/** * Author......: See docs/credits.txt * License.....: MIT */ #include "common.h" #include "types.h" #include "event.h" #include "memory.h" #include "hwmon.h" #include "timer.h" #include "hashes.h" #include "thread.h" #include "restore.h" #include "shared.h" #include "status.h" #include "monitor.h" int get_runtime_left (const hashcat_ctx_t *hashcat_ctx) { const status_ctx_t *status_ctx = hashcat_ctx->status_ctx; const user_options_t *user_options = hashcat_ctx->user_options; double msec_paused = status_ctx->msec_paused; if (status_ctx->devices_status == STATUS_PAUSED) { double msec_paused_tmp = hc_timer_get (status_ctx->timer_paused); msec_paused += msec_paused_tmp; } time_t runtime_cur; time (&runtime_cur); const int runtime_left = (int) (status_ctx->runtime_start + status_ctx->prepare_time + user_options->runtime + (msec_paused / 1000) - runtime_cur); return runtime_left; } static int monitor (hashcat_ctx_t *hashcat_ctx) { hashes_t *hashes = hashcat_ctx->hashes; hwmon_ctx_t *hwmon_ctx = hashcat_ctx->hwmon_ctx; opencl_ctx_t *opencl_ctx = hashcat_ctx->opencl_ctx; restore_ctx_t *restore_ctx = hashcat_ctx->restore_ctx; status_ctx_t *status_ctx = hashcat_ctx->status_ctx; user_options_t *user_options = hashcat_ctx->user_options; bool runtime_check = false; bool remove_check = false; bool status_check = false; bool restore_check = false; bool hwmon_check = false; bool performance_check = false; const int sleep_time = 1; const int temp_threshold = 1; // degrees celcius const int fan_speed_min = 33; // in percentage const int fan_speed_max = 100; const float exec_low = 50.0f; // in ms const float util_low = 90.0f; // in percent if (user_options->runtime) { runtime_check = true; } if (restore_ctx->enabled == true) { restore_check = true; } if ((user_options->remove == true) && (hashes->hashlist_mode == HL_MODE_FILE)) { remove_check = true; } if (user_options->status == true) { status_check = true; } if (hwmon_ctx->enabled == true) { hwmon_check = true; } if (hwmon_ctx->enabled == true) { performance_check = true; // this check simply requires hwmon to work } if ((runtime_check == false) && (remove_check == false) && (status_check == false) && (restore_check == false) && (hwmon_check == false) && (performance_check == false)) { return 0; } // these variables are mainly used for fan control int *fan_speed_chgd = (int *) hccalloc (opencl_ctx->devices_cnt, sizeof (int)); // temperature controller "loopback" values int *temp_diff_old = (int *) hccalloc (opencl_ctx->devices_cnt, sizeof (int)); int *temp_diff_sum = (int *) hccalloc (opencl_ctx->devices_cnt, sizeof (int)); time_t last_temp_check_time; time (&last_temp_check_time); u32 slowdown_warnings = 0; u32 performance_warnings = 0; u32 restore_left = user_options->restore_timer; u32 remove_left = user_options->remove_timer; u32 status_left = user_options->status_timer; while (status_ctx->shutdown_inner == false) { hc_sleep (sleep_time); if (status_ctx->devices_status == STATUS_INIT) continue; if (hwmon_check == true) { hc_thread_mutex_lock (status_ctx->mux_hwmon); for (u32 device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped == true) continue; const int rc_throttle = hm_get_throttle_with_device_id (hashcat_ctx, device_id); if (rc_throttle == -1) continue; if (rc_throttle > 0) { slowdown_warnings++; if (slowdown_warnings == 1) EVENT_DATA (EVENT_MONITOR_THROTTLE1, &device_id, sizeof (u32)); if (slowdown_warnings == 2) EVENT_DATA (EVENT_MONITOR_THROTTLE2, &device_id, sizeof (u32)); if (slowdown_warnings == 3) EVENT_DATA (EVENT_MONITOR_THROTTLE3, &device_id, sizeof (u32)); } else { slowdown_warnings = 0; } } hc_thread_mutex_unlock (status_ctx->mux_hwmon); } if (hwmon_check == true) { hc_thread_mutex_lock (status_ctx->mux_hwmon); time_t temp_check_time; time (&temp_check_time); u32 Ta = temp_check_time - last_temp_check_time; // set Ta = sleep_time; is not good enough (see --remove etc) if (Ta == 0) Ta = 1; for (u32 device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped == true) continue; if ((opencl_ctx->devices_param[device_id].device_type & CL_DEVICE_TYPE_GPU) == 0) continue; const int temperature = hm_get_temperature_with_device_id (hashcat_ctx, device_id); if (temperature > (int) user_options->gpu_temp_abort) { EVENT_DATA (EVENT_MONITOR_TEMP_ABORT, &device_id, sizeof (u32)); myabort (hashcat_ctx); } if (hwmon_ctx->hm_device[device_id].fanspeed_get_supported == false) continue; if (hwmon_ctx->hm_device[device_id].fanspeed_set_supported == false) continue; const u32 gpu_temp_retain = user_options->gpu_temp_retain; if (gpu_temp_retain > 0) { int temp_cur = temperature; int temp_diff_new = (int) gpu_temp_retain - temp_cur; temp_diff_sum[device_id] = temp_diff_sum[device_id] + temp_diff_new; // calculate Ta value (time difference in seconds between the last check and this check) last_temp_check_time = temp_check_time; float Kp = 1.6f; float Ki = 0.001f; float Kd = 10.0f; // PID controller (3-term controller: proportional - Kp, integral - Ki, derivative - Kd) int fan_diff_required = (int) (Kp * (float)temp_diff_new + Ki * Ta * (float)temp_diff_sum[device_id] + Kd * ((float)(temp_diff_new - temp_diff_old[device_id])) / Ta); if (abs (fan_diff_required) >= temp_threshold) { const int fan_speed_cur = hm_get_fanspeed_with_device_id (hashcat_ctx, device_id); int fan_speed_level = fan_speed_cur; if (fan_speed_chgd[device_id] == 0) fan_speed_level = temp_cur; int fan_speed_new = fan_speed_level - fan_diff_required; if (fan_speed_new > fan_speed_max) fan_speed_new = fan_speed_max; if (fan_speed_new < fan_speed_min) fan_speed_new = fan_speed_min; if (fan_speed_new != fan_speed_cur) { int freely_change_fan_speed = (fan_speed_chgd[device_id] == 1); int fan_speed_must_change = (fan_speed_new > fan_speed_cur); if ((freely_change_fan_speed == 1) || (fan_speed_must_change == 1)) { if (device_param->device_vendor_id == VENDOR_ID_AMD) { if (hwmon_ctx->hm_adl) { hm_set_fanspeed_with_device_id_adl (hashcat_ctx, device_id, fan_speed_new, 1); } if (hwmon_ctx->hm_sysfs) { hm_set_fanspeed_with_device_id_sysfs (hashcat_ctx, device_id, fan_speed_new); } } else if (device_param->device_vendor_id == VENDOR_ID_NV) { if (hwmon_ctx->hm_nvapi) { hm_set_fanspeed_with_device_id_nvapi (hashcat_ctx, device_id, fan_speed_new, 1); } if (hwmon_ctx->hm_xnvctrl) { hm_set_fanspeed_with_device_id_xnvctrl (hashcat_ctx, device_id, fan_speed_new); } } fan_speed_chgd[device_id] = 1; } temp_diff_old[device_id] = temp_diff_new; } } } } hc_thread_mutex_unlock (status_ctx->mux_hwmon); } if (restore_check == true) { restore_left--; if (restore_left == 0) { const int rc = cycle_restore (hashcat_ctx); if (rc == -1) return -1; restore_left = user_options->restore_timer; } } if ((runtime_check == true) && (status_ctx->runtime_start > 0)) { const int runtime_left = get_runtime_left (hashcat_ctx); if (runtime_left <= 0) { EVENT_DATA (EVENT_MONITOR_RUNTIME_LIMIT, NULL, 0); myabort (hashcat_ctx); } } if (remove_check == true) { remove_left--; if (remove_left == 0) { if (hashes->digests_saved != hashes->digests_done) { hashes->digests_saved = hashes->digests_done; const int rc = save_hash (hashcat_ctx); if (rc == -1) return -1; } remove_left = user_options->remove_timer; } } if (status_check == true) { status_left--; if (status_left == 0) { hc_thread_mutex_lock (status_ctx->mux_display); EVENT_DATA (EVENT_MONITOR_STATUS_REFRESH, NULL, 0); hc_thread_mutex_unlock (status_ctx->mux_display); status_left = user_options->status_timer; } } if (performance_check == true) { int exec_cnt = 0; int util_cnt = 0; double exec_total = 0; double util_total = 0; hc_thread_mutex_lock (status_ctx->mux_hwmon); for (u32 device_id = 0; device_id < opencl_ctx->devices_cnt; device_id++) { hc_device_param_t *device_param = &opencl_ctx->devices_param[device_id]; if (device_param->skipped == true) continue; exec_cnt++; const double exec = status_get_exec_msec_dev (hashcat_ctx, device_id); exec_total += exec; const int util = hm_get_utilization_with_device_id (hashcat_ctx, device_id); if (util == -1) continue; util_total += (double) util; util_cnt++; } hc_thread_mutex_unlock (status_ctx->mux_hwmon); double exec_avg = 0; double util_avg = 0; if (exec_cnt > 0) exec_avg = exec_total / exec_cnt; if (util_cnt > 0) util_avg = util_total / util_cnt; if ((exec_avg > 0) && (exec_avg < exec_low)) { performance_warnings++; if (performance_warnings == 10) EVENT_DATA (EVENT_MONITOR_PERFORMANCE_HINT, NULL, 0); } if ((util_avg > 0) && (util_avg < util_low)) { performance_warnings++; if (performance_warnings == 10) EVENT_DATA (EVENT_MONITOR_PERFORMANCE_HINT, NULL, 0); } } } // final round of save_hash if (remove_check == true) { if (hashes->digests_saved != hashes->digests_done) { const int rc = save_hash (hashcat_ctx); if (rc == -1) return -1; } } // final round of cycle_restore if (restore_check == true) { const int rc = cycle_restore (hashcat_ctx); if (rc == -1) return -1; } hcfree (fan_speed_chgd); hcfree (temp_diff_old); hcfree (temp_diff_sum); return 0; } void *thread_monitor (void *p) { hashcat_ctx_t *hashcat_ctx = (hashcat_ctx_t *) p; monitor (hashcat_ctx); // we should give back some useful returncode return NULL; }