA // #pragma message("=== Sha256 HW === ") #if defined(__clang__) || defined(__GNUC__) #ifdef MY_CPU_ARM64 #define ATTRIB_SHA __attribute__((__target__("+crypto"))) #else #define ATTRIB_SHA __attribute__((__target__("fpu=crypto-neon-fp-armv8"))) #endif #else // _MSC_VER // for arm32 #define _ARM_USE_NEW_NEON_INTRINSICS #endif #if defined(_MSC_VER) && defined(MY_CPU_ARM64) #include #else #include #endif typedef uint32x4_t v128; // typedef __n128 v128; // MSVC #ifdef MY_CPU_BE #define MY_rev32_for_LE(x) #else #define MY_rev32_for_LE(x) x = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(x))) #endif #define LOAD_128(_p) (*(const v128 *)(const void *)(_p)) #define STORE_128(_p, _v) *(v128 *)(void *)(_p) = (_v) #define LOAD_SHUFFLE(m, k) \ m = LOAD_128((data + (k) * 16)); \ MY_rev32_for_LE(m); \ // K array must be aligned for 16-bytes at least. extern MY_ALIGN(64) const UInt32 SHA256_K_ARRAY[64]; #define K SHA256_K_ARRAY #define SHA256_SU0(dest, src) dest = vsha256su0q_u32(dest, src); #define SHA25G_SU1(dest, src2, src3) dest = vsha256su1q_u32(dest, src2, src3); #define SM1(g0, g1, g2, g3) SHA256_SU0(g3, g0) #define SM2(g0, g1, g2, g3) SHA25G_SU1(g2, g0, g1) #define NNN(g0, g1, g2, g3) #define R4(k, g0, g1, g2, g3, OP0, OP1) \ msg = vaddq_u32(g0, *(const v128 *) (const void *) &K[(k) * 4]); \ tmp = state0; \ state0 = vsha256hq_u32( state0, state1, msg ); \ state1 = vsha256h2q_u32( state1, tmp, msg ); \ OP0(g0, g1, g2, g3); \ OP1(g0, g1, g2, g3); \ #define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \ R4 ( (k)*4+0, m0, m1, m2, m3, OP0, OP1 ) \ R4 ( (k)*4+1, m1, m2, m3, m0, OP2, OP3 ) \ R4 ( (k)*4+2, m2, m3, m0, m1, OP4, OP5 ) \ R4 ( (k)*4+3, m3, m0, m1, m2, OP6, OP7 ) \ void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks); #ifdef ATTRIB_SHA ATTRIB_SHA #endif void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks) { v128 state0, state1; if (numBlocks == 0) return; state0 = LOAD_128(&state[0]); state1 = LOAD_128(&state[4]); do { v128 state0_save, state1_save; v128 m0, m1, m2, m3; v128 msg, tmp; state0_save = state0; state1_save = state1; LOAD_SHUFFLE (m0, 0) LOAD_SHUFFLE (m1, 1) LOAD_SHUFFLE (m2, 2) LOAD_SHUFFLE (m3, 3) R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 ); R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 ); R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 ); R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN ); state0 = vaddq_u32(state0, state0_save); state1 = vaddq_u32(state1, state1_save); data += 64; } while (--numBlocks); STORE_128(&state[0], state0); STORE_128(&state[4], state1); } #endif // USE_HW_SHA #endif // MY_CPU_ARM_OR_ARM64 #ifndef USE_HW_SHA // #error Stop_Compiling_UNSUPPORTED_SHA // #include // #include "Sha256.h" void MY_FAST_CALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks); #pragma message("Sha256 HW-SW stub was used") void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks); void MY_FAST_CALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks) { Sha256_UpdateBlocks(state, data, numBlocks); /* UNUSED_VAR(state); UNUSED_VAR(data); UNUSED_VAR(numBlocks); exit(1); return; */ } #endif